Visualising the Tutte Polynomial Computation

Bennett Thompson and David J. Pearce

Computer Science Group
Victoria University of Wellington, NZ
{thompsbenn,djp@mcs.vuw.ac.nz

Abstract—The Tutte polynomial is an important concept in
graph theory which captures many important properties of
graphs (e.g. chromatic number, number of spanning trees ejclt
also provides a normalised representation that can be usedsan
equivalence relation on graphs and has applications in divse
areas such micro-biology and physics. A highly efficient algrithm
for computing Tutte polynomials has been elsewhere develep
by Haggard and Pearce. This relies on various optimisationand
heuristics to improve performance; however, understandig the
effect of a particular heuristic remains challenging, sine the
computation trees involved are very large. Therefore, we hae
constructed a visualisation of the computation in order to tudy
the effect of various heuristics on the algorithms’ operatbn.

|I. INTRODUCTION

Tutte polynomials play an important role in graph theory,
combinatorics [3], matroid theory, knot theory [1], and exp

Gary Haggard
Department of Computer Science
Bucknell University
haggard@bucknell.edu

of a graph of sufficient size to represent a DNA knot [2].
Haggardet al. have developed the most efficient algorithm
currently available for this [5], based on earlier work on
computing Chromatic Polynomials [6], [4]. The algorithm
relies on various optimisations and heuristics to obtaindyo
performance. However, the reason that a particular h@uigst
effective often remains unclear. A better understandinthef
known heuristics would, hopefully, suggest better heiggst
and lead to a faster algorithm in practice.

In an effort to address this problem, we have developed a
visualisation of the computation tree for a Tutte Polyndmia
and we report on this here.

[I. COMPUTING TUTTE POLYNOMIALS
A graph is defined as a paifV, E'), whereV is the vertex

imental physics [13]. For example, the polynomials can [t and £ C V x V the edge set. In this paper, we consider
evaluated to find the number of spanning trees in a graph, @y undirected graphs, meaningr, y) is the same asy, z).
number of forests in a graph, the number of connected spa@n{oop is an edge(z,) between the same vertex, whilst a
ning subgraphs, the number of spanning subgraphs, and ithielge is an edge whose removal disconnects two or more

number of acyclic orientations. In addition, Tutte polyrial®

vertices (i.e. there is no longer a path between them). The

specialise to chromatic polynomials, flow polynomials, €ln degree of a vertex is the number of vertices incident on it.

polynomials for alternating links [11], and partition fuians
of the g-state Potts model of physics.
The Tutte Polynomial can also be used to classifpts

Two operations are essential to understanding the Tutte
polynomial definition. These are: edge deletioh— e; and
edge contractioni7/e. The latter involves first deleting, and

which has practical applications in areas such as micntren merging its endpoints as follows:

biology. A knot can be thought of as a tangled cord with

the ends joined. If the tangled cord istrdvial knot, it could

be untangled with the ends still fused; however, if the tedg|
cord is anontrivial knot, a cut is needed to untangle it. The

most well-known example of a non-trivial knot is ttrefoil:

AD

Now, the double helix which constitutes DNA can be
visualised as two very long strands that are intertwined anq@) =
coiled so much as to form a knot. In order for DNA to

replicate, however, it must first “untangle” itself and oarg

ey. e, .,
G Gleg

Definition 1. The Tutte polynomial of a graphG = (V, E) is
a two-variable polynomial defined as follows:

1 E(G)=10 (1)

2T (G/e) ecFE ande is a bridge (2)

yI'(G—¢) ecFE andeisaloop (3)

T(G—e)+ ecFE ande is neither a (4)
T(G/e) loop nor a bridge

enzymes are responsible for this. The type of knot involved
affects this process, and a better understanding of thiddvou The definition of a Tutte polynomial outlines a simple

yield additional insight into the replication, transcrgst, and
recombination of DNA [8].

recursive procedure for computing it. However, we are foee t
apply its rules in whatever order we wish [12], and to choose

The problem, however, is that there are no practical any edge to operate on at each stage. Figure 1 illustrates thi
gorithms available which can compute the Tutte polynomiatcursive procedure applied to a simple graph to give thé fina

)(x(x()) #x0) #9)) + <‘> J#))+ K0)

X2 + x> +xy + X + X +YyY + Xy + VY

Fig. 1. lllustrating one example computation tree for a $evgraph using the rules of Definition 1. The rule from Defuonitil applied at each stage is shown
with a white number on a black circle. Observe that we do natvdvertices once they become isolated, since these playrtiefuole in the computation.

polynomial. It is clear from Figure 1 that the computatioin our cache and can be quickly recalled when the second
forms a tree, and we refer to this as ttmmputation tree. triangle is encountered. To determine graph isomorphisen, w

The order in which we apply the rules of Definition 1emp|oy McKay'snauty program [7]

significantly affects the size of the computation tree. An The choice of edge for a delete/contract operation can also
“efficient” order can reduce work in a number of ways. Fogreatly affect the size of the computation tree. In parécul
example, there are two situations where an edge is assciataffects the likelihood of reaching a subgraph isomorgbic
with a factor directly: if the edge is a loop, the factoryis one already seen. For example, selecting either of the -multi
likewise, if the edge is a bridge, the factoras Eliminating edges in the right branch on the second level in Figure 2
such edges as soon as possible and storing the factor for lagsults in a graph isomorphic to another (i.e. the triangke)
incorporation into the answer reduces work by lowering th&hown; choosing any of the other edges, however, does not. We
cost of operations (e.g. contracting, connectednessagggtic.) have elsewhere developed two simgdigie selection heuristics

on graphs in the subtrees below the removal. In Figure Which appear to perform well. The first, calledinspeg,

for example, a loop arises on the rightmost branch of timeinimises the degree of either end-point; that is, it cheose
computation tree at the third level. This loop is not reducezh edge where one endpoint has the smallest degree of any.
immediately and, instead, is propagated to the bottom of tfibe second, called/orpeRr relies on an arbitrary ordering
tree; removing it immediately, however, reduces the cost of the vertices; starting from the first vertex in the order, i
duplicating the graph when the branch forks further down. continuously selects edges from the same vertex until none

A cache of computed polynomials for graphs encounter&gmain, before moving on to the next vertex in the ordering.

during the computation is maintained. Thus, when a graphUnderstanding why the edge selection heuriskitsspeEc
isomorphic to one already resolved is encountered, we camndVoRrpeR perform so well is, unfortunately, not easy. This
simply recall its polynomial from the cache. This optimieat is because the computation trees we are interested in tlypica
typically has a significant effect, since the whole brancthef have hundreds of thousands of nodes, and it is difficult to
computation tree below the isomorph is pruned. For examptiguge exactly what effect each heuristic is having. Undadst

in Figure 1, two of the branches on the third level start frofimg them better would, hopefully, allow us to design better
the triangle; thus, after one of the branches has been rddudesuristics. Therefore, we have developed a visualiserva Ja
the polynomial for the triangle (i.e:? + x + y) will be stored for the Tutte polynomial computation.

Fig. 3. A view of how the nodes in the computation tree areraed into
the wedge display. The key here is that each node is repesséytawedge
of colour, rather than a small circle, making better use @icsp

Fig. 2. The evolution of our visualisation of the Tutte cortgtion: a) The
classic 2D vertical method of visualising a trég);a cone shaped tree, which can click and drag the view, zoom in/out and select a node,
is more economic with space and could be “spur)’the radial tree, which amongst other things. Theacro view shows an outline view
is essentially a top down view of the cone. .) . .
of the computation tree, which helps the user navigate the

I11. VISUALISING THE COMPUTATION TREE computation tree; a box in the macro view indicates the

The first stage in constructing our visualiser was to dsize and location of the target viewport. The user can also
g g ?eposition the target viewport by clicking on the macro view

termlne a sunabl_e View methoq for the compqtaﬂop tregirectly. Thenode view shows the graph at a particular node
Considering the size of computation trees we are mterenstedin the computation tree, which is selected by clicking on the
it is clear that the whole tree could not be viewable at onc, !

.) . arget viewport. Figure 6 demonstrates another view preduc
The standard vertical layout of a tree (e.g. Figure 1) is ve 9 P 9 P

. r visualiser th n provi m ful insight. Thi
popular since humans have a tendency to look at the top o our visualiser that can provide some useful insight S

a0e or screen and scan downward. However. this a roacﬁr?ows the distribution of matches in the cache; recall that t
bag . R T o PP gdthe is used to store computed polynomials for intermediat
not particularly economic with space, since it producegdar

4 . . : raphs seen during the computation, so that they can be
unused areas; furthermore, it results in the the view at tﬁeecalled when that intermediate graph is encountered again

bottom of the vertical layout being rather cramped. We also Finally, we are unaware of any other work on visualising the

considered a “cone™ approach, where the vertical layout Ttte polynomial computation. However, similar work egist

augmented by having the tree wrapped around a cone. This . - .
helps cope with the problem of having a lot of space at ﬂ?g visualising the computation tree of a SAT solver [10].. [9]

top and very little room at the bottom. In the end, however, REFERENCES

we settled upon a radial layout of the computation tree. Thif; ¢ adams. The Knot Book. W. H. Freeman and Company, 1994.

is essentially a top down view of the cone which maximise$] Bollobas and Riordan. A tutte polynomial for colourecaghs. InCom
the use of screen real estate. The radial method is simpler binatorics, Probability and Computing, volume 8. Cambridge University
to implement than the cone method, although in theory the press, 1999.

Imp X : h) 1 © ugnh i - y M] T. Brylawski and J. Oxley. The tutte poynomial and its Eqations.
could be used in conjunction. Figure 2 illustrates the eNmtu In Encyclopedia Math. Appl., pages 123-225. Cambridge Univ. Press,
of our visualisation to its current state. 1992. . . N

. . {{H G. Haggard and T. Mathies. The computation of chromatilypomials.

There remains a considerable amount of wasted space With pigyee Math, 199:227-231, 1999.

the radial display as seen in Figure 2. To resolve this, wg] G. Haggard, D. J. Pearce, and G. Royle. Computing tuttgnponials.

split the radial view into an arrangement of concentriclesc Technical report, 2007.

p. . g . [6] G. Haggard and R. Read. Chromatic polynomials of largeplgs. ii.
d“”ded mfno V/edg&G We_ call 'FhIS thewedge dlsplqy, as isomorphism abstract data type for small graphk. Math. Comput,
illustrated in Figure 3. This provides an uncluttered vidthe 3:35-43, 1993.

computation tree, with the flush proximity of nodes allowingl?] B- McKay. Nauty users guide (versioh5). Technical report, Dept.
L. . . Comp. Sci., Australian National University, 1990.
node characteristics to be effectively summarised by @olou (g) k. Murasugi. Knot Theory and Its Applications. Birkhauser, 1996.

Figure 4 illustrates two computation trees for the samé] C. Sinz. Visualizing SAT instances and runs of the DPLaaithm.

’ ; - sati Journal of Automated Reasoning, 39(2):219-243, 2007.
St?rt”.‘g graph, computed using the.‘ two different h(_:‘ur?‘S'[ICElO] C. Sinz and M. Dieringer. DPvis—A tool to visualize thgusture of
It is immediately apparent from this that the effect of the = sar instances. IProc. SAT, volume 8, pages 257268, 2005.
heuristics can be significant. Figure 5 shows the visuadisefl1] M. Thistlewaite. A spanning tree expansion of the jopedynomial.

P FP ; ; ; Topology, 26:297-309, 1987.
appllcatlon view, this ?IIOWS the user to ma.mpUIat.e .hIS/he[Csz] W. Tutte. A contribution to the theory of chromatic pobmials.
view of the computation tree through zooming, shifting and ~ canagian Journal of Mathematics, 6:80-81, 1954.
other effects. Thetarget viewport provides the main view [13] D. J. A. Welsh and C. Merino. The Potts model and the Tutte

window for the computation tree. Within this view the user Polynomial. Journal of Mathematical Physics, 41(3):1127-1152, 2000.

Fig. 4. Two different trees illustrating the Tutte polyn@htomputation of the same graph. Here, M®RDER heuristic (right) produces a computation
tree with 325K steps, thus outperforming tMINSDEG heuristic (left) whose tree has 806K steps. The intermedigaphs of the Tutte computation are
also shown when possible, but not displayed once their sitelow a certain threshold.

edge15.ml

L S

- A
\
Ouput To Jpey Toggle Matches Highighting | Togole Match Lines Toggle Graphs | oo Ji)

Fig. 5. The application view. The parts labelled refer to tbkowing: 1. Target View,2. Macro View, 3. Magnification Slider,4. Node View, 5. Colour
Gradient Key,6. Squashing Slider7. Function Panel.

Fig. 6. Two different trees illustrating the Tutte polyn@hcomputation of the same graph. Again, that for MéNSDEG heuristic is shown on the left
and that for theV ORDER heuristic on the right. Each line shown on the two diagramsneots the point when an intermediate graph is first encoeohte
and stored in the cache, with a later point where that grapbdalled and used.

