
Visualising the Tutte Polynomial Computation
Bennett Thompson and David J. Pearce

Computer Science Group
Victoria University of Wellington, NZ
{thompsbenn,djp}@mcs.vuw.ac.nz

Gary Haggard
Department of Computer Science

Bucknell University
haggard@bucknell.edu

Abstract—The Tutte polynomial is an important concept in
graph theory which captures many important properties of
graphs (e.g. chromatic number, number of spanning trees etc). It
also provides a normalised representation that can be used as an
equivalence relation on graphs and has applications in diverse
areas such micro-biology and physics. A highly efficient algorithm
for computing Tutte polynomials has been elsewhere developed
by Haggard and Pearce. This relies on various optimisationsand
heuristics to improve performance; however, understanding the
effect of a particular heuristic remains challenging, since the
computation trees involved are very large. Therefore, we have
constructed a visualisation of the computation in order to study
the effect of various heuristics on the algorithms’ operation.

I. INTRODUCTION

Tutte polynomials play an important role in graph theory,
combinatorics [3], matroid theory, knot theory [1], and exper-
imental physics [13]. For example, the polynomials can be
evaluated to find the number of spanning trees in a graph, the
number of forests in a graph, the number of connected span-
ning subgraphs, the number of spanning subgraphs, and the
number of acyclic orientations. In addition, Tutte polynomials
specialise to chromatic polynomials, flow polynomials, Jones
polynomials for alternating links [11], and partition functions
of the q-state Potts model of physics.

The Tutte Polynomial can also be used to classifyknots
which has practical applications in areas such as micro-
biology. A knot can be thought of as a tangled cord with
the ends joined. If the tangled cord is atrivial knot, it could
be untangled with the ends still fused; however, if the tangled
cord is anontrivial knot, a cut is needed to untangle it. The
most well-known example of a non-trivial knot is thetrefoil:

Now, the double helix which constitutes DNA can be
visualised as two very long strands that are intertwined and
coiled so much as to form a knot. In order for DNA to
replicate, however, it must first “untangle” itself and various
enzymes are responsible for this. The type of knot involved
affects this process, and a better understanding of this would
yield additional insight into the replication, transcription, and
recombination of DNA [8].

The problem, however, is that there are no practical al-
gorithms available which can compute the Tutte polynomial

of a graph of sufficient size to represent a DNA knot [2].
Haggardet al. have developed the most efficient algorithm
currently available for this [5], based on earlier work on
computing Chromatic Polynomials [6], [4]. The algorithm
relies on various optimisations and heuristics to obtain good
performance. However, the reason that a particular heuristic is
effective often remains unclear. A better understanding ofthe
known heuristics would, hopefully, suggest better heuristics
and lead to a faster algorithm in practice.

In an effort to address this problem, we have developed a
visualisation of the computation tree for a Tutte Polynomial,
and we report on this here.

II. COMPUTING TUTTE POLYNOMIALS

A graph is defined as a pair(V, E), whereV is thevertex
set and E ⊆ V ×V the edge set. In this paper, we consider
only undirected graphs, meaning(x, y) is the same as(y, x).
A loop is an edge(x, x) between the same vertex, whilst a
bridge is an edge whose removal disconnects two or more
vertices (i.e. there is no longer a path between them). The
degree of a vertex is the number of vertices incident on it.

Two operations are essential to understanding the Tutte
polynomial definition. These are: edge deletion,G − e; and
edge contraction,G/e. The latter involves first deletinge, and
then merging its endpoints as follows:

G

2e1
e2

G / e1

e

Definition 1. The Tutte polynomial of a graphG = (V, E) is
a two-variable polynomial defined as follows:

T (G) =































1 E(G) = ∅ (1)
xT (G/e) e∈E ande is a bridge (2)
yT (G− e) e∈E ande is a loop (3)
T (G − e) + e∈E ande is neither a (4)

T (G/e) loop nor a bridge

The definition of a Tutte polynomial outlines a simple
recursive procedure for computing it. However, we are free to
apply its rules in whatever order we wish [12], and to choose
any edge to operate on at each stage. Figure 1 illustrates this
recursive procedure applied to a simple graph to give the final



y

x

xx

x

2x 2x x3x

y yx yx

x

y

2y

1 1 1 1 1 1 11

22 2 2

2 2 2

3333

3

4 4

4

4

4

4

4

2

x

x x x

y xyxy

x x

x y

Fig. 1. Illustrating one example computation tree for a simple graph using the rules of Definition 1. The rule from Definition 1 applied at each stage is shown
with a white number on a black circle. Observe that we do not draw vertices once they become isolated, since these play no further role in the computation.

polynomial. It is clear from Figure 1 that the computation
forms a tree, and we refer to this as thecomputation tree.

The order in which we apply the rules of Definition 1
significantly affects the size of the computation tree. An
“efficient” order can reduce work in a number of ways. For
example, there are two situations where an edge is associated
with a factor directly: if the edge is a loop, the factor isy;
likewise, if the edge is a bridge, the factor isx. Eliminating
such edges as soon as possible and storing the factor for later
incorporation into the answer reduces work by lowering the
cost of operations (e.g. contracting, connectedness testing, etc.)
on graphs in the subtrees below the removal. In Figure 1,
for example, a loop arises on the rightmost branch of the
computation tree at the third level. This loop is not reduced
immediately and, instead, is propagated to the bottom of the
tree; removing it immediately, however, reduces the cost of
duplicating the graph when the branch forks further down.

A cache of computed polynomials for graphs encountered
during the computation is maintained. Thus, when a graph
isomorphic to one already resolved is encountered, we can
simply recall its polynomial from the cache. This optimisation
typically has a significant effect, since the whole branch ofthe
computation tree below the isomorph is pruned. For example,
in Figure 1, two of the branches on the third level start from
the triangle; thus, after one of the branches has been reduced,
the polynomial for the triangle (i.e.x2 +x+ y) will be stored

in our cache and can be quickly recalled when the second
triangle is encountered. To determine graph isomorphism, we
employ McKay’snauty program [7].

The choice of edge for a delete/contract operation can also
greatly affect the size of the computation tree. In particular,
it affects the likelihood of reaching a subgraph isomorphicto
one already seen. For example, selecting either of the multi-
edges in the right branch on the second level in Figure 2
results in a graph isomorphic to another (i.e. the triangle)as
shown; choosing any of the other edges, however, does not. We
have elsewhere developed two simpleedge selection heuristics
which appear to perform well. The first, calledM INSDEG,
minimises the degree of either end-point; that is, it chooses
an edge where one endpoint has the smallest degree of any.
The second, calledVORDER, relies on an arbitrary ordering
of the vertices; starting from the first vertex in the order, it
continuously selects edges from the same vertex until none
remain, before moving on to the next vertex in the ordering.

Understanding why the edge selection heuristicsM INSDEG

andVORDER perform so well is, unfortunately, not easy. This
is because the computation trees we are interested in typically
have hundreds of thousands of nodes, and it is difficult to
gauge exactly what effect each heuristic is having. Understand-
ing them better would, hopefully, allow us to design better
heuristics. Therefore, we have developed a visualiser in Java
for the Tutte polynomial computation.



Fig. 2. The evolution of our visualisation of the Tutte computation: a) The
classic 2D vertical method of visualising a tree;b) a cone shaped tree, which
is more economic with space and could be “spun”;c) the radial tree, which
is essentially a top down view of the cone.

III. V ISUALISING THE COMPUTATION TREE

The first stage in constructing our visualiser was to de-
termine a suitable view method for the computation tree.
Considering the size of computation trees we are interestedin,
it is clear that the whole tree could not be viewable at once.
The standard vertical layout of a tree (e.g. Figure 1) is very
popular since humans have a tendency to look at the top of a
page or screen and scan downward. However, this approach is
not particularly economic with space, since it produces large
unused areas; furthermore, it results in the the view at the
bottom of the vertical layout being rather cramped. We also
considered a “cone” approach, where the vertical layout is
augmented by having the tree wrapped around a cone. This
helps cope with the problem of having a lot of space at the
top and very little room at the bottom. In the end, however,
we settled upon a radial layout of the computation tree. This
is essentially a top down view of the cone which maximises
the use of screen real estate. The radial method is simpler
to implement than the cone method, although in theory they
could be used in conjunction. Figure 2 illustrates the evolution
of our visualisation to its current state.

There remains a considerable amount of wasted space with
the radial display as seen in Figure 2. To resolve this, we
split the radial view into an arrangement of concentric circles
divided into wedges. We call this the wedge display, as
illustrated in Figure 3. This provides an uncluttered view of the
computation tree, with the flush proximity of nodes allowing
node characteristics to be effectively summarised by colour.

Figure 4 illustrates two computation trees for the same
starting graph, computed using the two different heuristics.
It is immediately apparent from this that the effect of the
heuristics can be significant. Figure 5 shows the visualiser’s
application view; this allows the user to manipulate his/her
view of the computation tree through zooming, shifting and
other effects. Thetarget viewport provides the main view
window for the computation tree. Within this view the user

Fig. 3. A view of how the nodes in the computation tree are arranged into
the wedge display. The key here is that each node is represented by awedge
of colour, rather than a small circle, making better use of space.

can click and drag the view, zoom in/out and select a node,
amongst other things. Themacro view shows an outline view
of the computation tree, which helps the user navigate the
computation tree; a box in the macro view indicates the
size and location of the target viewport. The user can also
reposition the target viewport by clicking on the macro view
directly. Thenode view shows the graph at a particular node
in the computation tree, which is selected by clicking on the
target viewport. Figure 6 demonstrates another view produced
by our visualiser that can provide some useful insight. This
shows the distribution of matches in the cache; recall that the
cache is used to store computed polynomials for intermediate
graphs seen during the computation, so that they can be
recalled when that intermediate graph is encountered again.

Finally, we are unaware of any other work on visualising the
Tutte polynomial computation. However, similar work exists
on visualising the computation tree of a SAT solver [10], [9].

REFERENCES

[1] C. Adams.The Knot Book. W. H. Freeman and Company, 1994.
[2] Bollobas and Riordan. A tutte polynomial for coloured graphs. InCom-

binatorics, Probability and Computing, volume 8. Cambridge University
Press, 1999.

[3] T. Brylawski and J. Oxley. The tutte poynomial and its applications.
In Encyclopedia Math. Appl., pages 123–225. Cambridge Univ. Press,
1992.

[4] G. Haggard and T. Mathies. The computation of chromatic polynomials.
Discrete Math, 199:227–231, 1999.

[5] G. Haggard, D. J. Pearce, and G. Royle. Computing tutte polynomials.
Technical report, 2007.

[6] G. Haggard and R. Read. Chromatic polynomials of large graphs. ii.
isomorphism abstract data type for small graphs.J. Math. Comput,
3:35–43, 1993.

[7] B. McKay. Nauty users guide (version1.5). Technical report, Dept.
Comp. Sci., Australian National University, 1990.

[8] K. Murasugi. Knot Theory and Its Applications. Birkhäuser, 1996.
[9] C. Sinz. Visualizing SAT instances and runs of the DPLL algorithm.

Journal of Automated Reasoning, 39(2):219–243, 2007.
[10] C. Sinz and M. Dieringer. DPvis–A tool to visualize the structure of

SAT instances. InProc. SAT, volume 8, pages 257–268, 2005.
[11] M. Thistlewaite. A spanning tree expansion of the jonespolynomial.

Topology, 26:297–309, 1987.
[12] W. Tutte. A contribution to the theory of chromatic polynomials.

Canadian Journal of Mathematics, 6:80–81, 1954.
[13] D. J. A. Welsh and C. Merino. The Potts model and the Tutte

polynomial. Journal of Mathematical Physics, 41(3):1127–1152, 2000.



Fig. 4. Two different trees illustrating the Tutte polynomial computation of the same graph. Here, theVORDER heuristic (right) produces a computation
tree with 325K steps, thus outperforming theM INSDEG heuristic (left) whose tree has 806K steps. The intermediate graphs of the Tutte computation are
also shown when possible, but not displayed once their size is below a certain threshold.

Fig. 5. The application view. The parts labelled refer to thefollowing: 1. Target View,2. Macro View, 3. Magnification Slider,4. Node View, 5. Colour
Gradient Key,6. Squashing Slider,7. Function Panel.

Fig. 6. Two different trees illustrating the Tutte polynomial computation of the same graph. Again, that for theM INSDEG heuristic is shown on the left
and that for theVORDER heuristic on the right. Each line shown on the two diagrams connects the point when an intermediate graph is first encountered
and stored in the cache, with a later point where that graph isrecalled and used.


