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Abstract

Developing and verifying the software for safety critical embedded systems
can be difficult and expensive due to unique constraints, including limited RAM
and minimalist operating systems. This report looks at Whiley, a verifying com-
piler, which is intended to improve the correctness of code on a variety of sys-
tems. For the first time, Whiley is explored in the embedded systems context
to identify obstacles to becoming a practical tool for embedded systems pro-
grammers. The conclusion identifies three areas of work for the Whiley project;
resolving memory management issues inherent in embedded systems, facilitat-
ing unbounded to bounded datatype conversions and improving the ability to
determine bytecode context. The forth conclusion is to adopt the use of indus-
try debugging tools, reflecting the difficulty of debugging an embedded system.
This work built a Whiley to C compiler and using it, achieved demonstrating
Whiley on an embedded system—the Bitcraze Crazyflie Quad-copter. Experi-
ments conclude that the code automatically generated by the Whiley to C com-
piler, performs comparably to the original C code.
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Chapter 1

Introduction

“Ubiquitous computing has as its goal the non-intrusive availability of comput-
ers throughout the physical environment, virtually, if not effectively, invisible to
the user.” —Mark Weiser (1993)[1]

Advances in microprocessors and supporting technologies have enabled this vision—
expressed 20 years ago—of Ubiquitous Computing using embedded systems. The Internet
of Things is a more recent concept [2] referring to embedded systems that are connected to
the internet. Embedded systems today surround us, we are reliant on them controlling for
example; phones, car brakes and payment systems; the Crazyflie illustrated in Figure 1.1 is
another example. Tomorrow, this will extend to driver-less vehicles, connected appliances,
home aid robots and more.

Figure 1.1: The Bitcraze Crazyflie. 1

The number of existing embedded systems is staggering. For example, the car popula-
tion topped 1 billion units in 2010 [3], averaging over 70 microprocessors each [4, 5]. These
numbers are expected to increase further [2]. Many embedded systems are, and will be,
managed through the Internet of Things, which provides a means for easily sending and re-
ceiving data, plus updating existing software. One concern is that the ability to push faulty
software across millions of devices simultaneously, has potential to lead to causing havoc,
destruction of property and personal injuries on a global scale.

Safety and security are key concerns. As the microprocessors controlling embedded
systems get more advanced, the programs running them get more complicated and con-

1Bitcraze. Accessed: Oct 2014. http://www.bitcraze.se
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sequently more difficult to prove they will work as intended [5, 6]. Embedded systems are
expected to continue to be developed in the industrial sectors of: Aviation, Aerospace, Auto-
motive, Telecommunications, Healthcare and Independent Living to name a few [7, 8, 9, 5]
and there are numerous well studied examples of embedded system failures, such as the
Toyota Motor Corporation’s brakes, the Ariane 5 rocket, Therac-25 medical equipment and
the Mars lander [10, 11, 12, 13].

There are ways to prove that a system works. For example, utilising Engineers to manu-
ally prove a program using mathematical modelling [14]; using tools like Event-B [15] and
Rodin [16]; and using automated Model Based Testing [17, 18, 19, 20, 21] to generate ex-
haustive tests based on defensible strategies. Despite these, proving a system correct is time
consuming and expensive, and it is generally only done for critical systems. One example is
the driver-less Paris Metro system, which was modelled first using a variant of the mathe-
matical Z notation—later becoming B notation—before code was generated from the model.
This successful project lead to Event-B, but progress using Event-B in industry since then
has been slow [22, 23].

Not proving a system to be correct can be costly. Poorly written code in car braking
systems developed by Toyota Motor Corporation, has been a contributing factor to at least
34 deaths [24, 12, 25]. To date Toyota has been fined US$1.2 billion by the courts and a
further US$1.6 billion has been awarded to class action complainants [26, 27].

Embedded systems will continue to fail. As more incidents occur, the impact on global
brands will drive the search for better solutions. This project takes a step in that direction, by
demonstrating Whiley, a verifying compiler, being used on an embedded system, to explore
the issues it needs to address in order to become a practical tool for embedded systems
programmers. In the process showing it can perform comparably with C, the main language
used for programming embedded systems in industry.

1.1 Contributions

This project contributes to ongoing research in Whiley—by exploring how Whiley can be
adapted to meet the demands of the embedded system environment, by creating a compiler
that translates from Whiley code to C code for use on the Crazyflie quad-copter. It is hoped
this research will favourably influence Whileys future development in the embedded system
space. The key contributions made are:

• Designed and implemented a tool to translate Whiley code to C code, suitable for
embedded systems.

• Demonstrated Whiley being used on a real embedded system, the Bitcraze Crazyflie
Quad-copter.

• Conducted experiments to compare the performance of the Whiley code with the orig-
inal Crazyflie code.

• Identified several issues for the Whiley project to address in order to become a practi-
cal tool for embedded systems programmers.

From here Chapter 2 discusses background material important to understanding the project,
Chapter 3 discusses the design of the solution while Chapter 4 discusses the translation
from Whiley to C. Chapter 5 highlights issues relating to porting C to Whiley and Whiley’s
integration into the original Crazyflie code. Chapter 6 evaluates the new code against the
original Crazyflie code, while Chapter 7 concludes and discusses possible future work.
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Chapter 2

Background

2.1 Embedded Systems

At the heart of Ubiquitous Computing and the Internet of Things are black box embedded
systems which are expected to “just work”, and work predictably and safely. Experiences
outside this norm tends to lead to unhappy consumers and in the worst case scenarios may
involve consumer death or injury [24].

The name Embedded Systems implies a system that is embedded into other systems.
While this is often the case, such as car braking systems that cannot function on their own;
the title also covers other stand-alone systems that merely take input or react to a timer
and generate an output. Network routers are one example, pacemakers are another. An
embedded system is perhaps better described as an application-specific system that involves
the close co-ordination of the device, the computing hardware and the software, to facilitate
turning inputs into useful outputs in a timely manner [28].

The microcontrollers in embedded systems, share common properties: limited processor
power, limited RAM, limited flash memory, and a minimalist operating system that empha-
sises predictability and response times. The microcontroller is termed the target system,
while the software is typically written on a desktop computer (the host system) in the C
programming language. A cross-compiler is used on the host, to generate a binary image
that is then flashed1 to the target system.

The Crazyflie is considered a soft real-time system. It receives pilot input, processes
this input in a timely manner and uses the output to individually control four motors (see
Figure 2.1). The Crazyflie is an example of a real-time system that provides both functional
and timely responses, without which the Crazyflie controls may be un-usable. To be a hard
real-time system the Crazyflie would ensure timing deadlines are met and would consider
a failed deadline as a software failure; a level of control usually reserved for safety-critical
systems.

2.2 Whiley, a Verifying Compiler

The Whiley Programming Language [29, 30, 31] is being developed by Senior Lecturer Dr
David Pearce at Victoria University of Wellington. The aim is to achieve a verifying compiler
[32]—one of the grand challenges for computer science set by Prof. Sir Tony Hoare (ACM
Turing Award winner, FRS) in 2003 [33]. One of the benefits to society of meeting Hoare’s

1To flash a binary image, is to copy it to the devices flash memory. Flash memory is persistent, erasable,
read-only memory.
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Figure 2.1: The Crazyflie pilot provides inputs (thrust, pitch, yaw and roll), via a wireless connection
to the microcontroller. The microcontroller uses inputs to create outputs which direct motor speeds
to influence its position in the environment.

grand challenge, is to enable complex systems like Adaptive Cruise Control [34] to be proven
to be defect free by the software used to implement it.

Whiley has been designed from the ground up to facilitate the generation of mathemati-
cally verified programs. For example it uses the Functional Programming paradigm which
promotes “pure” functions, functions that have no side effects. These functions are easy to
reason about and may form the basic building blocks to reason over larger modules. Whiley
and Functional Programming also avoid global variables for similar reasons; global state,
shared across functions makes those functions impure.

2.2.1 Whiley Features

Unbounded Integers and Reals

Whiley allows the expression of very large numbers, which means that arithmetic opera-
tions are more precise and can handle values vastly greater than C based languages where
arithmetic types are bounded. For example a signed int in a C based language on the x86 64
architecture, is 4 bytes in size and can express a value in the range of -2,147,483,648 to
2,147,483,647. In comparison, Whiley unbounded values can freely use available memory to
express very large numbers. For instance a Whiley real can easily express pi to 100 decimal
places or more.

Compound types

Whiley has a range of compound types, of which two are used in this project: records and
lists. These will both feel familiar to programmers. In brief:

Records use sets of key:value pairs. e.g., {alice => 45, bob => 22}

Lists may be thought of as similar to arrays in C based languages, e.g., [1, 3, 5, 7]. However
other data structures, such as linked lists, are also comparable.

Whiley lists deserve a little more elaboration as they provide translation challenges later
in this report. Lists enable various high level data manipulation techniques. Two examples
of this are: an intrinsic size operator that allows iterating over lists and an append operator
that allows two lists to be joined dynamically at runtime [31]. These examples will be used
later when discussing how to implement Whiley lists in C (see Section 4.1.2).

4



Verification

Whiley uses a common approach to specifying software, where programmers provide pre-
conditions, post-conditions and loop invariants [35, 36, 37]. If the program does not sub-
sequently verify, the Whiley verifier will generate an error message to the programmer
highlighting the failure point. If desired, a programmer may choose to compile a Whiley
program with verification turned off.

1 function test(int x) => (int r)
2 requires 5 <= x && x <= 10 // keyword ‘‘requires”, specifies the pre−condition for x
3 ensures 6 <= r && r <= 11: // keyword ‘‘ensures’’, specifies the post−condition for r
4 int i = 0
5 int ghost x = x
6 while x < 11
7 where x − i == ghost x: // keyword ‘‘where’’, specifies the loop invariant
8 x = x + 1
9 i = i + 1

10 return x

Listing 2.1: Whiley function with Pre and Post-conditions and Loop Invariants.

Pre-conditions specify invariants that must be true before a function may be used. For
example in Listing 2.1, the parameter x must be a value from 5 to 10 as specified by the
requires keyword. If 6 is used as an input then the code will verify, but use 4 and the
verification fails with the message “pre-condition not satisfied”.

A post-condition is very similar. In Listing 2.1 it uses the ensures keyword and specifies
the bounds of the output. In this example the return value r must fall in the range 6 to 11.

The last example in Listing 2.1 is a loop invariant which uses the where keyword. This
checks a condition of the loop to ensures that x − i always equals the original value of x

(ghost x).
Whiley’s verification process leads to an interesting and desirable trait in Whiley byte-

code; it is now verified as satisfying the conditions and invariants in the Whiley source code.

Bytecode

Whiley compiles to Whiley bytecode, which contains all the elements required to translate
each bytecode into another format. Listings 2.2 and 2.3 show an example of Whiley code
and its corresponding Whiley bytecode. The next translation might be into, for example,
Java bytecode ready for the Java Virtual Machine or C code. There are over 60 Whiley
bytecodes, Appendix B has details.

1 // Whiley binary arithmetic
2 i = x ∗ y

Listing 2.2: Whiley code.

1 // Bytecode binary arithmetic
2 mul %9 = %5, %6 : int

Listing 2.3: Whiley bytecode.

.

Existing Whiley Test Suite

The Whiley project has an existing test suite of 610 unit tests for regression testing the Whiley
project code base. The tests check datatypes, operations on datatypes, conditional state-
ments, loops and other constructs. The test output is the result of running these tests and
takes the form of output strings, a test that swaps the order of two tuples will output a string

5



Figure 2.2: The Crazyflie system.2

showing the tuple in the new order. A test harness iterates through each test, setting up and
tearing down the environment, including running the resulting code through the JVM, or
using GCC to create executable code.

2.3 The Target Platform

The Crazyflie quad-copter [38], as shown in Figure 1.1, is the target platform for this project.
It is a 19 gram quad-copter designed and sold by Bitcraze as a test platform for enthusi-
asts and researchers. The Crazyflie system is shown in Figure 2.2, where the pilot uses a
Playstation controller, a host computer collects the pilot inputs and forwards them to the
Crazyradio dongle, which wirelessly communicates with the Crazyflie itself. In addition to
the radio link software, the Crazyflie quad-copter also runs flight control software, including
the stabilizer algorithm.

The Crazyflie microprocessor [39] is the STM32F103CB—designed by ARM Holdings
[40] and manufactured by STMicroelectronics [41]—with 20kb RAM and 120kb flash mem-
ory. The software is written in C and a GCC compiler for the STM32F103CB microprocessor
is available. The Crazyflie software is open source and publicly available on Github [42].

Microprocessors that are similar to the STM32F103CB feature in many embedded sys-
tems such as cars, amplifiers, clocks, TV, medical devices, industrial tools and monitoring
equipment. By demonstrating Whiley on the STM32F103CB it is anticipated that, at a later
date, Whiley may be used on many other embedded devices.

2.3.1 Crazyflie Software Architecture

The software running on the Crazyflie contains a core stabilizer algorithm that keeps the
Crazyflie flying level and allows it to react predictably to pilot inputs (see Figure 2.3). A
review of the code showed the stabilizer algorithm consists of three modules that are self
contained (stabilizer.c, controller.c and pid.c) and run within a single RTOS task (see Sec-
tion 2.3.3). The effect of the stabilizer algorithm can be felt when holding the running
Crazyflie; in that tilting it causes the code to attempt to level again. As the lower rotors
gain power and the higher rotors lose power, this induces a feeling of resistance, similar to
attempting to tilt a gyroscope.

2Bitcraze. Accessed Oct 2014. Retrieved from: http://wiki.bitcraze.se/projects:crazyflie:userguide:index
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Figure 2.3: Crazyflie architecture, showing the Stabilizer algorithm in context.

The stabilizer algorithm accepts desired input from the pilot (thrust, roll, pitch and yaw),
actual position input from the sensors (roll, pitch and yaw) and using a Proportional Integral
Derivative (PID) controller [43], generates outputs that control individual motor speeds in a
manner designed to increase stability. The existing code for the stabilizer (see Appendix D)
provides a working application to emulate and the manually generated Whiley code stays
close to the original algorithm (see Section 5.1).

One of the advantages of targeting the stabilizing modules is that the projects aim of
demonstrating Whiley on an embedded system can be achieved through replacing a key
subset of code. In addition this module may be sensitive to differences between the two
code implementations, which can provide a basis for comparative tests.

2.3.2 C

Many embedded devices use C which was developed initially in the ’70s [44]. The Crazyflie
implementation conforms to the C89 standard [45, 46], although there are more recent stan-
dards (C99 and C11) and specialised extensions for embedded C [47].

2.3.3 The FreeRTOS Operating System

The Crazyflie uses a Real-Time Operating System (RTOS), specifically FreeRTOS [48, 49], an
open source system under a modified GNU General Public Licence3.

An RTOS can be either “hard” or “soft” with regard to deadlines. A “hard” system is
where the correctness of the system depends not only on its functional correctness but also
the timeliness of its outputs [28, 50]. Timeliness is determined by the environment; pacemak-
ers have stricter needs than a television remote. Hard real-time systems guarantee meeting
a deadline and consider a correct output performed late to be a bug [5]. Safety-critical sys-
tems will typically be hard real-time systems. Soft real-time systems value computations
completed after the deadline has passed; a best effort approach, for example, the Crazyflie
which prioritises important tasks but does not enforce hard deadlines.

The FreeRTOS operating system assigns jobs to tasks, places them in priority queues and
uses a thread ticker4 to run tasks concurrently (see Figure 2.4). FreeRTOS can be thought of
as a thread controller that guarantees a predictable response in a small memory footprint

3The modification is to allow the use of FreeRTOS in proprietary software without requiring the entire appli-
cation to be open source.

4This enables pre-emptive time slicing. A thread ticker controls each tasks access to the cpu by swapping
them in and out very fast, which gives the appearance of concurrency.
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Figure 2.4: The FreeRTOS stack

of approximately 5-10 kilobytes [51]. This can be compared to Windows CE, also a RTOS,
which requires approximately a megabyte of memory, to support substantially more fea-
tures.

2.3.4 Memory

Memory is a scarce resource in many embedded systems. A desktop computer has gigabytes
of RAM, the Crazyflie in comparison has 20 kilobytes. How memory is organised and used
becomes important when it is scarce.

CPU memory, whether desktop or embedded system, is typically arranged in several
memory blocks (see Figure 2.5) [52]. The stack which starts at the top and grows down, the
program text and data segment at the bottom occupying a fixed space, and the heap which
starts from the top of the data segment and grows up. Between the stack and the heap is the
available free memory.

Methods use stack memory to create a stack frame to hold method variables and a
pointer to the return point in the parent method. Variable quantity and variable size impact
the size of the stack. Heap memory holds global values and values related to task schedul-
ing, such as mutexs and semaphores. The data segment holds read-only static values and
literals, such as string literals.

Heap memory is the most flexible of the three memory types—its memory is allocated
at runtime rather than determined at compile time. This means for example:

• Data structures may be expanded easily when the data size is only known at run-time.

• Short term storage of large data blocks may be better handled on the heap, as it allows
the easy release of that memory when done. In comparison, memory allocated on the
stack is reserved for the life of the method, not just when it is needed.

• The data stored on the heap is not subject to method scope considerations. For example
a Whiley list uses the heap and is independent of any method and its stack frame.

There are a variety of memory architectures, ranging from energy efficient scratch-pad
memory, used to keep frequently referenced variables and instructions within a small mem-
ory space [53], to real-time operating systems like FreeRTOS that provide a range of memory
strategies to choose from5. Such architectures do not use POSIX6 standards[54] for allocat-
ing memory, they use specialised implementations of malloc() which can catch the unwary.

5FreeRTOS has, at the time of writing, 5 heap memory management options.
6Portable Operating System Interface
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Figure 2.5: The Crazyflie’s 20KB Memory

If malloc() is inadvertently used, this leads to establishing a second heap of 64 kilobytes [55]
on a device which may not have this memory available.

This chapter discussed embedded systems, some of the features of Whiley and the Crazyflie
embedded system—its software architecture, its FreeRTOS operating system and an overview
of dynamic memory. Armed with this we move next to discussing design considerations.
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Chapter 3

Design

The motivation for this work is to demonstrate using Whiley instead of C to program em-
bedded devices. When Whiley is industry ready, this will potentially enable lower cost
program verification which may lower the time and cost barriers to industrial verification.
The project aim is to:

Demonstrate Whiley on an embedded system.

This will be achieved by replacing existing C code on an embedded system with equiv-
alent Whiley generated code. The process for this is illustrated in Figure 3.1. Whiley code is
first written and perhaps verified. It is then compiled to Whiley bytecode before the C file
is created using a Whiley to C compiler. Finally the GCC complier creates the binary image
ready to be flashed to the embedded system.

3.1 Overview

The goal is to fly the Crazyflie with new code written in Whiley—ideally retaining the same
functionality and performance as the original unmodified Crazyflie code.

To make this a reality there are two steps that need to be taken in order to create the initial
Whiley code—porting and integration. These steps enable targeting a portion of the original
Crazyflie code and also enable evaluating the new code, using the original Crazyflie code as
a benchmark. Once the Whiley code is created and integrated, the translation in Figure 3.1
can be done. The steps are:

1. Port the original Crazyflie stabilizer code to Whiley code.

2. Integrate the new Whiley stabilizer code with the original Crazyflie code.

3. Translate using the new Whiley to C compiler to automatically generate C code for
the stabilizer.

The most important of these steps is the third step, the translation from Whiley to C;
particularly as it required creating the Whiley to C compiler artefact. However the first and
second steps provide the Whiley code to translate.

The rest of this chapter outlines several design considerations: discussing the implica-
tions of the Crazyflies memory constraints, the transliteration process from Whiley to C and
other options for compilation targets.
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Figure 3.1: The context for the Whiley to C compiler.

3.2 Targeting the CrazyFlie

As an embedded system the Crazyflie has constraints in the form of processing power and
available RAM memory. It uses a specialised RTOS tailored for these constraints, designed to
minimise memory footprint and run tasks reliably. The way in which the Crazyflies software
is written is also somewhat specialised, both in the way it interfaces with the RTOS and the
care programmers take in managing memory. This has implications for an existing Whiley
to C compiler, discussed next and how dynamic memory is handled.

3.2.1 The Existing Whiley to C Compiler

Memory constraints and minimalist operating systems are the two main reasons why an
existing Whiley to C compiler, developed in 2013 [56], is not suited to embedded devices. It
was written with desktop computers in mind with gigabytes of memory and a fully featured
operating system. It was not intended to meet the constraints seen on embedded devices, in
particular because it allocates heap memory in an unrestricted fashion, facilitated by mem-
ory management systems typical in fully featured operating systems.

3.2.2 Dynamic Memory

There are good reasons why embedded systems programmers choose to use dynamic mem-
ory. For example, a common use of heap memory is to store very large data elements. This
can aid memory efficiency by enabling runtime memory allocation and memory recovery—
independent of the method stack frame’s life cycle—which enables efficient and significant
memory re-use, both within and between methods.

But there is also a need to be conservative with memory, for example when there is only
20 kilobytes to work with. While dynamic memory offers perhaps the most flexible memory
option—by allowing programmers the ability to allocate, resize and recover memory on
demand at runtime—its Achilles heal is that the memory must be released when it is no
longer needed, and not doing so will inevitably result in the software crashing due to an
“out of memory” error. With manually crafted code, managing memory to avoid out of
memory errors is relatively straightforward for the programmer, but if a mistake is made,
finding memory leaks can be an onerous task.

Memory management using an algorithm is an ongoing research area. There are exist-
ing solutions such as Java’s garbage collection, but these are too resource-hungry for many
embedded systems. Alternative approaches include for example, Escape Analysis, which
uses a pre-compilation step to examine pointers with the goal of determining scope—this
can then be used to assist with considering whether the memory associated with the pointer
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Figure 3.2: Whiley to C compiler, state machine.

should be heap or stack allocated. A range of approaches is required to achieve automated
memory management and to attain this for embedded systems, it must operate in a small
and efficient package. This is a big challenge and one that is left for other researchers.

Consequently an alternative solution was sought, one that avoided the need for releasing
memory by minimising or eliminating the use of dynamic memory. One strategy used is
refactoring to eliminate heap use, which is discussed further in Section 5.1 on porting the
original Crazyflie code from C to Whiley.

3.3 Transliteration of Whiley to C

There are several approaches that may be taken when creating a compiler, Waters (1988)
describes two [57].

• Transliteration followed by refinement

• Abstraction followed by reimplementation

Transliteration is the literal translation of the source code, line by line. It is a strategy
which enables the translation to quickly achieve the core translation task. The refinement
step then deals with any complicated issues, such as identifying blocks of code that may
benefit from refactoring. The weakness of the transliteration approach is that because each
element is addressed in isolation, the element’s context is not taken into account. This can
lead to difficulties in interpretation.

Abstraction creates an abstract model of the source software (e.g. an abstract syntax
tree) and uses this model to supply context when re-implementing the code in a new lan-
guage. This mitigates the primary weakness of the transliteration approach, but at the cost
of increasing the complexity of the translation task.

The Whiley to C compiler uses transliteration as Waters (1988) considered it the most
pragmatic approach when compiling to a lower level language. However the difficulty of
interpreting bytecodes in isolation will come up in Chapter 4 when discussing transliteration
in practise.

3.3.1 Whiley to C Compiler’s Architecture

The Whiley to C compiler can be described as a program transformation—an automated
process that takes one program and generates another [58, 59, 60, 61]. To achieve this (see
Figure 3.2), the Whiley to C compiler consists of a core algorithm that accepts a Whiley byte-
code (WyIL) file and generates header information and method signatures. It then iterates
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Figure 3.3: Whiley compiles to many targets (left), or Whiley compiles to one (right).

through the methods held by the WyIL file, passing each to a method factory, which passes
individual bytecodes to a statement factory. The resulting text is then aggregated and output
as a C file.

3.3.2 Code Generation

Several targets other than C were considered for the Whiley to C compiler. Other choices
were:

• Compiling directly to the microprocessor. This involves translating from Whiley
bytecode to machine readable binary. However this means a compiler for every make
of microprocessor is required. This is shown on the left side of Figure 3.3, as a one to
many relationship. While the right side utilizes the GCC collection1 [62] as an inter-
mediary, greatly simplifying the Whiley compiler task to interfacing with only a GCC
compatible language.

• Compiling from Whiley bytecode to something other than C. The GCC collection
compiles from a variety of languages, including Java, C, C++ and others. Java was
briefly considered, however C allows direct memory management and is an industry
standard for programming embedded devices; it is also the language the Crazyflie is
programmed in and the translated code must integrate and compile with C. The choice
of C was therefore driven by industry standards, the GCC collection and the original
Crazyflie code; all preferring the C language.

In this chapter we have considered the main aspects of the project from a high-level. The
next chapter will explore these in more detail.

1the GCC collection already undertakes to create and maintain compilers to most commercially available
microchips.
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Chapter 4

Transliteration

The Whiley to C compiler created as part of this project, uses the transliteration process
(see Section 3.3), which proved to be straightforward to implement, but raised numerous
issues that had to be resolved. This chapter discusses the detail of the transliteration process
and the issues found, this includes the translation of; Whiley datatypes to C datatypes and
Whiley bytecode to C statements—both of which are impacted by constraints in embedded
systems. Section 4.3 discusses testing the Whiley to C compiler against the Whiley project
test suite and Section 4.4 discusses the difficult and time-consuming task of debugging on
an embedded system.

4.1 Data Types

For pragmatic reasons, only a subset of Whiley datatypes were translated—those needed to
demonstrate Whiley on the Crazyflie, which are detailed in Figures 4.1 and 4.2.

There are multiple ways to represent a Whiley datatype as a C datatype, and individual
Whiley bytecodes (see Section 4.2) may not always provide sufficient context to determine
the appropriate choice. In these cases a compromise was sought. For example a string can
be implemented three ways in the C programming language1, with the choice dependant
on which memory location is preferred: the data segment, the heap or the stack (see Sec-
tion 2.3.4).

A complicating factor is that without context, every string in a bytecode appears the
same and will therefore receive the same translation—which may have far reaching impli-
cations. For example it may impact on the verified property of the Whiley bytecode (see
Section 2.2).

The following sections discuss primitive datatypes first, followed by compound types.

4.1.1 Primitive Types

Whiley represents integers and floating point numbers as unbounded (see Section 2.2.1)
and Whiley chars as Unicode values of up to four bytes in size. This brings significant
advantages to the precision of calculations and variety of languages supported, but at the
cost of memory use. In contrast C datatypes are bound to a fixed memory size, which is a
trait favoured by programmers of systems with severe memory constraints.

As shown in Figure 4.1 most of Whiley’s primitive types have a corresponding C primi-
tive type. These are:

1String literals are held in the data segment as read only data, string arrays in the stack are not preserved
after the method completes, strings using malloc() on the heap must eventually have the memory released.
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Figure 4.1: Whiley primitive types, how they translate to C.

• Char. The original Crazyflie code only uses ASCII which translates readily to C chars
and avoided the problems that would have been seen trying to translate multi-byte
UTF-8 character encoding into one byte, where the loss of information in the process
may have corrupted the data.

• Booleans. Booleans are not supported natively in C and required importing the stan-
dard boolean library for C, but otherwise posed no problems.

• Arithmetic values. Whiley unbounded int and real are translated to C unbounded int

and float.

The translation of Whiley unbounded arithmetic values to C bounded values, has several
ramifications: there is potential loss of precision, potential corruption of data and potentially
any verified status the Whiley bytecode may have had is compromised. There is also the
potential for very difficult to find bugs. This means care would need to be taken if using this
system outside the scope of this project.

Despite these problems, a solution was required that met the goal of demonstrating
Whiley on the Crazyflie. Consideration was given to translating an unbounded int to the
largest integer C can support, a long long—which on a x86 64 machine is 8 bytes in size (the
same as a long). However this is too small to satisfy Whiley’s unbounded int, yet unnecessar-
ily large for the original Crazyflie code—consequently the smaller int and float were chosen
and used, without any observable ill-effect.

One of the drawbacks of the transliteration process discussed in Section 3.3, is that byte-
codes are translated without context. This is apparent when considering the translation of
arithmetic values; without context every Whiley int appears the same and will receive the
same treatment, a translation to a C int. The Crazyflie only needed C int and float, however
if a long was required, every Whiley int would have had to be translated to be a long.

4.1.2 Compound Types

Three compound types were used and are shown in Figure 4.2. Others exist, such as tuples,
sets and maps, but were not needed for this project.

Of the three compound types, Whiley records posed the least problems. They are collec-
tions of name:value pairs, similar to dictionaries in Python. The translation to a C struct is
straight forward as can be seen in Listings 4.1 and 4.2.
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Figure 4.2: Whiley compound types, how they translate to C.

1 // a Whiley record
2 type PidObject is {
3 real desired,
4 real error,
5 real prevError,
6 real integ
7 }

Listing 4.1: A Whiley Record.

1 // a C struct
2 typedef struct {
3 float desired;
4 float error;
5 float prevError;
6 float integ;
7 } PidObject;

Listing 4.2: Becomes a C Struct.

The remaining two, Whiley strings and lists, posed difficulties as C programmers have
several ways to implement them. The obvious way is perhaps to translate them to C arrays,
however C arrays do not hold a size metric and have interesting storage implications—both
of which are discussed in the next two sections.

Lists

Whiley lists can be represented in C, in a variety of ways. C arrays are natively supported
while other solutions can be sourced from the GLib library and include linked lists, queues,
sequences, hash tables and others [63]. To pick one example from GLib; a double linked list
retains size information, accommodates appending, prepending and inserting plus other
functions that are similar to those found in Whiley lists. However this functionality comes
with a higher memory footprint—the full library is 36 megabytes—and GLib uses dynamic
memory (heap memory) in many cases.

Representation
Whiley lists are perhaps most easily represented using arrays in C, they are memory ef-
ficient, fast, easy to use and can use either heap or stack memory. However Whiley lists
have a length operator, while arrays do not, meaning a Whiley list can be passed to a child
method and iterated over. To achieve the same, a C array must be passed to a child method
where the array’s length is either: inherently understood (i.e. fixed), or provided when the
array is passed. It causes other problems as well, such as making it difficult to program
defensively to prevent over-writing adjacent data. With these shortcoming in mind, arrays
were selected to represent Whiley lists for being memory efficient, fast to implement and
intuitive.

C programmers have (at least) five ways to provide size with an array:

1. Ensure child methods have a fixed, known size for the array.

2. Pass the array and the array size as a pair of method parameters.

3. Pass a struct that contains the array and a size value.
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4. Reserve the first position of the array for its size.

5. End the array with a marker, similar to string arrays being null terminated.

The first was chosen for this project as it was the most intuitive to implement—there
was only one instance of an array in the stabilizer code being translated—but in hindsight
this choice had unnecessarily negative consequences for the number of tests passed in the
Whiley test suite, using a struct holding the array and length may have been a better choice.

Storage
Whiley lists are best represented dynamically in heap memory. This allows them to be inde-
pendent of method scope and able to adjust the amount of memory required at runtime. For
example appending two lists together when one or both of the list’s sizes cannot be deter-
mined at compile time. Another important factor is that Whiley enables the use of the heap
by utilizing an algorithm to free up memory—similar to Java’s garbage collector—which is
typically not an option for embedded systems (see Section 3.2.2).

1 // Whiley list
2 [int] list = new [1, 2, 3]

Listing 4.3: A Whiley List.

1 // C array declaration on the stack
2 int list[ ] = {1, 2, 3};
3

4 // C array declaration on the heap
5 int *list = malloc(3 ∗ sizeof(int));
6 list[0] = 1;
7 list[1] = 2;
8 list[3] = 3;

Listing 4.4: Ways to represent a C Array.

Whiley lists when translated to C arrays, have a choice. Listings 4.3 and 4.4 show the
two ways a Whiley list can be implemented in C to occupy either heap or stack memory:

Heap memory allows the array to persist after the initialising method has finished, and it
allows resizing. However heap memory must be specifically allocated and specifically
released when no longer needed. If memory is not released, further allocations of
heap memory will build up over time until all available memory is allocated and the
program crashes with an out-of-memory error, also known as a memory leak.

Stack memory is tied to its enclosing method, for the life of the method, after which the
values are not preserved and the memory is available to other processes. Once the
method finishes, further references to the value will cause errors as the code attempts
to access memory that has potentially been allocated to another method. This means
the array may be passed to and used by child methods, but not passed out of the parent
method as it finishes.

Using heap memory to implement Whiley lists would provide a simple generic solution.
However releasing allocated memory in an embedded environment which does not have
a garbage collector, can be a difficult task. In addition the original Crazyflie code avoids
dynamic memory allocation for temporary data. These factors helped shape the decision
to use stack memory for C arrays. Similar to the decision on translating ints and reals, this
decision applied to translating all Whiley lists and could impact negatively on any verified
status the bytecode may have had.
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Strings

Strings are represented in C as null terminated char arrays. This resolves the size prob-
lem as it makes counting the elements up to the null terminator feasible.

The choice of memory location that strings can use is similar to arrays and includes heap
and stack. Strings may also use the data segment—which sits between program text and
heap memory (see Figure 2.5) and is generally treated as read-only memory. Static variables
are stored in this space, for example constants or literals. This gives strings the option of
being treated as a string literal, which provides global scope, but no ability to change the
contents of the string. Listings 4.5 and 4.6 show the three ways a Whiley string may be
implemented in C.

1 // Whiley string
2 string str = ‘‘Hello’’

Listing 4.5: A Whiley string.

1 // C string literal − storage: data segment
2 char *str = ‘‘Hello’’;
3

4 // C string array − storage: stack
5 char str[] = ‘‘Hello’’;
6

7 // C string array − storage: heap
8 char *str = malloc( 6 ∗ sizeof(char));
9 strcpy(str, ‘‘Hello’’);

Listing 4.6: Ways to implement in C.

The original Crazyflie code only uses string literals as tokens to aid debugging efforts.
This was ported to Whiley as string literals and subsequently strings in the Whiley to C
compiler are translated into C as string literals.

4.2 Bytecode Translation

Bytecode translation, per the discussion on Transliteration (see Section 3.3), means each
bytecode in a WyIL file is examined in isolation and then translated into one or more C
statements. There is a list of 60 plus Whiley bytecodes is in Appendix B. Over half of the
bytecodes were translated for this project, prioritising those needed for the Crazyflie appli-
cation.

Whiley bytecode uses unique numeric registers rather than variable names, with each
method in the WyIL file starting a new set of registers. The Whiley to C compiler uses
hashmaps to map registers with variable names, for example register 22 maps to the string
a22 by pre-pending the character a to the register number. The mapping is done when the
register is first seen in the method and the variable is usually also initialised in the output C
code.

From here simple bytecodes are discussed first, with several examples, followed by
branching bytecodes that allow conditional branching such as if and loop statements. Fi-
nally two other bytecodes are described, the invoke and new bytecodes.

4.2.1 Simple Bytecodes

Listings 4.7, 4.8 and 4.9 show a trivial example of the transition from Whiley to Whiley
bytecode, then to C. Figure 3.1 shows this transition, plus a further transition to binary.
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1 // Whiley initialise int
2 int x = 5

Listing 4.7: Whiley code.

1 // Bytecode initialise int
2 const %1 = 5 : int

Listing 4.8: Bytecode.

1 // C initialise int
2 int a1 = 5;

Listing 4.9: C code.

On initialising a variable it’s register:variable mapping is placed in the hashmap of reg-
isters.

Return bytecode

The Return bytecode is a second simple example (see Listings 4.10, 4.11 and 4.12). The
Whiley to C compiler translates the return bytecode (which contains an optional return reg-
ister), into a C return statement, with a variable retrieved from the hashmap of registers.

1 // Whiley return
2 return b

Listing 4.10: Whiley code.

1 // Bytecode return
2 return %17 : int

Listing 4.11: Bytecode.

1 // C return
2 return a17;

Listing 4.12: C code.

Assign bytecode

Assignment bytecodes involve assigning the value held by one register to a target register
(see Listings 4.13, 4.14 and 4.15). If the target register is already in the method’s hashmap of
registers, then the C statement is merely a7 = a3;. If the target register is not in the hashmap
of registers, meaning it has not yet been seen or initialised in the C code output, then the C
statement is int a7 = a3; and also added to the hashmap of registers.

1 // Whiley assign
2 a = b

Listing 4.13: Whiley code.

1 // Bytecode assign
2 assign %7 = %3 : int

Listing 4.14: Bytecode.

1 // C assign
2 a7 = a3;

Listing 4.15: C code.

On occasion there are extra assign bytecodes in the Whiley bytecode. Listings 4.20 (lines
3, 8) and 4.23 (lines 3, 5, 9, 12) have examples. The Whiley to C algorithm, while resolving
memory bugs, was refactored to strip out the extra assignments as they cause unnecessary
variable initialisations. This was done by utilizing the hashmap of registers to map the target
register to its assignee. For example in Listing 4.20 the bytecode assign %1 = %2 : int has the
register 1 mapped to the variable a2 as can be seen later in Listing 4.21 (line 7).

Binary Arithmetic bytecode

Binary arithmetic operations involve three registers, a target, left-hand-side and right-hand-
side, plus an operation from the set of {+, -, *, /, %}. An example can be seen in Listings 4.16,
4.17 and 4.18. In the same manner as the Assign bytecode, a check is made to see if the target
register already exists in the hashmap. If yes it is rendered as a29 = a0 + a1; otherwise it is
added to the hashmap and rendered as int a29 = a0 + a1;.

1 // Whiley binary arithmetic
2 i = x + y

Listing 4.16: Whiley code.

1 // Bytecode binary arithmetic
2 add %29 = %0, %1 : int

Listing 4.17: Bytecode.

1 // C binary arithmetic
2 int a29 = a0 + a1;

Listing 4.18: C code.
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4.2.2 Branching Bytecodes

Branching bytecodes provide conditional branching to the code, such as if statements. The
Whiley compiler facilitates this by de-constructing complex branching structures into Whiley
bytecode that uses labels and goto instructions for unstructured control flow. This makes the
translation into C appear to copy the bytecode rather than the original Whiley instructions.

If

The Whiley if bytecode is the first example using conditional statements. The boolean con-
dition in the bytecode is reversed by the Whiley WyC compiler and uses the goto to jump
past the required action, to the next label, as can be seen in Listings 4.19, 4.20 and 4.21.

1 method doStuff(int x) => int:
2 int r = 0
3 if( x < 5 ):
4 r = −1
5 return r

Listing 4.19: Whiley code.

1 private int doStuff(int):
2 const %2 = 0 : int
3 assign %1 = %2 : int
4 const %4 = 5 : int
5 ifge %0, %4 goto label0 : int
6 const %5 = 1 : int
7 neg %6 = %5 : int
8 assign %1 = %6 : int
9 .label0

10 return %1 : int

Listing 4.20: Bytecode.

1 int doStuff ( int a0 ){
2 int a2 = 0;
3 int a4 = 5;
4 if( a0 >= a4 ){goto label0;};
5 int a5 = 1;
6 int a6 = −a5;
7 a2 = a6;
8 label0: ;
9 return a2;

10 }

Listing 4.21: C code.

Loop

Loops in Whiley are represented by three bytecodes. For example the Whiley while statement
in Listing 4.22 is represented in bytecode in Listing 4.23, starting from line 6. The loop exit is
marked by an end bytecode, on line13. These three bytecode are in turn represented by four
lines of C code. In Listing 4.24, lines 4 and 5, plus lines 11 and 12.

1 method doStuff(int x) => int:
2 int i = 0
3 int r = 0
4 while( i < x ):
5 r = r + i
6 i = i + 1
7 return r

Listing 4.22: Whiley code.

1 private int doStuff(int):
2 const %2 = 0 : int
3 assign %1 = %2 : int
4 const %4 = 0 : int
5 assign %3 = %4 : int
6 loop (%1, %3)
7 ifge %1, %0 goto label0 : int
8 add %9 = %3, %1 : int
9 assign %3 = %9 : int

10 const %11 = 1 : int
11 add %12 = %1, %11 : int
12 assign %1 = %12 : int
13 end label0
14 return %3 : int

Listing 4.23: Bytecode.

1 int doStuff ( int a0 ){
2 int a2 = 0;
3 int a4 = 0;
4 loop start label0: ;
5 if(a2 >= a0){goto label0;};
6 int a9 = a4 + a2;
7 a4 = a9;
8 int a11 = 1;
9 int a12 = a2 + a11;

10 a2 = a12;
11 goto loop start label0;
12 label0: ;
13 return a4;
14 }

Listing 4.24: C code.
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4.2.3 Other Bytecodes

Invoke

The Invoke bytecode is called to use an existing function. This occurs when using a method
declared elsewhere in the program file, as illustrated in the main method of Listing 4.25.
Listing 4.26 on line 8 and 9 shows the invoke bytecode calling the method and assigning the
value returned to register 4. Listing 4.27 on line 9 shows the translated C code.

1 function f() => string:
2 return ‘‘Hello World’’
3

4 method main( ... ) => void:
5 string a = f()
6 ...

Listing 4.25: Whiley code

1 private string f():
2 const %0 = ‘‘Hello World’’:string
3 return %0 : string
4

5 private void main( ... ):
6 invoke %4 = () test:f :
7 function() => string
8 ...
9 return

Listing 4.26: Bytecode.

1 char *f(void){
2 char *a0 = ‘‘Hello World’’;
3 return a0;
4 }
5

6 int main (){
7 char *a4 = f();
8 ...
9 return 0;

10 }

Listing 4.27: C code.

Whiley keyword - new

The Whiley keyword new enables a new object or collection to be created in heap mem-
ory, anticipating they are cleaned up (for example by a garbage collector) when they are
no longer needed. This works well on a desktop computer, but on a device with only 20
kilobytes of RAM, memory recovery strategies like garbage collection are too expensive.
Section 4.1.2 has already discussed Whiley lists and placing them on the stack rather than
the heap to avoid memory management problems. For the same reasons, the Whiley new

keyword is re-interpreted to create objects on the stack.
This re-interpretation of new has interesting ramifications in Whiley. The objects created

are now limited to method scope and they cannot use functionality that requires them to
expand in size dynamically at runtime. This reduces the range of tasks Whiley objects can
do and is a limitation of this approach.

Using the re-interpreted new, enabled the following two types of refactoring of the orig-
inal Crazyflie code:

• Refactor the original C code to move object file scope declarations into method scope.
This is discussed in Section 5.1.1.

• Refactor the original C code so where objects are used in a parent function, the object
initialization is also done in that parent. This mitigates one of the weaknesses of stack
memory being limited to the scope of the initialising method and child methods (see
Section 4.1.2). In practise this did not prove to be difficult, however it may not prove
to be practical in the general case.

4.3 Testing the Whiley to C Compiler

Regression tests were used as the code base was first developed, initially testing the syntax
of the output C file. This proved to be sensitive to inconsequential changes in C code output,
such as formatting changes. A better solution was sought which led to the Whiley project
test suite, which tests the behaviour of the output C code, rather than the syntax.
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The Whiley project has a suite of 610 tests. Each test consists of a Whiley program and
an oracle output (see Listings 4.28 and 4.29), enabling the output of the Whiley program to
be compared against the oracle output. This framework was customised for the project and
enabled the test suite to be run on the Whiley to C compiler, helping to gain confidence in
the functionality that had been implemented.

1 method main(System.Console sys) => void:
2 int i = 0
3 while i < 5:
4 if i == 3:
5 break
6 i = i + 1
7 sys.out.println(i)

Listing 4.28: Test While Valid 17.

1 3

Listing 4.29: Oracle output.

Of the 610 tests, 114 tests pass. The failures were primarily because they involved byte-
code functionality that was not required or implemented for the project, or instances where
a datatype was used which clashed with test expectations, for example Whiley lists are ex-
pected to be iterated over, C arrays were implemented in a way that did not allow for this.
Passing tests were considered as a support for the project, not to be mistaken as a goal in
itself.

Appendix C contains a brief overview of the Whiley test suite and why failing tests
failed.

4.4 Debugging

Debugging on the Crazyflie proved to be a challenging and time-consuming part of the
project. It was a difficult debugging environment, with no VDU for feedback and no room
for a debugging environment. This eliminates most options used in a desktop operating
system including stepping through code, reading runtime variable values, checking con-
ditionals or running unit tests. The concern at every step was how to find and diagnose
problems in the code; with the Crazyflie offering only two ways of communicating with the
outside world, flashing its LEDs and spinning its rotors.

When the new Crazyflie code failed, LEDs proved helpful in finding the cause of several
critical bugs, but while they could identify where the code was failing, they could not iden-
tify why; nor provide details on what the run-time variables were. It took many experiments
to debug this way and consumed a lot of time.

Once several critical memory issues were resolved, tasks within the application started to
compete for the use of the LEDs, making them unreliable for debugging. This left observing
the rotors as the primary feedback tool.

JTAG ICE Debugger

Not wishing to rely on flashing LEDs and spinning rotors, motivated the enquiry into alter-
native debugging solutions. JTAG (Joint Test Action Group) is a boundary scanning archi-
tecture specified in IEEE 1149.1 which can be combined with hardware that integrates with
the chip, an In-Circuit Emulator (ICE), to create a debugging tool. The JTAG unit interfaces
using a set of pins mapped per IEEE 1149.1 and executes code in the target system while also
allowing stepping through the code, observing variables and setting breakpoints [64, 65].

A Segger J-Link EDU JTAG unit was kindly provided by Victoria (see Figure 4.3). How-
ever, despite the potential of the JTAG unit to provide debugging capabilities (similar to
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Figure 4.3: Crazyflie and JTAG.

GNU GDB), after several days without success at getting it working, debugging had to fall
back to relying on flashing LEDs and spinning rotors. The lack of in-house experience with
using this tool at Victoria, was unfortunate. The on-line documentation similarly was of
little help, providing step-by-step pictorial instructions for Windows, but only a command
line instruction for Linux.

Despite the issues raised in this chapter, the very first compiler success was achieved with
translating a simple Whiley program that enabled the LEDs to flash and motors to spin.
This first success was followed by re-examining the original Crazyflie code with a view to
creating a Whiley version of the stabilizer algorithm. The next chapter discusses the issues
faced when porting a host module to Whiley and integrating the resulting Whiley code with
the remaining host modules.
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Chapter 5

Porting and Integration

To demonstrate Whiley on the Crazyflie, Whiley code had to be created from the original
Crazyflie stabilizer module (see Section 2.3.1). The process for this was to manually translate
the stabilizer code to Whiley (porting), then ensure the new Whiley code can interface with
the rest of the Crazyflie code (integrating). Once completed the Whiley code will become
input for the Whiley to C compiler (see Chapter 4). The next sections discuss porting and
integrating.

5.1 Porting

Porting and integration is the process of adapting software for use in a different environ-
ment, in this case C to Whiley. For the most part, this was straight forward, porting involved
creating the new Whiley code, integration follows from porting and is discussed in the next
section. Porting involves six stages:

1. Revise the source C file and remove redundant code. This includes analysing prepro-
cessor commands such as #ifdef statements to identify redundant code, removing any
log or test code and any functionality not required.

2. Create a reference table of the datatypes used in the C file, as this will become useful
throughout the porting process.. Search the application code for definitions.

3. Identify methods that are child methods and map out the hierarchy. Also identify
methods that interface with the rest of the code, these are used in the integration step.

4. Refactor the C code to avoid using dynamic memory. Some global variables may need
adaptor code instead.

5. Rewrite the code in Whiley.

6. Refactor the Whiley code to ensure lists and objects, which are placed on the stack by
the Whiley to C compiler, meet the scoping limits implicit to stack memory. Some may
need to be global data and will need adaptor code.

5.1.1 Avoiding Dynamic Memory

Up to this point, the reasons for avoiding dynamic memory has been discussed, but not how
it was avoided. Global values are used for a variety of reasons, for example the Crazyflie
uses them to allow state to be shared between processes. There are two strategies used in

25



this project to avoid using dynamic memory in Whiley code; refactoring and using adaptor
code.

Refactor
Global variables do not always need to be global. Where state is not shared between tasks,
but is shared between a method and its child methods, the global variable can be refac-
tored to be instantiated in the enclosing method. There were instances of this in the original
Crazyflie stabilizer code. There were also instances of a global value being initialised and a
pointer being passed to child methods for manipulation. In this case too it was possible to
initialise the variable in a method and still pass pointers to child methods.

There is a memory trade-off. The effect on memory is to move storage from Heap mem-
ory to Stack memory (see Section 2.3.4), reducing the heap but increasing the size of the
Stack Frame for each instance of the enclosing method on the stack. If only one instance
of the methods stack frame will exist at any one time, there is no net memory cost. Other-
wise a judgement call will be required, weighing up the cost on memory of having two or
more instances Alternatively the instantiating method may be re-examined with a view to
initialising the variable one level higher.

Adaptor Code
Globals variables cannot always be refactored. For example the Crazyflie stabilizer module
uses a global boolean referenced by other Crazyflie tasks (it is true if the stabilizer task has
successfully initialised, otherwise it is false). In this case adaptor code was used to facilitate
a global variable. The adaptor code was written in C, taking advantage of the fact that C
allows globals. Whiley’s Foreign Function Interface facilitates using this code—which is
discussed in the next section.

The adaptor code consists of a global variable declaration and getters and setters that can
be used by Whiley as native methods. Listings 5.1 and 5.2 show a pattern that was used by
Crazyflie tasks to initialise, in the process checking other tasks they depend on had already
been initialised.

1 // native method declaration
2 native method isTest1() => bool
3 native method isTest2() => bool
4

5 method initTask() => bool:
6 bool result = isTest1() && isTest2()
7 if( !result ):
8 return false
9 // continue initializing

10 return true

Listing 5.1: Whiley calls a native method.

1 static bool test1 = false;
2

3 boolean isTest1(){
4 if( test1 ){ return true; }
5 test1 = doTheTestNow();
6 return test1;
7 }

Listing 5.2: The native adaptor code.

5.2 Integration

Integration is the process of enabling target code to communicate with host code. The need
for this was identified in step 3 of the process outlined in Section 5.1 and adaptor code
written in the host language may have been added in steps 4 and 6. Where target and
host are written in two different languages—this is often facilitated by a Foreign Function
Interface and adaptor code to provide datatype compatibility.
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Foreign Function Interface
Foreign Function Interfaces (FFI) are a feature of many programming languages. Their pur-
pose is to allow the program to invoke functions in other languages, often lower level lan-
guages to gain speed or other benefits. In this case the FFI allows the Whiley version of the
stabilizer module to integrate with the remaining Crazyflie code in C.

The Whiley FFI consists of the keywords native and export. The native keyword allows
Whiley code to describe a method signature that has been implemented in C code, while
the export keyword allows Whiley to implement a method that can be used by the host
application.

Listing 5.1 shows native method declarations in Whiley, that enables Whiley code to call
the method written in C in Listing 5.2. Listing 5.3 shows an export method where the Whiley
declaration includes the method body and expects the host application in Listing 5.4 to call
it.

1 // export method declaration
2 export method stabilizerTest() => bool:
3 // do checks
4 return true

Listing 5.3: Whiley declares an export
method.

1 // The Crazyflie commander module
2 boolean commanderInit(){
3 bool ok = stabilizerTest() && anotherTest();
4 if( !ok ) return false;
5 // continue initialising
6 return true;
7 }

Listing 5.4: And the C code uses the export
method.

Datatype Compatibility
Integrating with existing C code can cause problems when an interface method requires a
specific datatype, for example a uint 16. An unbounded Whiley int in this project translates to
a bounded C int. But in several cases the interfacing method in C requires a uint 16. listing 5.5
shows the C method signature Whiley can support, while Listing 5.6 shows the method
signature C is expecting.

1 // The method signature Whiley can support
2 int smallNumber( int x )

Listing 5.5: Whiley can support.

1 // The signature the C code complies with
2 uint 16 smallNumber( uint 16 x )

Listing 5.6: C expects.

This gap can be bridged using adaptor code and a simple pattern where Whiley calls a
C method written for the signature in Listing 5.5, which translates the datatypes and calls
the signature in Listing 5.6. This is illustrated in Listings 5.7 and 5.8 which show the Whiley
native declaration for the method c smallNumber()1, and the implementation in C of the
adaptor method c smallNumber(), where the value is cast to a uint 16 and can now be used
in the call to smallNumber(). The result is also cast back to an int for returning to Whiley.

1Note the prepended ‘c ’. C does not support function overloading, meaning function names must be man-
gled, that is, made unique.
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1 // Whiley adaptor method
2 // for smallNumber()
3 native c smallNumber(int) => int
4

5 method main() => void:
6 int x = 5
7 int result = c smallNumber(x)
8 ...

Listing 5.7: Native method calls an adapter
written in C.

1 // C implementation of the adaptor method
2 static bool test1 = false;
3

4 int c smallNumber(int x){
5 if( x < MIN SHORT
6 || MAX SHORT < x){
7 error(‘‘Parameter value is out of range.’’);
8 }
9 uint 16 y = (uint 16) x;

10 // use cast value in the integrated C method
11 y = smallNumber(y);
12 return (int) y;
13 }

Listing 5.8: The implementation of the adap-
tor code.

.

This chapter has outlined how to port an element of a host application to Whiley and then
integrate the Whiley code with the remaining elements of the host application in C. Using
the Whiley code created here, in the Whiley to C compiler outlined in Chapter 4, created the
replacement stabilizer code which could now be used in a new binary file to be flashed to
the Crazyflie. Ultimately this worked and the Crazyflie quad-copter was able to fly using
Whiley code. The next chapter discusses the next stage, evaluating the performance of the
new stabilizer code against the original.
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Chapter 6

Evaluation

The motivation for this work, as outlined in Section 3.1, was to demonstrate using Whiley
for programming embedded devices.

The project aim was to:

Demonstrate Whiley on an embedded system.

This was achieved by replacing existing C code on an embedded system with equivalent
Whiley generated code and observing the embedded system functioning in a manner similar
to the previous code.

Having succeeded in the core work, the question becomes:

Is Whiley code performance comparable to the original C code?

The purpose of this chapter is to detail efforts to investigate this.

6.1 The Tests

The experiments are designed to test performance factors related to the Crazyflie stabilizer
algorithm. It may be recalled that the algorithm takes input from the pilot (the desired
inputs) and the sensors (the actual inputs) (see Figure 2.3) and creates outputs for the four
motors. The first experiment tests pilot inputs using the simple exercise of landing on a
point. The second attempts to remove the pilot input and induce some flight instability for
the algorithm to rectify. The last experiment measures algorithm speed. In each case the
original Crazyflie code is used as a benchmark to compare the new code against.

6.1.1 Test Assumptions

Code Quality
The intention when replacing original C code with Whiley code, was to follow the struc-
ture of the original C code as closely as possible; this helped to mitigate any author bias or
inclination to improve the code.

Memory Use
The use of static variables is eliminated in the replacement code, moving them in memory
from the data segment to the stack. Some data structures have also been moved from heap
memory, again to stack memory. These changes were not expected to make any appreciable
influence on performance.
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Figure 6.1: Crazyflie – at 4cm from the landing point.

6.1.2 Experiment 1

Pilot Landing Tests
Pilot inputs represent the desired inputs, while sensor inputs represent actual inputs. In
normal flight both sets of inputs are used to ensure fast, predictable responses from the
Crazyflie, that appear intuitive to the pilot. Any difference between the original and Whiley
implementations will likely show up as decreased performance from the pilots perspective,
resulting in increased variability when completing tasks.

The evaluation is a pilot controlled landing test. This provides the ability to take mea-
surements from the point of aim, giving qualitative data to evaluate. The pilot task is to fly
2 metres away from the aim point and then return to land as close as possible to the point. A
measurement is then taken from the aim point to the centre of the Crazyflie (see Figure ??).

Confounding variables considered and mitigated are;

• Air currents An internal room was chosen with doors and windows closed.

• Pilot distractions All observers and other distractions were removed to provide a
quiet environment

• Pilot bias The two binary files to be used were anonymised by a third party with no
connection with the evaluation.

• Improving pilot skill The two anonymous binary files were flashed to the Crazyflie
every five landings, to spread the effects of improving pilot skills over both sets of
data.

• Battery power The Crazyflie has approximately 7 minutes of battery time. It was fully
recharged after every five landings to keep the battery levels consistent.

The experiments generated two sets of 40 data points, measuring distance from the aim
point in centimetres. The data provides the following metrics:
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Figure 6.2: Histograms of 40 Pilot landing tests each.

Original Crazyflie code Whiley Crazyflie code
Mean 4.000 4.525

Median 4.000 5.000
Standard Deviation 1.69 2.18

High 8.00 10.00
Third quartile 5.00 6.00
First quartile 3.00 3.00

Low 1.00 1.00

As can be seen from the histograms in Figure 6.2, the results appear to be similar, with
the Whiley code showing a little more variability.

6.1.3 Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov test was chosen to determine whether the two data sets are statis-
tically different [66]. The null hypothesis is that the two data sets are drawn from the same
distribution. This hypothesis is rejected if the D value is greater than the value established
by this formula at α = 0.05 :

d0.05 = 1.36 ∗
√

40 + 40
40 ∗ 40

= 0.30

The result of the Kolmogorov-Smirnov test is D = 0.15 1 which is less than d0.05, meaning

1Established using the R statistical computing package.
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Figure 6.3: Aggregate landing results give the probability of landing within X cm.

the null hypothesis should not be rejected. The two distributions may be considered the
same and the performance of the two implementations of the Crazyflie code are statistically
similar at the 95% level of confidence.

Figure 6.3 plots the cumulative results against the probability along the Y axis. The D
statistic represents the largest gap in the graph.

6.1.4 Experiment 2

Oscilation Tests
The sensors, when the Crazyflie is put under flight stress, provide inputs to the stabilizer
algorithm enabling it to self level. This is an observable behaviour that occurs when for
example, it collides with a ceiling, it passes through an air stream, it drops from a height
and regains control or on a sudden changes of direction.

The evaluation intended to repeat the circumstances that create the oscillations, film the
event and count the cycles until levelling had been achieved. This required a high speed
camera and the ability to recreate the circumstances within the camera’s field of view.

Technical difficulties have foiled all attempts to perform this test. Four cameras were
tried, including two high speed cameras, one sourced from a lecturer (Chris Hollitt) , the
other from the postgrad computer graphics department (Andrew Chalmers). It transpires
that in order to get a sufficiently high frame rate on the most capable digital camera, the
field of view is reduced to lighten the processors workload. For the better camera (the High
Sensitivity USB 3.0 CMOS Camera from ThorLabs, set up in Figures 6.4a) and 6.4b, this
resulted in a bounding box significantly smaller than expected, of 450mm x 600mm, 8.5
metres away from the camera (see Figure 6.4c).
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(a) Thorlabs camera. (b) On tripod. (c) The field of view.

Figure 6.4: Thor High Sensitivity Camera—for high frame rates, needs a small fov.

(a) Crazyflie with two tethers. (b) Set up for tethered flight.

Figure 6.5: Crazyflie responded poorly, with or without the fan, when tethered.
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Figure 6.6: Runtime tests of Original code and Whiley code.

The problem then became one of getting observable activity within this bounding box.
Dropping the Crazyflie from a height resulted in oscillations over a travel distance that ex-
ceeded the bounding box. Tests involving an airflow resulted in the Crazyflie being blown
out of the bounding box, while tethering the Crazyflie by one, two and four points as shown
in Figure 6.5a and 6.5b, resulted in abnormal behaviour. As a result of these problems, this
experiment was abandoned.

6.1.5 Experiment 3

Software Performance Tests
This test is to determine any difference between the speed at which the original and new
binary codes run.

To perform this test, a test harness was created to run the stabilizer algorithm on an
x86 64 desktop computer running a Linux OS. Each version was cycled through its main
algorithm 10,000,000 times per timed test and the test was taken 40 times each.

This test has at least two major limitations; it is not performed on the embedded device
and the interface methods in both cases were only given stubs sufficient to allow the test to
run. Consequently the tests may not reflect actual speeds on the device.

The experiments generated two sets of 40 data points, measuring the time taken in sec-
onds. The data provides the following metrics:

The result of these tests was that the two binaries appear to be very similar in runtime as
can be seen in Figure 6.6.
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Original Crazyflie code Whiley Crazyflie code
Mean 5.604 5.607

Median 5.608 5.606
Standard Deviation 0.01811 0.01952

High 5.65 5.66
Third quartile 5.62 5.62
First quartile 5.60 5.60

Low 5.56 5.55

The Kolmogorov-Smirnov test was chosen to determine whether the two data sets are
statistically different. The null hypothesis is that the two data sets are drawn from the same
distribution. This hypothesis is rejected if the D value is greater than the value established
by this formula at α = 0.05 :

d0.05 = 1.36 ∗
√

40 + 40
40 ∗ 40

= 0.30

The result of the Kolmogorov-Smirnov test is D = 0.125 2 which is less than d0.05, mean-
ing the null hypothesis should not be rejected. The two distributions may be considered the
same and the performance of the two implementations of the Crazyflie code are statistically
similar at the 95% level of confidence.

Based on these tests, it may be concluded that the two implementations are broadly similar
in performance.

2Established using the R statistical computing package.
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Chapter 7

Conclusions and Future Work

The goal was to demonstrate Whiley on an embedded system. Along the way it was an-
ticipated the work would discover and highlight issues that face the Whiley project when
being adapted for use in embedded programming. The project has succeeded in both en-
deavours. The Crazyflie flies on Whiley code and the Whiley projects body of knowledge in
the embedded space has been expanded.

A feel for the complexity of the work might be gained from Appendix A which is a short
version of the project’s logbook. The most challenging aspect was finding how difficult it
is to debug C on an embedded system. As a consequence, the practical part of the work
over-ran by a significant margin.

A number of insights—some suspected, others new—have been demonstrated, which
will no doubt prove useful in the future. For example one insight is the fragility of verified
bytecode, its potential verified status was voided several times in this translation process.
Another insight is that the strategies adopted by this compiler would add significantly to
the cognitive workload of an embedded programmer. Overall however, most problems are
not insurmountable and will likely be resolved by tackling the first three points listed here.
The fourth point highlights a way to make the research a more productive:

• Memory management. Whiley assumes an operating system or algorithm that auto-
matically frees up allocated heap memory. The largest friction point in this work was
this assumption not translating to embedded systems. Future progress in this embed-
ded system space may require a solution to this memory management problem.

• Unbounded values. Unbounded arithmetic values need to be bounded in the embed-
ded space. The solution adopted in this work of merely translating to C ints and floats,
would not be acceptable to the embedded community. A solution that may help, but
was not implemented for this work, is to define a type in Whiley which is bound to a
numerical range, as shown in List 7.1. This would be checked by the Whiley verifier
and guarantee a safe cast to the equivalent C type.

• Bytecode context. The lack of context when translating bytecode resulted in some de-
cisions having to be applied to the entire application. For example choosing between
stack or heap memory for lists, requires context in order to avoid having to pick one
approach for the entire application. One approach might be to add more context to
bytecodes, other approaches may involve preprocessing the Whiley code to enable
new strategies. For example; Escape Analysis (discussed in Section 3.2.2), pointer life-
times1 and pointer object models [67].

1Paul Koerbitz. Understanding Pointers, Ownership, and Lifetimes in Rust. Accessed Oct 2014. Retrieved
from http://paulkoerbitz.de/posts/Understanding-Pointers-Ownership-and-Lifetimes-in-Rust.html

37



• JTAG ICE Debugger. Future efforts in this domain need to successfully tackle the
JTAG debugger. It is an industry standard device and has the potential to save a lot
of time by turning a multi-step and time consuming operation to move and run de-
bug code, into operating in a debugging environment. The equipment is available at
Victoria but not the experience in using it.

1 // Define a natural number
2 type nat is (int x) where x >= 0
3

4 // Define a C arithmetic type
5 type uint 16 is (int x)
6 where 0 <= x && x <= 65535

Listing 7.1: Defining custom Whiley types.

1 static bool test1 = false;
2

3 int c smallNumber(int x){
4 if( x < MIN SHORT
5 || MAX SHORT < x){
6 error(‘‘Parameter value is out of range.’’);
7 }
8 short y = (short) x;
9 // use cast value in the integrated C method

10 y = smallNumber(y);
11 return (int) y;
12 }

Listing 7.2: Defining custom Whiley types.

The appendices hold three versions of the original Crazyflies stabilizer.c code; the first is
the original (Appendix D) written in C, the second is the result of porting the original code
to Whiley (Appendix E) and the last is the result of passing the Whiley bytecode through
the Whiley to C compiler (Appendix F).

7.1 Future work

There are two major avenues for future work. One involves resolving the big problems men-
tioned already; develop or find a solution to memory management on memory constrained
embedded devices; or resolve the unbounded to bounded values translation problem; or
look at ways to include more context in bytecode or conversely examine other compiler
strategies that can better extract the context from the source code.

The second major area of work could be repeating this exploration in another embedded
device, perhaps in concert with resolving one of the first problems, for example:

• Create a new Crazyflie module using Whiley. Such as; live stream video from a cam-
era attached to the Crazyflie or attach proximity sensors and develop an algorithm to
avoid walls, floors and ceilings.

• Picking a device with a very simple RTOS and replacing the RTOS. This might be
combined with developing a more refined Whiley to C compiler and interfacing with
the hardware layer would provide a new challenge and may highlight new challenges.
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Appendix A

Logbook (Shortened)

This project involved an array of tasks in order to successfully achieve the outcomes. Many
of which are related to the whole learning process. This is an overview for reference should
a similar project be undertaken. The source is the project’s daily journal.

1. Quadcopter familiarisation Get Quadcopter flying. Tues 11th March.

2. RTOS Research Real Time Operating Systems and FreeRTOS.

3. Latex familiarization start a Latex document for the proposal.

4. Flash image Download, compile, flash image to Quadcopter.

5. Identify major components FreeRTOS identified and researched.

6. Makefile familiarisation Makefiles researched, variations tried.

7. GCC familiarisation GCC researched.

8. C language familiarisation Hello World, followed by Conway’s Game of Life exercise.

9. Source code familiarization Review source code, identify main components.

10. Whiley familiarisation Hello World followed by Conway’s Game of Life exercise.

11. Whiley to bytecode Compiling to bytecode using WyC.

12. Compilers familiarisation Read Compilers course lecture slides.

13. Device bricking Directed to research and avoid locking up the embedded cpu.

14. Identify Compiler Architecture First draft.

15. Whiley bytecode familiarization Learning to identify state and behaviour.

16. Compiler C Header and Library Implemented.

17. First compiled Whiley to C program, Thursday 17th April.

18. TDD Created test harness and 51 sample Whiley programs.

19. Any type Created as a union of all primitive types using a union inside a struct.

20. C pointer issues referencing and dereferencing pointers and arrays.
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21. C method scope Cannot pass arrays out of methods without using malloc.

22. Malloc Identified difficulties in how/when to free malloc with the compiler.

23. Tuples and Records Need malloc, resolved to ignore. (Solution later found for Records).

24. First program run on Crazyflie Flash LEDs and motor test, Thurs 8th May.

25. Whiley Native and Extern Used to marry Whiley with code base in other languages.

26. Crazyflie code familiarisation Read and develop overview.

27. stabilizer.c Chosen C file to replace, stripped it down and tested, rewritten in Whiley.

28. cf library.c For global variables and interfacing Whiley with C.

29. Crazyflie is dead Battery was damaged and acid cooked the processor. Thur 4th July.

30. Whiley test harness Adapted, initial test run sees 19 of 610 pass.

31. PID Controllers Researched and pid.whiley created.

32. Failed tests categorised 145 passing, 465 failing for known reasons.

33. Lambda functions Required by native C app, implemented in compiler.

34. Records Records implemented.

35. GCC Warnings Discover -Wall -Wextra. Generates many warnings, resolved.

36. Crazyflie is replaced No significant project delays caused. Weds 23rd July.

37. JTAG familiarisation JTAG enables GDB debugging on embedded systems.

38. GDB familiarisation Tutorials.

39. Flashing LEDs Being used to debug, major memory bugs identified.

40. Rewrite compiler Have to reduce memory use, Removed 75 excess variable initiali-
sations and removed a custom 41 byte compound type plus it’s supporting code. Big
job, Whiley test suite drops to 50 passing and takes a lot of work to rebuild.

41. Whiley runtime assertions Can be switched off, removes unneeded variables.

42. Malloc is a huge problem Start removing uses of malloc, much later figure out that
the first use of malloc initialises a heap of 65kb.

43. Whiley bug Code real a = 0, initialises a as a real and then casts to an int. Subsequent
uses cast it back to a real. Lots of unnecessary castes. Reported and fixed.

44. C Strings Research into different implementations, malloc and char[ ] both cause prob-
lems that literals do not seem to have.

45. Whiley New Whiley places new objects on the heap, instead adopt the use of stack
memory to avoid malloc issues (Last use of malloc removed).

46. It works! Flying the Crazyflie with the new stabilizer.c code. Mon 1st Sept.

47. Port 2 more files Port controller.c and pid.c to Whiley code, debug and integrate with
original Crazyflie code.

48. Job done Flying the Crazyflie with the Whiley stabilizer algorithm. Sat 6th Sept.
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Appendix B

Whiley bytecode

Whiley is similar to the Java programing language in that it compiles to bytecode. Bytecode
is optimised by the Whiley WyC compiler as it is compiled, making it smaller, faster and
more efficient. In addition Whiley verified code generates Whiley verified bytecode. There
are a wide variety of bytecode types, for example the Assign bytecode provides instructions
to assign a value held by variable A, to variable B.

This project is interested in Whiley bytecode only if they directly assist the project aim of
demonstrating Whiley on an embedded system. This means there are numerous bytecodes
that have not been implemented in the projects compiler. What follows is a list of bytecodes,
with a brief explanation of what the bytecode does from the Whiley API. Bytecodes imple-
mented by the project are marked with an asterix. Most show actual bytecode examples
from this project.

1. .label21 * Label bytecode, destination for a goto

2. add %29 = %0, %1 : int * A binary operation which reads two numeric values from the
operand registers, performs an operation on them and writes the result to the target
register.

3. append %14 = %1, %13 : [int] Append one list to another.

4. assertge %0, %2 ”constraint not satisfied” : int Reads two operand registers, com-
pares their values and raises an assertion failure with the given message if comparison
is false.

5. AssertOrAssume An abstract class representing either an assert or assume bytecode.

6. assign %39 = %25 : int * Copy the contents from a given operand register into a given
target register.

7. assumege %1, %8 ”message” : int Reads two operand registers, compares their values
and raises an assertion failure with the given message, if comparison is false.

8. BinListOp Reads the (effective) list values from two operand registers, performs an
operation.

9. BinSetOp A binary operation which reads two set values from the operand registers,
performs an operation on them and writes the result to the target register.

10. const %10 = 0 : int * Writes a constant value to a target register.
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11. convert %29 = %29 any : string * Reads a value from the operand register, converts it
to a given type and writes the result to the target register.

12. Debug Read a string from the operand register and prints it to the debug console.

13. deref %261 = %65 : &int * Reads a reference value from the operand register and
dereferences it.

14. div %26 = %24, %25 : real * A binary operation which reads two numeric values from
the operand registers, performs an operation on them and writes the result to the target
register.

15. end label18 * Marks the end of a loop block.

16. fieldload %13 = %12 kd : {real integ,real kd,real ki} * Reads a record value from an
operand register, extracts the value of a given field and writes this to the target register.

17. forall %7 in %5 () : [int] * Pops a set, list or map from the stack and iterates over every
element it contains.

18. goto label21 * Branches unconditionally to the given label.

19. ifeq %18, %19 goto label20 : bool * Branches conditionally to the given label based on
the result of a runtime type test against a value from the operand register.

20. ifge %13, %22 goto label4 : int * Branches conditionally to the given label based on
the result of a runtime type test against a value from the operand register.

21. ifle %0, %4 goto label24 : int * Branches conditionally to the given label by reading
the values from two operand registers and comparing them.

22. IfIs Branches conditionally to the given label based on the result of a runtime type test
against a value from the operand register.

23. iflt %19, %21 goto label22 : int * Branches conditionally to the given label based on
the result of a runtime type test against a value from the operand register.

24. ifne %0, %6 goto label1 : int * Branches conditionally to the given label based on the
result of a runtime type test against a value from the operand register.

25. indexof %61 = %0, %60 : [real] * Reads an effective list or map from the source (left)
operand register, and a key value from the key (right) operand register and returns the
value associated with that key.

26. indirectinvoke %10(%11) : method(any) =>void * Represents an indirect function
call.

27. Invert Corresponds to a bitwise inversion operation, which reads a byte value from
the operand register, inverts it and writes the result to the target resgister.

28. invoke %(%38, %39) stabilizer:cf motorsSetRatio : method(int,int) =>void * Corre-
sponds to a function or method call whose parameters are read from zero or more
operand registers.

29. Label * Represents the labelled destination of a branch or loop statement.
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30. lambda %2 = () stabilizer:stabilizerTask : method() =>void * Represents a pointer to
a method.

31. lengthof %5 = %0 : [byte] * Reads a collections length, assigns it to a target register.

32. ListLVal An LVal with list type.

33. loop (%4) * Represents a block of code which loops continuously until the condition is
met.

34. LVal<T> Represents a type which may appear on the left of an assignment expression.

35. MapLVal An LVal with map type.

36. Move Moves the contents of a given operand register into a given target register.

37. mul %71 = %67, %70 : real * A binary operation which reads two numeric values
from the operand registers, performs an operation on them and writes the result to the
target register.

38. neg %262 = %261 : int * Create negative number

39. newlist %16 = (%13, %14, %15) : [ real] * Constructs a new list value from the values
given by zero or more operand registers.

40. NewMap Constructs a map value from zero or more key-value pairs on the stack.

41. newobject %65 = %64 : &int * Instantiate a new object from the value in a given
operand register, and write the result (a reference to that object) to a given target reg-
ister.

42. newrecord %169 = (%155, %156, %157) : {real integ,real kd,real ki} * Constructs a
new record value from the values of zero or more operand register, each of which is
associated with a field name.

43. newset %19 = (%14, %15, %16) : int Constructs a new set value from the values given
by zero or more operand registers.

44. NewTuple Constructs a new tuple value from the values given by zero or more operand
registers.

45. nop * Represents a no-operation bytecode which, as the name suggests, does nothing.

46. Not Read a boolean value from the operand register, inverts it and writes the result to
the target register.

47. range %6 = %3, %5 : [int] * Range of values from one parameter to the next.

48. RecordLVal An LVal with record type.

49. ReferenceLVal An LVal with list type.

50. return %1 : int * Returns from the enclosing function or method, possibly returning a
value.

51. sappend %26 = %24, %1 : string A binary operation which reads two string values
from the operand registers, performs an operation (append) on them and writes the
result to the target register.

43



52. StringLVal An LVal with string type.

53. sub %31 = %29, %3 : int * A binary operation which reads two numeric values from
the operand registers, performs an operation on them and writes the result to the target
register.

54. SubList Reads the (effective) list value from a source operand register, and the integer
values from two index operand registers, computes the sublist and writes the result
back to a target register.

55. SubString Reads the string value from a source operand register, and the integer val-
ues from two index operand registers, computes the substring and writes the result
back to a target register.

56. switch %0 1->label1, -1->label2, *->label0 * Performs a multi-way branch based on
the value contained in the operand register.

57. throw %4 : string Throws an exception containing the value in the given operand
register.

58. trycatch string->label1 Represents a try-catch block within which specified exceptions
will caught and processed within a handler.

59. TryEnd Marks the end of a try-catch block.

60. TupleLoad Read a tuple value from the operand register, extract the value it contains
at a given index and write that to the target register.

61. UnArithOp Read a number (int or real) from the operand register, perform a unary
arithmetic operation on it.

62. update (*%0).dt %2 : &{real deriv,real desired,real dt} ->&{real deriv,real desired,real
dt} Pops a compound structure, zero or more indices and a value from the stack and
updates the compound structure with the given value.

63. Void The void bytecode is used to indicate that the given register(s) are no longer live.
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Appendix C

The Whiley Test Suite

The Whiley test suite consists of a test harness and 610 Whiley scripts with matching oracle
answers.

When working with the test suite, as each test was examined for insights on why it
failed, it was labelled with a single failure cause. This may not be the only cause, just the
one perceived to be most problematic at the time. As such, the following statistics should be
considered indicative only.

Total Tests 610
Passing tests 114

Records 69
Unions 78

Try-catch 13
Array size 119

Tuples 14
Sets 72

Big number 5
Not WyC compiled 23

Bytes 11
Range 8

Constants 5
Arrays 17

Dictionary 17
Correctly print real (eg: 12/23) 10

Miscellaneous 35
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Appendix D

Original stabilizer.c Code

The stabilizer.c code is available on Github 1. The version presented here is the result of
analysing and stripping the code of its hover functionality. This formed the working version
for this project.

The other files used were controller.c and pid.c. These are also available for viewing on
Github 2.

1 /∗
2 ∗ Crazyflie Firmware
3 ∗
4 ∗ Copyright (C) 2011−2012 Bitcraze AB
5 ∗
6 ∗ This program is free software: you can redistribute it and/or modify
7 ∗ it under the terms of the GNU General Public License as published by
8 ∗ the Free Software Foundation, in version 3.
9 ∗

10 ∗ This program is distributed in the hope that it will be useful,
11 ∗ but WITHOUT ANY WARRANTY; without even the implied warranty of
12 ∗ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 ∗ GNU General Public License for more details.
14 ∗
15 ∗ You should have received a copy of the GNU General Public License
16 ∗ along with this program. If not, see <http://www.gnu.org/licenses/>.
17 ∗/
18

19 #include ”stm32f10x conf.h”
20 #include ”FreeRTOS.h”
21 #include ”task.h”
22

23 #include ”system.h”
24 #include ”stabilizer.h”
25 #include ”commander.h”
26 #include ”controller.h”
27 #include ”sensfusion6.h”
28 #include ”imu.h”
29 #include ”motors.h”
30 #include ”log.h”
31

32 uint32 t motorPowerM4;
33 uint32 t motorPowerM2;

1Accessed Sept 2014. https://github.com/bitcraze/crazyflie-firmware/blob/master/modules/src/stabilizer.c
2Accessed Sept 2014. https://github.com/bitcraze/crazyflie-firmware/tree/master/modules/src
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34 uint32 t motorPowerM1;
35 uint32 t motorPowerM3;
36

37 static bool isInit;
38

39 static void distributePower(const uint16 t thrust, const int16 t roll, const int16 t pitch, const int16 t yaw);
40 static uint16 t limitThrust(int32 t value);
41 static void stabilizerTask(void∗ param);
42

43 void stabilizerInit(void)
44 {
45 if(isInit)
46 return;
47

48 motorsInit();
49 imu6Init();
50 sensfusion6Init();
51 controllerInit();
52

53 xTaskCreate(stabilizerTask, (const signed char ∗ const)”STABILIZER”,
54 /∗2∗configMINIMAL STACK SIZE∗/200, NULL, /∗Piority∗/2, NULL);
55

56 isInit = TRUE;
57 }
58

59 bool stabilizerTest(void)
60 {
61 bool pass = true;
62

63 pass &= motorsTest();
64 pass &= imu6Test();
65 pass &= sensfusion6Test();
66 pass &= controllerTest();
67

68 return pass;
69 }
70

71 static void stabilizerTask(void∗ param)
72 {
73 static Axis3f gyro; // Gyro axis data in deg/s
74 static Axis3f acc; // Accelerometer axis data in mG
75 static Axis3f mag; // Magnetometer axis data in testla
76

77 static float eulerRollActual;
78 static float eulerPitchActual;
79 static float eulerYawActual;
80 static float eulerRollDesired;
81 static float eulerPitchDesired;
82 static float eulerYawDesired;
83 static float rollRateDesired = 0;
84 static float pitchRateDesired = 0;
85 static float yawRateDesired = 0;
86

87 RPYType rollType;
88 RPYType pitchType;
89 RPYType yawType;
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90

91 uint16 t actuatorThrust;
92 int16 t actuatorRoll;
93 int16 t actuatorPitch;
94 int16 t actuatorYaw;
95

96 uint32 t attitudeCounter = 0;
97 uint32 t lastWakeTime;
98

99 vTaskSetApplicationTaskTag(0, (void∗)/∗TASK STABILIZER ID NBR∗/3);
100

101 //Wait for the system to be fully started to start stabilization loop
102 systemWaitStart();
103

104 lastWakeTime = xTaskGetTickCount ();
105

106 while(1)
107 {
108 vTaskDelayUntil(&lastWakeTime, (unsigned int)
109 ((/∗configTICK RATE HZ∗/ /∗( portTickType ) cast to short∗/ 1000 / /∗IMU UPDATE FREQ∗/500)) ); // 500Hz
110

111 // Magnetometer not yet used more then for logging.
112 imu9Read(&gyro, &acc, &mag);
113

114 if (imu6IsCalibrated())
115 {
116 commanderGetRPY(&eulerRollDesired, &eulerPitchDesired, &eulerYawDesired);
117 commanderGetRPYType(&rollType, &pitchType, &yawType);
118

119 // 250HZ
120 if (++attitudeCounter >= /∗ATTITUDE UPDATE RATE DIVIDER∗/2)
121 {
122 sensfusion6UpdateQ(gyro.x, gyro.y, gyro.z, acc.x, acc.y, acc.z, /∗FUSION UPDATE DT∗/(float)
123 (1.0/(/∗IMU UPDATE FREQ∗/500 / /∗ATTITUDE UPDATE RATE DIVIDER∗/2)) );
124 sensfusion6GetEulerRPY(&eulerRollActual, &eulerPitchActual, &eulerYawActual);
125

126 controllerCorrectAttitudePID(eulerRollActual, eulerPitchActual, eulerYawActual,
127 eulerRollDesired, eulerPitchDesired, −eulerYawDesired,
128 &rollRateDesired, &pitchRateDesired, &yawRateDesired);
129 attitudeCounter = 0;
130 }
131

132 if (rollType == RATE) { rollRateDesired = eulerRollDesired; }
133 if (pitchType == RATE) { pitchRateDesired = eulerPitchDesired; }
134 if (yawType == RATE) { yawRateDesired = −eulerYawDesired; }
135

136 controllerCorrectRatePID(gyro.x, −gyro.y, gyro.z, rollRateDesired, pitchRateDesired, yawRateDesired);
137 controllerGetActuatorOutput(&actuatorRoll, &actuatorPitch, &actuatorYaw);
138 commanderGetThrust(&actuatorThrust);
139

140 if (actuatorThrust > 0)
141 {
142 distributePower(actuatorThrust, actuatorRoll, actuatorPitch, −actuatorYaw);
143 } else {
144 distributePower(0, 0, 0, 0);
145 controllerResetAllPID();
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146 }
147 }
148 }
149 }
150

151 static void distributePower(const uint16 t thrust, const int16 t roll, const int16 t pitch, const int16 t yaw)
152 {
153 // QUAD FORMATION NORMAL
154 motorPowerM1 = limitThrust(thrust + pitch + yaw);
155 motorPowerM2 = limitThrust(thrust − roll − yaw);
156 motorPowerM3 = limitThrust(thrust − pitch + yaw);
157 motorPowerM4 = limitThrust(thrust + roll − yaw);
158

159 motorsSetRatio(/∗MOTOR M1∗/0, motorPowerM1);
160 motorsSetRatio(/∗MOTOR M2∗/1, motorPowerM2);
161 motorsSetRatio(/∗MOTOR M3∗/2, motorPowerM3);
162 motorsSetRatio(/∗MOTOR M4∗/3, motorPowerM4);
163 }
164

165 static uint16 t limitThrust(int32 t value)
166 {
167 if(value > /∗UINT16 MAX∗/65535)
168 {
169 value = /∗UINT16 MAX∗/65535;
170 } else if(value < 0) {
171 value = 0;
172 }
173 return (uint16 t)value;
174 }
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Appendix E

Whiley version of stabilizer.c

The stabilizer.whiley code manually ported from stabilizer.c.

1 import whiley.lang.System
2 import ∗ from controller
3

4 // pid model −− a record
5 public type PidObject is {
6 real desired,
7 real error,
8 real prevError,
9 real integ,

10 real deriv,
11 real kp,
12 real ki,
13 real kd,
14 real outP,
15 real outI,
16 real outD,
17 real iLimit,
18 real iLimitLow,
19 real dt
20 }
21

22 //== Tests ==
23 native method motorsTest() => bool
24 native method imu6Test() => bool
25 native method sensfusion6Test() => bool
26 //native method controllerTest() => bool
27

28 //== Initialize ==
29 native method motorsInit()
30 native method imu6Init()
31 native method sensfusion6Init()
32 //native method controllerInit([&PidObject] pidArray)
33 native method isStabilizerInit() => bool
34

35 //== Simple methods, no parameters ==
36 native method systemWaitStart()
37 native method cf lib xTaskGetTickCount() => int
38 native method imu6IsCalibrated() => bool
39 //native method controllerResetAllPID()
40
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41 native method cf lib LHS Equals Neg RHS( &real yawRateDesired, &real eulerYawDesired)
42

43 //==============
44 //== FreeRTOS ==
45 // portBASE TYPE xTaskCreate( pdTASK CODE pvTaskCode, const char ∗ const pcName, unsigned short usStackDepth, void ∗pvParameters, unsigned portBASE TYPE uxPriority, xTaskHandle ∗pvCreatedTask );
46 native method cf lib xTaskCreate(method() => void stabilizerTask, string b, int c, int d, int e, int f) => void
47

48 // void vTaskSetApplicationTaskTag( xTaskHandle xTask, pdTASK HOOK CODE pxHookFunction ) PRIVILEGED FUNCTION;
49 // typedef void ∗ xTaskHandle;
50 // pdTASK HOOK CODE is used as a void∗, replace with void∗ ?
51 native method cf lib vTaskSetApplicationTaskTag(int p, int taskStabilizerIdNmr)
52

53 //void vTaskDelayUntil( portTickType ∗ const pxPreviousWakeTime, portTickType xTimeIncrement ) PRIVILEGED FUNCTION;
54 native method cf lib vTaskDelayUntil( int lastWakeTime, int xTimeIncrement ) => int
55

56 //================
57 //== i/o operations ==
58 //void imu9Read(Axis3f∗ gyroOut, Axis3f∗ accOut, Axis3f∗ magOut);
59 native method cf lib imu9Read( &[real] gyro, &[real] acc, &[real] mag) //done
60

61 //void sensfusion6UpdateQ(float gx, float gy, float gz, float ax, float ay, float az, float dt);
62 native method cf lib sensfusion6UpdateQ( &[real] gyro, &[real] acc, real dt)
63

64 //void sensfusion6GetEulerRPY(float∗ roll, float∗ pitch, float∗ yaw);
65 native method sensfusion6GetEulerRPY( &real eulerRollActual, &real eulerPitchActual, &real eulerYawActual) //done
66

67 //== commander.c ==
68 //void commanderGetThrust(uint16 t∗ thrust);
69 native method cf lib commanderGetThrust(&int actuatorThrust) => void // done
70 //void commanderGetRPY(float∗ eulerRollDesired, float∗ eulerPitchDesired, float∗ eulerYawDesired);
71 native method commanderGetRPY(&real eulerRollDesired, &real eulerPitchDesired, &real eulerYawDesired)
72

73 //void commanderGetRPYType(RPYType∗ rollType, RPYType∗ pitchType, RPYType∗ yawType);
74 native method cf lib commanderGetRPYType(&string rollType, &string pitchType, &string yawType)
75

76 native method cf lib motorsSetRatio(int motor, int power)
77

78 //==========
79 export method stabilizerTest() => bool:
80 bool pass = true
81

82 pass = pass && motorsTest()
83 pass = pass && imu6Test()
84 pass = pass && sensfusion6Test()
85 pass = pass && controllerTest()
86 return pass
87

88 //==========
89 export method stabilizerInit() => void:
90 if(isStabilizerInit()):
91 return
92

93 motorsInit()
94 imu6Init()
95 sensfusion6Init()
96 // controllerInit() // moved to after pid initialisations below ˜ln 130
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97

98 // create the stabilizer task. Places the task into the FreeRTOS task que/s.
99 cf lib xTaskCreate(&stabilizerTask, /∗(const signed char ∗ const)∗/ ”STABILIZER”, 200, /∗null∗/0, /∗Piority∗/2, /∗null∗/0)

100

101 //=====
102 // This sets up and contains the loop that the stabilzer task runs
103 method stabilizerTask() => void:
104 //========= INITIALISE =============
105 &[real] gyro = new [0.0, 0.0, 0.0]
106 &[real] acc = new [0.0, 0.0, 0.0]
107 &[real] mag = new [0.0, 0.0, 0.0]
108

109 &real eulerRollActual = new 0.0
110 &real eulerPitchActual = new 0.0
111 &real eulerYawActual = new 0.0
112 &real eulerRollDesired = new 0.0
113 &real eulerPitchDesired = new 0.0
114 &real eulerYawDesired = new 0.0
115 &real rollRateDesired = new 0.0
116 &real pitchRateDesired = new 0.0
117 &real yawRateDesired = new 0.0
118

119 &string rollType = new ”ANGLE”
120 &string pitchType = new ”ANGLE”
121 &string yawType = new ”ANGLE”
122

123 &int actuatorThrust = new 0 // was uint16
124 &int actuatorRoll = new 0 // was int16
125 &int actuatorPitch = new 0
126 &int actuatorYaw = new 0
127

128 int attitudeCounter = 0 // was uint32 t
129 int lastWakeTime // was uint32 t
130

131 //=============================
132 // Refactored controller code.
133 // Object declarations and controllerInit() inserted here to use stack declarations
134 // and avoid issues with globals and heap declarations.
135

136 &PidObject pidRollRate = new { desired: 0.0, error: 0.0, prevError: 0.0, integ: 0.0, deriv: 0.0, kp: 0.0, ki: 0.0, kd: 0.0, outP: 0.0, outI: 0.0, outD: 0.0, iLimit: 0.0, iLimitLow: 0.0, dt: 0.0}
137 &PidObject pidPitchRate = new { desired: 0.0, error: 0.0, prevError: 0.0, integ: 0.0, deriv: 0.0, kp: 0.0, ki: 0.0, kd: 0.0, outP: 0.0, outI: 0.0, outD: 0.0, iLimit: 0.0, iLimitLow: 0.0, dt: 0.0}
138 &PidObject pidYawRate = new { desired: 0.0, error: 0.0, prevError: 0.0, integ: 0.0, deriv: 0.0, kp: 0.0, ki: 0.0, kd: 0.0, outP: 0.0, outI: 0.0, outD: 0.0, iLimit: 0.0, iLimitLow: 0.0, dt: 0.0}
139 &PidObject pidRoll = new { desired: 0.0, error: 0.0, prevError: 0.0, integ: 0.0, deriv: 0.0, kp: 0.0, ki: 0.0, kd: 0.0, outP: 0.0, outI: 0.0, outD: 0.0, iLimit: 0.0, iLimitLow: 0.0, dt: 0.0}
140 &PidObject pidPitch = new { desired: 0.0, error: 0.0, prevError: 0.0, integ: 0.0, deriv: 0.0, kp: 0.0, ki: 0.0, kd: 0.0, outP: 0.0, outI: 0.0, outD: 0.0, iLimit: 0.0, iLimitLow: 0.0, dt: 0.0}
141 &PidObject pidYaw = new { desired: 0.0, error: 0.0, prevError: 0.0, integ: 0.0, deriv: 0.0, kp: 0.0, ki: 0.0, kd: 0.0, outP: 0.0, outI: 0.0, outD: 0.0, iLimit: 0.0, iLimitLow: 0.0, dt: 0.0}
142

143 [&PidObject] pidArray = [pidRollRate, pidPitchRate, pidYawRate, pidRoll, pidPitch, pidYaw]
144

145 controllerInit(pidArray)
146

147 //== end refactored controller code ==
148

149 cf lib vTaskSetApplicationTaskTag(0, /∗TASK STABILIZER ID NBR∗/3) // FreeRTOSConfig.h #define TASK STABILIZER ID NBR
3

150

151 systemWaitStart()
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152

153 lastWakeTime = cf lib xTaskGetTickCount()
154

155 //========= START LOOP =============
156 while(true):
157 //vTaskDelayUntil(&lastWakeTime, (unsigned int)((/∗configTICK RATE HZ∗/ /∗( portTickType ) cast to short∗/ 1000 / /∗IMU UPDATE FREQ∗/500)) ); // 500Hz
158 lastWakeTime = cf lib vTaskDelayUntil(lastWakeTime, 2)
159

160 cf lib imu9Read(gyro, acc, mag)
161

162 if(imu6IsCalibrated()):
163 commanderGetRPY(eulerRollDesired, eulerPitchDesired, eulerYawDesired)
164

165 cf lib commanderGetRPYType(rollType, pitchType, yawType)
166

167 attitudeCounter = attitudeCounter + 1
168 if(attitudeCounter >= 2):
169 real fusion update dt = 1.0/(500.0 / 2.0)
170 cf lib sensfusion6UpdateQ( gyro, acc, fusion update dt)
171 sensfusion6GetEulerRPY(eulerRollActual, eulerPitchActual, eulerYawActual)
172

173 controllerCorrectAttitudePID(
174 ∗eulerRollActual, ∗eulerPitchActual, ∗eulerYawActual,
175 ∗eulerRollDesired, ∗eulerPitchDesired, −(∗eulerYawDesired),
176 rollRateDesired, pitchRateDesired, yawRateDesired,
177 pidRoll, pidPitch, pidYaw)
178

179 attitudeCounter = 0
180

181 // dropped several redundent if statements
182 cf lib LHS Equals Neg RHS( yawRateDesired, eulerYawDesired )
183

184 controllerCorrectRatePID(
185 ∗gyro,
186 ∗rollRateDesired, ∗pitchRateDesired, ∗yawRateDesired,
187 actuatorRoll, actuatorPitch, actuatorYaw,
188 pidRollRate, pidPitchRate, pidYawRate
189 )
190

191 cf lib commanderGetThrust(actuatorThrust)
192

193 if((∗actuatorThrust) > 0):
194 distributePower(∗actuatorThrust, ∗actuatorRoll, ∗actuatorPitch, −(∗actuatorYaw))
195 else:
196 distributePower(0, 0, 0, 0)
197 controllerResetAllPID(pidArray)
198

199 //========= END LOOP =============
200

201 //=====
202 method distributePower(int thrust, int roll, int pitch, int yaw): // takes uint16
203 int motorPowerM1 = limitThrust(thrust + pitch + yaw)
204 int motorPowerM2 = limitThrust(thrust − roll − yaw)
205 int motorPowerM3 = limitThrust(thrust − pitch + yaw)
206 int motorPowerM4 = limitThrust(thrust + roll − yaw)
207
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208 cf lib motorsSetRatio(/∗MOTOR M1∗/0, motorPowerM1)
209 cf lib motorsSetRatio(/∗MOTOR M2∗/1, motorPowerM2)
210 cf lib motorsSetRatio(/∗MOTOR M3∗/2, motorPowerM3)
211 cf lib motorsSetRatio(/∗MOTOR M4∗/3, motorPowerM4)
212

213 //=====
214 method limitThrust(int v) => int: // converts an uint32 to a uint16
215 int value = v
216 int uint16 Max = 65535
217 if(value > uint16 Max):
218 value = uint16 Max
219 else if(value < 0):
220 value = 0
221 return value
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Appendix F

Whiley generated C code for
stabilizer.c

This is the output from the Whiley to C compiler, the input was stabilizer.wyil—the Whiley
bytecode for stabilizer.whiley.

1 #define LIBRARY TESTING false
2

3 #include <stdio.h>
4 #include <stdbool.h>
5

6 #define STRINGMAX 10 // used in snprint functions
7 #define real float // can be changed to suit application
8 #include ”stm32f10x conf.h”
9 #include <math.h>

10 #include ”FreeRTOS.h”
11 #include ”task.h”
12 #include ”led.h”
13 #include ”motors.h”
14 #include ”task.h”
15 #include ”system.h”
16 #include ”stabilizer.h”
17 #include ”commander.h”
18 #include ”sensfusion6.h”
19 #include ”param.h”
20 #include ”imu.h”
21 #include ”log.h”
22 #include ” whiley/mattCompiler.h”
23 #include ” whiley/mattCompiler library.c”
24 #include ” whiley/cf Lib.c”
25

26 typedef struct {
27 real deriv;
28 real desired;
29 real dt;
30 real error;
31 real iLimit;
32 real iLimitLow;
33 real integ;
34 real kd;
35 real ki;
36 real kp;
37 real outD;
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38 real outI;
39 real outP;
40 real prevError;
41 } PidObject;
42

43 bool stabilizerTest ( void );
44 void stabilizerInit ( void );
45 void stabilizerTask ( void );
46 void distributePower ( int, int, int, int );
47 int limitThrust ( int );
48

49 void controllerInit ( PidObject∗∗ );
50 bool controllerTest ( void );
51 void controllerCorrectRatePID ( real∗, real, real, real, int∗, int∗, int∗, PidObject∗, PidObject∗, PidObject∗ );
52 void controllerCorrectAttitudePID ( real, real, real, real, real, real, real∗, real∗, real∗, PidObject∗, PidObject∗, PidObject∗ );
53 void controllerResetAllPID ( PidObject∗∗ );
54

55

56 bool stabilizerTest (void){
57 bool a1 = true;
58 bool a3 = true;
59 if ( a1 == a3 ) { goto label0; };
60 goto label1;
61 label0: ;
62 bool a4 = motorsTest ( );
63 bool a5 = true;
64 if ( a4 == a5 ) { goto label2; };
65 label1: ;
66 bool a6 = false;
67 goto label3;
68 label2: ;
69 a6 = true;
70 label3: ;
71 bool a8 = true;
72 if ( a6 == a8 ) { goto label4; };
73 goto label5;
74 label4: ;
75 bool a9 = imu6Test ( );
76 bool a10 = true;
77 if ( a9 == a10 ) { goto label6; };
78 label5: ;
79 bool a11 = false;
80 goto label7;
81 label6: ;
82 a11 = true;
83 label7: ;
84 bool a13 = true;
85 if ( a11 == a13 ) { goto label8; };
86 goto label9;
87 label8: ;
88 bool a14 = sensfusion6Test ( );
89 bool a15 = true;
90 if ( a14 == a15 ) { goto label10; };
91 label9: ;
92 bool a16 = false;
93 goto label11;
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94 label10: ;
95 a16 = true;
96 label11: ;
97 bool a18 = true;
98 if ( a16 == a18 ) { goto label12; };
99 goto label13;

100 label12: ;
101 bool a19 = controllerTest ( );
102 bool a20 = true;
103 if ( a19 == a20 ) { goto label14; };
104 label13: ;
105 bool a21 = false;
106 goto label15;
107 label14: ;
108 a21 = true;
109 label15: ;
110 return a21;
111 }
112

113 void stabilizerInit (void){
114 bool a0 = isStabilizerInit ( );
115 bool a1 = true;
116 if ( a0 == a1 ) { goto label16; };
117 goto label17;
118 label16: ;
119 return;
120 label17: ;
121 motorsInit ( );
122 imu6Init ( );
123 sensfusion6Init ( );
124 void (∗a2)() = &stabilizerTask;
125 char ∗ a3 = ”STABILIZER”;
126 int a4 = 200;
127 int a5 = 0;
128 int a6 = 2;
129 int a7 = 0;
130 cf lib xTaskCreate ( a2, a3, a4, a5, a6, a7 );
131 return;
132 }
133

134 void stabilizerTask (void){
135 real a1 = 0.0;
136 real a2 = 0.0;
137 real a3 = 0.0;
138 real a4[3];
139 a4[0] = a1;
140 a4[1] = a2;
141 a4[2] = a3;
142 real ∗a5 = &(a4[0]);
143 real a7 = 0.0;
144 real a8 = 0.0;
145 real a9 = 0.0;
146 real a10[3];
147 a10[0] = a7;
148 a10[1] = a8;
149 a10[2] = a9;

59



150 real ∗a11 = &(a10[0]);
151 real a13 = 0.0;
152 real a14 = 0.0;
153 real a15 = 0.0;
154 real a16[3];
155 a16[0] = a13;
156 a16[1] = a14;
157 a16[2] = a15;
158 real ∗a17 = &(a16[0]);
159 real a19 = 0.0;
160 real ∗a20 = &a19;
161 real a22 = 0.0;
162 real ∗a23 = &a22;
163 real a25 = 0.0;
164 real ∗a26 = &a25;
165 real a28 = 0.0;
166 real ∗a29 = &a28;
167 real a31 = 0.0;
168 real ∗a32 = &a31;
169 real a34 = 0.0;
170 real ∗a35 = &a34;
171 real a37 = 0.0;
172 real ∗a38 = &a37;
173 real a40 = 0.0;
174 real ∗a41 = &a40;
175 real a43 = 0.0;
176 real ∗a44 = &a43;
177 char ∗ a46 = ”ANGLE”;
178 char ∗a47 = a46;
179 char ∗ a49 = ”ANGLE”;
180 char ∗a50 = a49;
181 char ∗ a52 = ”ANGLE”;
182 char ∗a53 = a52;
183 int a55 = 0;
184 int ∗a56 = &a55;
185 int a58 = 0;
186 int ∗a59 = &a58;
187 int a61 = 0;
188 int ∗a62 = &a61;
189 int a64 = 0;
190 int ∗a65 = &a64;
191 int a67 = 0;
192 real a70 = 0.0;
193 real a71 = 0.0;
194 real a72 = 0.0;
195 real a73 = 0.0;
196 real a74 = 0.0;
197 real a75 = 0.0;
198 real a76 = 0.0;
199 real a77 = 0.0;
200 real a78 = 0.0;
201 real a79 = 0.0;
202 real a80 = 0.0;
203 real a81 = 0.0;
204 real a82 = 0.0;
205 real a83 = 0.0;

60



206 PidObject a84 = { a70, a71, a72, a73, a74, a75, a76, a77, a78, a79, a80, a81, a82, a83 };
207 PidObject ∗a85 = &a84;
208 real a87 = 0.0;
209 real a88 = 0.0;
210 real a89 = 0.0;
211 real a90 = 0.0;
212 real a91 = 0.0;
213 real a92 = 0.0;
214 real a93 = 0.0;
215 real a94 = 0.0;
216 real a95 = 0.0;
217 real a96 = 0.0;
218 real a97 = 0.0;
219 real a98 = 0.0;
220 real a99 = 0.0;
221 real a100 = 0.0;
222 PidObject a101 = { a87, a88, a89, a90, a91, a92, a93, a94, a95, a96, a97, a98, a99, a100 };
223 PidObject ∗a102 = &a101;
224 real a104 = 0.0;
225 real a105 = 0.0;
226 real a106 = 0.0;
227 real a107 = 0.0;
228 real a108 = 0.0;
229 real a109 = 0.0;
230 real a110 = 0.0;
231 real a111 = 0.0;
232 real a112 = 0.0;
233 real a113 = 0.0;
234 real a114 = 0.0;
235 real a115 = 0.0;
236 real a116 = 0.0;
237 real a117 = 0.0;
238 PidObject a118 = { a104, a105, a106, a107, a108, a109, a110, a111, a112, a113, a114, a115, a116, a117 };
239 PidObject ∗a119 = &a118;
240 real a121 = 0.0;
241 real a122 = 0.0;
242 real a123 = 0.0;
243 real a124 = 0.0;
244 real a125 = 0.0;
245 real a126 = 0.0;
246 real a127 = 0.0;
247 real a128 = 0.0;
248 real a129 = 0.0;
249 real a130 = 0.0;
250 real a131 = 0.0;
251 real a132 = 0.0;
252 real a133 = 0.0;
253 real a134 = 0.0;
254 PidObject a135 = { a121, a122, a123, a124, a125, a126, a127, a128, a129, a130, a131, a132, a133, a134 };
255 PidObject ∗a136 = &a135;
256 real a138 = 0.0;
257 real a139 = 0.0;
258 real a140 = 0.0;
259 real a141 = 0.0;
260 real a142 = 0.0;
261 real a143 = 0.0;
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262 real a144 = 0.0;
263 real a145 = 0.0;
264 real a146 = 0.0;
265 real a147 = 0.0;
266 real a148 = 0.0;
267 real a149 = 0.0;
268 real a150 = 0.0;
269 real a151 = 0.0;
270 PidObject a152 = { a138, a139, a140, a141, a142, a143, a144, a145, a146, a147, a148, a149, a150, a151 };
271 PidObject ∗a153 = &a152;
272 real a155 = 0.0;
273 real a156 = 0.0;
274 real a157 = 0.0;
275 real a158 = 0.0;
276 real a159 = 0.0;
277 real a160 = 0.0;
278 real a161 = 0.0;
279 real a162 = 0.0;
280 real a163 = 0.0;
281 real a164 = 0.0;
282 real a165 = 0.0;
283 real a166 = 0.0;
284 real a167 = 0.0;
285 real a168 = 0.0;
286 PidObject a169 = { a155, a156, a157, a158, a159, a160, a161, a162, a163, a164, a165, a166, a167, a168 };
287 PidObject ∗a170 = &a169;
288 PidObject ∗a178[6];
289 a178[0] = a85;
290 a178[1] = a102;
291 a178[2] = a119;
292 a178[3] = a136;
293 a178[4] = a153;
294 a178[5] = a170;
295 controllerInit ( a178 );
296 int a180 = 0;
297 int a181 = 3;
298 cf lib vTaskSetApplicationTaskTag ( a180, a181 );
299 systemWaitStart ( );
300 int a182 = cf lib xTaskGetTickCount ( );
301 loop start label18: ;
302 goto label19;
303 label19: ;
304 int a185 = 2;
305 int a183 = cf lib vTaskDelayUntil ( a182, a185 );
306 a182 = a183;
307 cf lib imu9Read ( a5, a11, a17 );
308 bool a189 = imu6IsCalibrated ( );
309 bool a190 = true;
310 if ( a189 == a190 ) { goto label20; };
311 goto label21;
312 label20: ;
313 commanderGetRPY ( a29, a32, a35 );
314 cf lib commanderGetRPYType ( a47, a50, a53 );
315 int a198 = 1;
316 int a199 = a67 + a198;
317 a67 = a199;
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318 int a201 = 2;
319 if ( a199 < a201 ) { goto label22; };
320 real a203 = 1.0;
321 real a204 = 500.0;
322 real a205 = 2.0;
323 real a206 = a204 / a205;
324 real a207 = a203 / a206;
325 cf lib sensfusion6UpdateQ ( a5, a11, a207 );
326 sensfusion6GetEulerRPY ( a20, a23, a26 );
327 real a215 = ∗a20;
328 real a217 = ∗a23;
329 real a219 = ∗a26;
330 real a221 = ∗a29;
331 real a223 = ∗a32;
332 real a225 = ∗a35;
333 real a226 = −a225;
334 controllerCorrectAttitudePID ( a215, a217, a219, a221, a223, a226, a38, a41, a44, a136, a153, a170 );
335 int a233 = 0;
336 a67 = a233;
337 label22: ;
338 cf lib LHS Equals Neg RHS ( a44, a35 );
339 real ∗ a237 = a5;
340 real a239 = ∗a38;
341 real a241 = ∗a41;
342 real a243 = ∗a44;
343 controllerCorrectRatePID ( a237, a239, a241, a243, a59, a62, a65, a85, a102, a119 );
344 cf lib commanderGetThrust ( a56 );
345 int a252 = ∗a56;
346 int a253 = 0;
347 if ( a252 <= a253 ) { goto label23; };
348 int a255 = ∗a56;
349 int a257 = ∗a59;
350 int a259 = ∗a62;
351 int a261 = ∗a65;
352 int a262 = −a261;
353 distributePower ( a255, a257, a259, a262 );
354 goto label21;
355 label23: ;
356 int a263 = 0;
357 int a264 = 0;
358 int a265 = 0;
359 int a266 = 0;
360 distributePower ( a263, a264, a265, a266 );
361 controllerResetAllPID ( a178 );
362 label21: ;
363 goto loop start label18;
364

365 return;
366 }
367

368 void distributePower ( int a0, int a1, int a2, int a3 ){
369 int a8 = a0 + a2;
370 int a10 = a8 + a3;
371 int a5 = limitThrust ( a10 );
372 int a15 = a0 − a1;
373 int a17 = a15 − a3;
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374 int a12 = limitThrust ( a17 );
375 int a22 = a0 − a2;
376 int a24 = a22 + a3;
377 int a19 = limitThrust ( a24 );
378 int a29 = a0 + a1;
379 int a31 = a29 − a3;
380 int a26 = limitThrust ( a31 );
381 int a32 = 0;
382 cf lib motorsSetRatio ( a32, a5 );
383 int a34 = 1;
384 cf lib motorsSetRatio ( a34, a12 );
385 int a36 = 2;
386 cf lib motorsSetRatio ( a36, a19 );
387 int a38 = 3;
388 cf lib motorsSetRatio ( a38, a26 );
389 return;
390 }
391

392 int limitThrust ( int a0 ){
393 int a4 = 65535;
394 if ( a0 <= a4 ) { goto label24; };
395 a0 = a4;
396 goto label25;
397 label24: ;
398 int a9 = 0;
399 if ( a0 >= a9 ) { goto label25; };
400 int a10 = 0;
401 a0 = a10;
402 label25: ;
403 return a0;
404 }
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