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Abstract
Safe parallelisation of object-oriented programs requires static
guarantees about the shape and/or intended usage of reachable
objects. For example, transitively immutable objects lend themselves
naturally to concurrent access. However, parallelising tasks which
potentially mutate reachable objects is more challenging. One
approach to avoiding race conditions is to ensure the reachable
object graphs of any concurrently executing tasks are disjoint.
Numerous systems have been developed which provide guarantees
of this kind (e.g. ownership types, regions, balloons, etc).

In this paper, we build on the work of Almeida who developed
balloons as a mechanism for providing strong encapsulation. Our
approach is closely related to the recent work of Gordon et al. who
developed a system for safe parallelisation based on isolation (i.e.
balloons). Their system can safely parallelise code which mutates
reachable objects. However, their system also relies on the use of
destructive field reads, which go against the natural object-oriented
style. Our system brings together the ideas of balloons, immutability
and lent references to enable safe parallelisation over mutable data
without requiring destructive field reads.

1. Introduction
Developing a system for parallelising object-oriented programs is a
challenging problem. Naturally, one desires that such a system be
safe — that is, concurrently executing tasks should be guaranteed
to either: not access shared mutable state, or only access shared
mutable state through appropriate protection mechanisms (e.g. locks,
transactions, etc). The latter case is complicated significantly by the
potential for deadlock. In this paper, we are concerned with the
former case, and our approach employs type modifiers to statically
guarantee disjointness of reachable object graphs. We leave open the
question of whether parallelisation is done automatically or by hand
and, instead, simply provide a mechanism which could plausibly
underpin either approach.

One way to ensure concurrent tasks do not access shared mutable
state is to require that they only access immutable state. A significant
body of work exists on developing immutability systems for object-
oriented languages (see e.g. [15, 30, 32, 33]). Such systems permit
various modifiers on class declarations and/or reference types. For
example, classes can be explicitly declared as immutable, thereby
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prohibiting their instances from being mutated at all. Likewise,
object reference types can be annotated readonly to indicate that the
referenced object cannot be mutated through that reference [5], or
objects themselves can be marked as immutable objects prohibiting
modification via any reference [32, 33].

Systems based on immutability are very restrictive as they do
not permit concurrent tasks which modify mutable state. Alterna-
tive approaches, based on ownership (e.g. [8, 14, 20, 23, 26]) or
regions [6, 17, 31], have been developed which, instead, allow con-
currently executing tasks to modify mutable state provided that state
is disjoint between tasks (i.e. not shared mutable state).

1.1 Ownership
Ownership types (e.g. [1, 8, 12, 14, 26, 33]), provide strong
guarantees about when and where aliasing is permitted between
objects, and have found use in areas such as: parallel and concurrent
systems [7, 8], specification languages [4, 21], real-time systems [3,
25], and more. Such systems operate by annotating types of the
underlying language. For example:
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p 1 public class Shape {

2 private @Owned List<Point> points;
3 ...
4 }

In an ownership system adopting the ownership-as-dominators
protocol (e.g. [8, 12, 14, 26]), the @Owned qualifier above indicates
that every Shape instance owns the List<Point> object referred
to by points — so, the only references to the List<Point>
object are from the Shape itself. The @Owned qualifier also applies
transitively, meaning that objects owned by a Point in points are
also owned by the Shape. Thus, we can be sure that the objects
owned (either directly or indirectly) by two distinct Shape objects,
s1 and s2, are disjoint. Unfortunately, we cannot say anything about
objects which are not owned by s1 and s2 and, hence, their reachable
object graphs may overlap.

Ownership systems have been used successfully in the past for
safe parallelisation. Boyapati et al. developed Safe Java [8] which
itself extended their earlier system, PRFJ [7]. Safe Java employs
an ownership type system to statically eliminate dead-locks and
data-races. Dead-locks are prevented by requiring that locks are
obtained in the order implied by the ownership tree, whilst data-
races are prevented by ensuring that all mutated data is thread-local.
In the latter, a special mechanism is provided for safely transferring
data between threads. From our perspective, the critical feature of
Safe Java is that it allows functions to safely operate on distinct
instances (e.g. of Shape) in parallel, even if they mutate them.
However, at the same time, it has some signification limitations:
firstly, since parallelism can be expressed only at the thread level, it is
rather coarse-grained; secondly, the use of ownership in this manner
mandates a strict tree structure on the object graph and, hence, code
executing over arbitrary object graphs cannot be parallelised.
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1.2 Balloons
Whilst ownership systems provide important guarantees needed for
safe parallelisation, it is still not sufficient1. The key difficulty is
that deep ownership systems provide no mechanism for determining
whether two objects are distinct. Existing systems which employ
unique types (e.g. [1, 9–11, 13, 24]) do, however, provide such
guarantees. For example:

U
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s 1 class Tree {

2 private @Unique Tree left;
3 private @Unique Tree right;
4 int data;
5 }

The @Unique modifier provides strong guarantees: firstly, that
the objects referred to by left and right are distinct (i.e.
left != right); and, secondly, that no other heap reference
exists to the object referred to by left (resp. right). These guar-
antees, taken together, are sufficient to allow code executing on the
left tree to be safely executed in parallel with code executing on
the right tree. Unfortunately, whilst unique types can enable safe
parallelisation [29] they are, like immutability, also very restrictive.
In particular, they enforce a strict tree structure on the object graph
and, hence, do not support safe parallelisation across arbitrary
object graphs.

The early work of Almeida [2] introduced the concept of bal-
loons and, since then, others have used for solving a variety of
problems [15, 16, 19, 29]. We can think of balloons as bringing
uniqueness and ownership together to provide strong encapsulation
guarantees which are, as it turns out, ideally suited for safe paral-
lelisation. Having a balloon reference guarantees that you are the
only holder of a balloon reference to this object (although other non-
balloon references may exist). The object referred to by a balloon
reference, called the root, uniquely identifies the balloon. Specifi-
cally, all mutable objects reachable from the root are “inside” the
balloon, whilst all others (except the root) are “outside”. The root,
then, acts as the unique gateway to the balloon and references from
objects “outside” to those “inside” are prohibited.

Whilst Almeida did not consider safe parallelisation as a use-
case for his balloons, others have since explored this connection.
In particular, recent work of Gordon et al. [16] is strongly related
to our approach. Their system combines isolated types (a.k.a
balloons) with readable (i.e. read-only) and immutable reference
types. These types enable safe parallelism and essentially bring
the concepts of deep ownership, unique types and immutability
together. Their system is both elegant and powerful and can, for
example, safely describe the construction of cyclic immutable object
structures. Furthermore, isolated types can be safely converted
to immutable or writeable and back again if required. One
important aspect of this approach is that, in order to preserve
the strong encapsulation property that isolated provides, their
system employs destructive field reads. That is, in order to read
an isolated value from an object field into a stack location, the
destructive field read operation automatically assigns null to the field
in order to prevent two references to the same object.

1.3 Contributions
In this paper we introduce Balloon Immutable Java (BI-JAVA), a
language that supports aliasing and mutability restrictions that aid
parallelisation. Like the work of Gordon et al. [16], this brings ideas
from deep ownership, uniqueness and immutability together into
a coherent framework. Like them, we support immutable, balloon
and read-only references, as well as type promotion (referred to
as recovery in [16]). Our system is comparable to their work, but

1 Indeed [8] does not rely on ownership alone, but leverages other paralleli-
sation constructs.

provides additional flexibility by incorporating the well-known idea
of lent [1] (or borrowed [19, 22]) references into the balloon system.

Importantly, BI-JAVA does not employ destructive field reads to
maintain the strong encapsulation property which are extreme and,
we argue, lead to a non-intuitive system; BI-JAVA leverages @Lent
modifiers to allow flexible usage of balloons.

The aim of this paper is to present the main ideas behind BI-JAVA
— we do not present any formalisation or proof of soundness. A
preliminary formalisation and soundness proof for BI-JAVA, along
with additional discussion, is available as a technical report [28].

Organisation. The remainder of this paper is organised as follows.
In §2, we introduce the main concepts in BI-JAVA and, in particular,
highlight our novel contributions. In §3, we discuss in more detail
the meaning of the various type modifiers used in BI-JAVA, and
clarify some of the more complex issues. In §4 we discuss how our
work can be used for automatic parallelisation. In §5, we briefly
discuss related work and, finally, in §6 we conclude.

2. Overview of BI-JAVA
We now introduce the main ideas behind BI-JAVA through a se-
quence of examples, and consider how they could be safely paral-
lelised. Our goal is to present the novel contributions of BI-JAVA
over related work (notably that of Gordon et al. [16]).

2.1 Running Example
In BI-JAVA, a @Balloon reference is guaranteed to be the only
@Balloon reference to that object. Consider the following example
which consists of a Tree class implementing a binary tree, and
a sum() function which traverses a Tree, summing the data
value at each node and caching the sum for each subtree to avoid
recomputation:
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1 class Tree {
2 int data;
3 Integer cache
4 @Balloon Tree left;
5 @Balloon Tree right;
6 ...
7 }
8

9 int sum(Tree t) {
10 if(t == null) { return 0; }
11 if(t.cache == null) {
12 t.cache = t.data + sum(t.left) + sum(t.right);
13 }
14 return t.cache;
15 }

Now, suppose we wish to parallelise this code by allowing subtrees
to be summed in parallel. Observe that, since sum() mutates
the object graph, an approach to safe parallelisation based on
immutability is not applicable.

The calls to sum(t.left) and sum(t.right) can be safely
executed in parallel, provided that the reachable object graphs for
the left and right trees are disjoint. This is exactly the property
enforced by the @Balloon modifier, so the above calls can be safely
parallelised in our balloon system (and that of Gordon et al.). At
this stage, it should be noted that we are considering a subset of
Java where static (i.e. global) variables are prohibited — this helps
ensure that a function can only access parts of the heap which are
reachable through the given parameters (including via the implicit
this parameter).

A subtle aspect of our example is that, by using e.g. t.left as a
parameter to sum(), we are placing a reference to a balloon on the
stack. This may appear to break the invariant stated at the beginning
of §2.1 — namely, that a @Balloon reference is guaranteed to be
the only @Balloon reference to that object. However, this is not
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the case because a reference which happens to refer a balloon root
is not the same as a @Balloon reference. More concretely, since
the parameter for sum() is unqualified, the reference placed on
the stack is not considered a @Balloon reference (rather, it is a
general mutable reference). In contrast, if the method was declared
as sum(@Balloon Tree), then there would be a violation and our
system would report an error.

2.2 Lent References
Reading @Balloon references from the heap onto the stack presents
a challenge for any balloon-oriented system, such as that presented
here or the work of Gordon et al. [16]. Let us consider a method
for performing an in-place subtraction of one Tree from another,
presented in the system of Gordon et al.:

1 void sub(isolated Tree t1, isolated Tree t2) {
2 if(t1 == null || t2 == null) { return; }
3 t1.data -= t2.data;
4 sub(t1.left,t2.left);
5 sub(t1.right,t2.right);
6 }

Recall the isolated qualifier is equivalent to our @Balloon
qualifier. Now, suppose we want to execute the two recursive calls
to sub() in parallel. The system of Gordon et al. enables this
although, due to the requirement for a destructive field read, this
behaves in an unexpected manner. That is, since e.g. parameter t1
must be a isolated reference, there can be no other isolated
references to that object at that point — including in the parent node.
Therefore, on executing sub(t1.left,t2.left) an isolated
reference is read from field t1.left (resp. t2.left) and that field
is then implicitly assigned null to preserve the isolated invariant
(i.e. that no two isolated references exist to the same object). In
other words, traversing isolated structures also destroys them —
meaning after calling sub() above, left==null and right==null
for every node that was reachable from either t1 or t2. To fix this,
we can manually rebuild the structure as the recursion unwinds:

1 isolated Tree sub(isolated Tree t1,
2 isolated Tree t2) {
3 if(t1 == null || t2 == null) { return t1; }
4 t1.data -= t2.data;
5 t1.left = sub(t1.left,t2.left);
6 t1.right = sub(t1.right,t2.right);
7 return t1;
8 }

This now correctly computes the subtraction of t2 from t1. How-
ever, the side-effect that t2 is destroyed remains (i.e. left==null
and right==null for all nodes reachable from t2, including t2)
and, to fix this issue properly, we must additionally rebuild t2 as
the stack unwinds (e.g. by returning a pair of tree nodes).

We believe that the use of destructive field reads does not yield an
intuitive system. Unfortunately, this is the only mechanism provided
for parallelising functions which mutate state (such as above) in the
system of Gordon et al. To address this limitation, BI-JAVA adopts a
more relaxed approach to avoid destructive field reads. In BI-JAVA,
we can express the above example as follows:
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1 void sub(@Lent Tree t1, @Lent Tree t2) {
2 if(t1 == null || t2 == null) { return; }
3 t1.data -= t2.data;
4 sub(t1.left,t2.left);
5 sub(t1.right,t2.right);
6 }

Here, the @Lent modifier is similar, in spirit, to the @Balloon
modifier but with fewer guarantees. Specifically: multiple @Lent
references may reference the same object, but this is guaranteed
to be the root of a balloon; and, at most one @Balloon reference

may exist which refers to the same object as one (or more) @Lent
references. Intuitively, instead of providing the destructive field read
as the mechanism for moving @Balloon references from the heap
onto the stack, we provide a more permissive mechanism where
@Balloon references can be lent temporarily. This is similar, in
many ways, to the notion of borrowed [19, 22] or lent [1] references.

In BI-JAVA, the above calls to sub(t1.left,t2.left) and
sub(t1.right,t2.right) can be safely executed in parallel
without using destructive field reads (i.e. without destroying them as
happens in the system of Gordon et al.). This is the key contribution
of our system over previous work. We will now describe in more
detail the process for safely parallelising calls over @Lent references
in BI-JAVA.

2.3 Safe Parallelisation over Lent References
Whilst @Lent references provide a more permissive solution than
destructive field reads, they also provide fewer guarantees than
@Balloon references. As such, care must be taken when parallelis-
ing code over them. In particular, we do not have a guarantee that
two @Lent references are distinct, although we do know each points
to the root of a balloon.

To be able to execute the calls sub(t1.left,t2.left) and
sub(t1.right,t2.right) safely in parallel we must dynami-
cally establish that their reachable objects are disjoint. Fortunately,
however, we know both t1 and t2 are balloon roots (since this
is guaranteed by @Lent). Therefore, we need only to check that
they reference different objects (i.e. that t1!=t2) to know that their
entire reachable graphs are disjoint. This is the key advantage of
using a @Lent reference over a normal mutable (i.e. unqualified)
reference, since the latter would require traversing the reachable
object graphs to establish disjointness.

Reworking the sub() method to include this dynamic check
yields the following:
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1 void sub(@Lent Tree t1, @Lent Tree t2) {
2 if(t1 == null || t2 == null) { return; }
3 t1.data -= t2.data;
4 if(t1 == t2) {
5 // execute sequentially as before
6 sub(t1.left,t2.left);
7 sub(t1.right,t2.right);
8 } else {
9 // safe to execute in parallel here

10 sub(t1.left,t2.left) || sub(t1.right,t2.right);
11 } }

Here, we use the vertical bars (i.e. ||) to indicate statements
which can be executed in parallel. Note, however, that this is not
part of the syntax for BI-JAVA and is only used here to highlight
where it is safe to parallelise code. Furthermore, whilst we have
hand-implemented the necessary dynamic check in this example, it
could (in principle) be inserted automatically by a parallelisation
system (see §4 for more discussion of this).

Finally, note that there are cases when one can avoid using
a dynamic check altogether. In particular, when the types of
the @Lent references are incompatible (e.g. @Lent String and
@Lent Integer) then we know statically they reference distinct
objects.

3. A Closer Look at BI-Java
BI-JAVA provides four type qualifiers for references: @Balloon,
@Lent, @Immutable and @Readonly. In this section, we examine
the semantics of these qualifiers in more detail by giving more
precise, though still informal, descriptions. We also discuss a number
of subtle found in BI-JAVA. For a more formal discussion of their
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semantics, the reader is referred to our preliminary formalisation of
BI-JAVA [28].

3.1 Understanding Balloons
In BI-JAVA, every object can be classified as immutable or mutable,
where immutable objects cannot be modified. This classification
extends to references as follows:

• An immutable reference (identified with the @Immutable
qualifier) is guaranteed to refer to an immutable object. That is,
an object which henceforth cannot be modified. Note that, since
a mutable object can be promoted to an immutable object, it is
possible the object was modified at some point in the past (this
is discussed further below).

• A mutable reference is any unqualified reference. Such ref-
erences adopt the conventional meaning of a Java reference,
whereby the referents may be mutated freely. Thus, a normal
(i.e. completely unqualified) Java program is a valid BI-JAVA
program, where every reference is mutable — and, hence, where
we have no additional information to aid safe parallelisation.

• A balloon reference (identified by the @Balloon qualifier)
refers to a mutable object o called the root. All mutable objects
reachable from r are inside the balloon, whilst all others are
outside. The balloon invariant states that there exists no other
balloon reference to o and, furthermore, that no object inside the
balloon refers to a mutable object outside of it.

As one can see, this distinction between immutable and mutable
references is an important building block for BI-JAVA because a
balloon only contains mutable objects, never immutable objects.
Indeed, a balloon consists of all mutable objects reachable from the
balloon reference and, thus, the balloon reference uniquely identifies
the balloon.

We now clarify several subtle points arising from the description
of a balloon reference:

1. No two balloon references (either in the heap or on the stack)
refer to the same object. However, given a balloon reference,
there may exist other (non-balloon) references to the same object.
Whilst this may seem counter-intuitive, it is an important product
of the balloon invariant. In particular, we can only be certain that
the reachable object graphs for two references are disjoint if they
are both balloon references.

2. Objects inside the balloon may refer to immutable objects
outside of it. Since we can always safely parallelise across
immutable data, there is no reason to prohibit two balloons
from sharing immutable objects. Gordon et al. [16] also take this
approach.

3. A balloon may itself contain other balloons. Whilst a balloon
root cannot be the root of another balloon, other objects inside
a balloon can be balloon roots. This yields a strict dominance
tree of nested balloons, similar to that imposed by ownership
systems.

Finally, we detail the remaining reference kinds in BI-JAVA:

• A lent reference (identified by the @Lent qualifier) refers
to a balloon root. Observe that lent references do not break
the balloon invariant, since that is only applied to @Balloon
references. Multiple lent references may refer to the same
balloon root, which means we cannot tell whether two lent
references refer to disjoint graphs. However, as discussed in §2.3,
a single dynamic check is sufficient to determine disjointness.

• A readonly reference (identified by the @Readonly qualifier)
may refer to any object (either immutable or mutable). However,

Lent

Balloon

Immutable

Readonly

Mutable

Arrows:
Subtype
Promotion

Figure 1. Object and reference kinds and possible relationships

as expected, field updates are not permitted through readonly ref-
erences. Readonly references are particularly useful for travers-
ing the contents of a balloon. Additionally, a readonly reference
cannot be assigned to a field.

We have now outlined the various qualifiers found in BI-JAVA. It
remains, however, to consider what restrictions these place on field
access and updates, and what subtyping relationships exist between
them.

3.2 Type Promotion
As with the work of Gordon et al. [16], BI-JAVA offers the ability
to promote a reference of one kind to another. This makes BI-JAVA
a more flexible system. For example, we can create a cyclic data
structure and obtain a balloon reference and then convert it to an
immutable one. This offers a powerful solution to the problem
of creating fully immutable (yet cyclic) object structures (see
e.g. [18, 33]).

Figure 1 presents diagrammatically the possible promotions,
as well as the subtyping relationships. The following example
illustrates the promotion from a mutable to an immutable reference:
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1 class Link {
2 Link next; int data;
3 Link(Link n, int d) {
4 this.next = n; this.data = d;
5 } }
6

7 @Immutable Link createCyclicList() {
8 Link l = new Link(null,0);
9 l.next = l;

10 return l; // mutable reference promoted to immutable
11 }

In this example, a mutable Link is created which is then implicitly
promoted first to a balloon reference and then converted to an
immutable reference. It it safe to do this because the context in which
the Link is created is restricted so that all state reachable within
the function is either immutable or a balloon. In this case, since
createCyclicList() accepts no parameters, there is, in fact, no
state reachable to the function (recall that we ignore global variables
at this stage). In contrast, the following attempt at promotion fails
because the context is not sufficiently restricted:

B
I-

JA
VA

1 @Immutable Link createCyclicList(Link l) {
2 l.next = l;
3 return l; // type error — cannot promote
4 }

The issue above is that, since parameter l is an arbitrary mutable
reference, we cannot ensure that no other references to it exist which,
subsequent to this call, could be used to modify it and, hence, break
the invariant implied by @Immutable.
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An interesting variant which further illustrates the power of
promotion is the following:
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1 Link createCyclicList(Link l) {
2 l.next = l;
3 return l;
4 }
5

6 @Immutable Link createImmutableCyclicList() {
7 // safe to promote from mutable to immutable below
8 return createCyclicList(new Link(null,0));
9 }

Whilst this example appears very similar to the previous one, there
are some subtle differences. In particular, at the point of the call to
createCyclicList() we know exactly what state is being made
available to that function and, hence, what it can possibly modify.
Thus, we can safely promote the result of createCyclicList()
even though it is not safe for that function itself to return an
@Immutable object.

Unfortunately, due to a lack of space, we are unable to further
examine the various promotions given in Figure 1. The reader is
referred to our preliminary formalisation of BI-JAVA [28] which
describes this issue in more depth.

3.3 Value Flow & Assignment
To ensure that the invariants specified by the various qualifiers of
BI-JAVA are properly maintained, care must be taken to properly
restrict the flow of values. For example, value flow must adhere
to the subtyping relationships identified in Figure 1. This implies
that e.g. an @Immutable reference may only be assigned to a field
which is annotated as @Immutable or @Readonly.

In addition to restricting value flow, we must additionally restrict
field assignment as well. In particular, a field assignment e0.f = e1
is permitted if either:

1. the receiver e0 is mutable, and the assigned value is mutable,
@Balloon or @Immutable; or,

2. the receiver e0 is @Lent or @Balloon, and the assigned value
is @Balloon or @Immutable.

The last rule ensures that we are not adding arbitrary references
into a balloon which may refer to things outside of our control (and,
hence, which we cannot logically place into the balloon).

4. Automatic Parallelisation
With our type system, it is possible to automatically add paral-
lelisation as a compiler optimisation. Informally, this requires that
observable behaviour is not changed; to use the terminology of [6]
we can obtain a parallel performance model without altering the
well known sequential semantics model.

To illustrate this idea, we extend the language with fork-join
blocks. These are only added during compilation, and thus are
completely transparent from the point of view of the programmer.
Formally this is a semantics preserving program transformation.

A fork-join block contains a sequences of normal local variable
declarations. We annotate each declaration with a list of dependen-
cies of the form x ifL, where x is a variable initialised earlier in the
same fork-join block and L is a logic expression composed from
the constants true and false, the logical or operation, and the identity
check over variables. A dependency x ifL means that the variable
being initialised depends on the value of x if condition L holds.

Any expression with an empty dependency list can be executed
immediately. An expression with a non empty dependency declara-
tion can be executed either after the dependency is verified to not
hold, or when the variable it depends on has been computed; that is
the flow of parallel execution is regulated by the logic expressions

inside the fork-join blocks. For example,

fo
rk

-j
oi

n

1 fork-join {
2 int x=1+2; []
3 int y=1+2; []
4 int z=x*y; [x if true, y if true]
5 }

Here, the values assigned to x and y do not depend on any other
variables and can be computed in parallel, while z depends on x and
y, so before computing z we have to wait for them to be computed.

Assuming a class C with methods C m(), C k() and int h(C),
we can show a more complex example:

fo
rk

-j
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n

1 C mm(@Lent D p1,@Lent D p2){
2 fork-join {
3 C x=p1.m(); []
4 C y=p2.k(); [x if p1==p2]
5 }
6 return x.h(y);

Again, the value assigned to x does not depend on any other variables
and can be computed immediately, while y depends on x if p1 and
p2 point to the same object, so we have to check if p1==p2 to
determine whether initialisation of y has to await the initialisation
of x:
• If p1 and p2 refer to different objects, we can start executing

that expression in parallel,
• otherwise, we have to wait for the completion of the x expres-

sion.
As a further example, consider:

fo
rk
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n

1 C mm(@Lent D p1,@Lent D p2,@Lent D p3){
2 fork-join {
3 C x=p1.m(); []
4 C y=p2.k(); [x if p1==p2]
5 C z=p3.h(p1); [x if true, y if p3==p2 or p1==p2]
6 }
7 return z;
8 }

Here, computation of y depends on the computation of x if p1==p2,
while the computation of z always depends on x and depends on y if
p3==p2 or p1==p2. Thus, when p1, p2 and p3 are distinct objects,
the computation of x and y can start in parallel, and as soon as the
computation of x ends, the computation over z can start.

Whilst we have explicitly declared dependencies between vari-
ables in our examples above, the intention is that these be automati-
cally determined by the compiler. Whilst the problem of automati-
cally determining such dependencies has been well-studied in the
literature, the BI-JAVA system presents some interesting twists. For
example, immutable or balloon references cannot interfere with any
other, so we only need to consider the other kinds of references.
Similarly, if two expressions only use @Readonly variables, then
there is no dependency between them. Finally, as discussed in §2.3,
we can often avoid the dynamic test for variables with incompatible
types (since they will never be equal). Our technical report [28]
explores how one can automatically compute dependency relations
between expressions, which we would like to investigate further.

Overall, our aim is develop a system where programmers specify
the necessary @Balloon qualifiers, but where the compiler then
infers appropriate fork-join blocks. Of course, the challenge then is
to find the right balance when deciding which fork-join blocks to
actually execute concurrently (i.e. between parallelism which is too
fine-grained versus that which is too coarse-grained). Investigating
this issue is an important direction for future work.

5. Related Work
BI-JAVA builds on the work by Gordon et al. [16] where our
mutable reference is equivalent to their writable; @Immutable is
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equivalent to their immutable; @Readonly is equivalent to their
readable. Additionally, we provide the extra guarantees that a
readonly reference is not going to be stored; @Balloon is equivalent
to isolated and we introduce the @Lent modifiers that removes
the need for destructive reads. Finally, Gordon et al. have the concept
of recovering isolation while we have the similar concept of
promotion.

Another very closely related work is Deterministic Parallel Java
(DPJ) [6]. While our motivation is present in other recent works [27]
few others have chosen to build on top a full encapsulation mech-
anism such as balloons as opposed to a less restrictive and more
flexible ones such as ownership types [23]. DPJ [6] requires a pro-
grammer to think about the parallelisation explicitly and to manually
insert the parallelisation constructs at the appropriate points in the
program. DPJ uses an extended type checker with regions and ef-
fects, and requires explicit manipulation of memory regions. DPJ
provides very strong guarantees, but their type system requires the
programmer to manage many details. As such, we argue the required
type annotations for DPJ are more complex than those for BI-JAVA.
For example, the beginner’s tutorial for DPJ proposes the following:

1 public static <region RN,RA | RN:* # RA:*>
2 Node<RN> makeTree(DPJArray<Body,RA> arr,
3 double leftBound, double rightBound)
4 reads RA:* writes RN:* {...}

Srinivasan and Mycroft [29] define a language where actors
can communicate using object trees. Their approach is similar to
ours, but our @Balloons provide more flexibility with respect to
object trees, indeed Mycroft agrees that using balloons to relax
the constraint of tree shaped messages would be a very interesting
research direction. We believe our approach could inspire similar
relaxation in other approaches allowing safe parallelism.

Finally, recent work by Naden et al. [22] extends Plaid with a
similar set of access permissions to ours so that they can support
borrowing of unique, shared, and immutable objects. Their work
has a much wider scope with respect to BI-JAVA; still one of their
motivations is an ability to detect noninterference of concurrency,
which we believe BI-JAVA achieves.

6. Conclusion
In this paper we have demonstrated how balloons and immutable
objects can be utilised to guarantee when expressions can be
executed in parallel. Our system employs a combination of static
and efficient dynamic checks (e.g. a simple pointer equality). This
is a step towards removing the burden of “thinking in parallel” from
day to day programmers who want to take advantage of modern
multicore architectures.

In the future we plan to extend our work to support a richer
subset of a Java-like language; we are also developing a prototype
implementation of our approach and are planning to perform a user
study evaluating its ease of use in day-to-day programming.
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