VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

VICTORIA UNIVERSITY OF

yosd WELLINGTON
\

TE HERENGA WAKA

School of Engineering and Computer Science
Te Kura Matai Piikaha, Piivorohiko

5\21?12;%2? Tel: +64 4 463 5341
New Zealand Fax: +64 4 463 5045

Internet: office@ecs.vuw.ac.nz
Whiley to TypeScript Transpiler

Thomas Rainford

Supervisor: David ]. Pearce

Submitted in partial fulfilment of the requirements for
Bachelor of Engineering with Honours in Software
Engineering.

Abstract

Whiley is an imperative and functional programming language that supports
Extended Static Checking through formal verification. TypeScript is a gradually
typed programming language that is a superset of JavaScript. The main pur-
pose of TypeScript is to add type safety to the JavaScript language. This project
designed and implemented a Whiley compiler backend plugin for translating
Whiley into TypeScript that can then be compiled into JavaScript to be executed
in the browser. This plugin was evaluated using the existing Whiley compiler
test suite, the WyBench benchmark suite and on real web applications such as
Conway’s Game of Life and Minesweeper.



Contents

1 Introduction
1.1 Contributions . . . . . . . . . . s

2 Background

21 Whiley . ... ...
22 TypeScript . . . .. ...
2.3 Safe & Efficient Gradual Typing for TypeScript . . . . .. ... ... ... ...
2.4 Refinement Types for TypeScript . . . . .. ... ... ... .......
2.5 Checking correctness of TypeScript interfaces for JavaScript libraries . . . . .
3 Design
3.1 Design of Existing Translator . . . .. ... ... .................
3.2 Modifications to Existing Design . . . . .. ... ... ..............
4 Implementation
41 BaseIypes . . . . . . ...
42 UnionType Translation . . . . ... ...... .. ... .. ..........
43 LambdaTranslation . . . . . . . . . . . . e
44 Generic Translation . . . . . . . . . . . e
45 Reference Translation . . . . . . . . . . . . e
4.6 Import Statement Translation . . . .. .. ... ... ... ... .......
4.7 JSRuntime Declarationfile. . . . . . . ... ... ... ... . L.
5 Evaluation
5.1 TestSuite . . . . . . . . . e
51.1 Results . . . . . . . . e
52 WyBenchTests. . . ... ... .. ... .. ... .
521 Results . . . . . . . e
5.3 CaseStudies . . . . . . . . . ..
531 Results . . . . . . . e
6 Conclusions and Future Work
6.1 Conclusion . . . . . . . o e e
6.2 Future Work . . . . . . . . e

N Ul = W W W N

N



Chapter 1

Introduction

The Whiley programming language has been in active development since 2009 and uses
both the imperative and functional programming paradigms [13][15]. Whiley has an aim to
solve the verifying compiler challenge proposed by Prof. Sir Tony Hoare by using extended
static checking to eliminate errors at compile time [2][8]. This challenge was proposed to
minimise the number of disasters caused by software bugs that have claimed lives and
caused substantial financial loss. With a verifying compiler, the correctness of a program can
be checked, highlighting errors before the program is executed which can help to prevent
failures in production. Whiley follows a lineage of similar existing tools which include EC-
S/Java [7], Dafny [9], Spec# [1], Frama-C [4] and Why3 [6]. Software verification is having
a growing impact in industry. For example, the Microsoft research group developed Spec#
as an object-oriented language that includes verification behaviour [1]. Likewise, Amazon
Web Services has incorporated writing formal specifications into their daily work-flow [3].

Whiley provides features for verification that are unique to the language. These include
the ability to write specifications for methods and functions, and the ability for the compiler
to check that a function or method meets its specification. These are achieved in the lan-
guage using pre/post-conditions, data-type invariants and loop invariants. A precondition
is a condition that is checked before a function is executed using the function’s parameters.
A post-condition is a condition that is checked after a function is executed using the func-
tion’s return values. A data-type invariant constrains the specified property of a type. Loop
invariants are properties that hold on entry of a loop, for each iteration of the body and on
exit of the loop [14].

TypeScript is an open-source gradually typed programming language maintained by
Microsoft. It is a superset of JavaScript, meaning a valid JavaScript program is also a valid
TypeScript program. The main purpose of TypeScript is to add type safety to JavaScript
through static typing. TypeScript is a multi-paradigm language employing object-oriented,
functional, generic and imperative paradigms [10]. Type checking can be added to existing
JavaScript libraries through TypeScript declaration files. TypeScript’s popularity has risen
dramatically in the past year. Currently attracting 17 million weekly downloads up from
10 million the previous year, from the popular package manager NPM [12]. Many major
JavaScript packages provide TypeScript types such as React, Vue and Express. Many large
companies have made the transition from JavaScript to TypeScript including Slack, Airbnb
and Google [11]. The main advantage of TypeScript over JavaScript is static typing. This al-
lows for greater readability and IDE features such as auto-completion for a better developer
experience. TypeScript also provides common constructs found in other languages such as
OOP with classes, inheritance, generics, and decorators closely resembling Java code.



Currently, the Whiley compiler has a plugin for transpiling Whiley into JavaScript. This
project developed an extension to the existing plugin which allows valid TypeScript to be
generated instead of JavaScript. This means Whiley can now inter-operate with TypeScript
programs, which as mentioned above, is becoming an increasingly popular alternative lan-
guage to JavaScript. Creating a transpiler allows a user to write a program in Whiley where
they can utilize Whiley’s powerful static checking features. They can then use this code in
front-end and back-end web development with knowledge of any errors in the transpiled
TypeScript program. Also, code from an existing TypeScript codebase can be selectivley
reimplemented in Whiley in order to benefit from static verification.

Through development of this project many challenges have been faced. In particular the
translation of Whiley union types into TypeScript union types. In terms of syntax, these
types are very similar. However, the challenge comes from the difference in the way these
types are tested. In Whiley these type tests are very simple, the is operator in the condition.
In TypeScript such an operator does not exist. Instead, a “type guard” function needs to be
created. These functions consist of a parameter of some type, logic for checking the type in
the body and a type predicate as the return type. This predicate tells the compiler the type
that is expected of the variable passed to the function.

1.1 Contributions

1. A Whiley Compiler plugin was developed that translates Whiley into TypeScript, and
then into JavaScript to be executed in a browser.

2. This plugin is an extension of the existing Whiley2JavaScript plugin which was used
as a starting point for this project.

3. This plugin was initially evaluated with the existing test suite from the Whiley2JavaScript
plugin that was modified to support the new architecture. Several case studies were
carried out that tested the plugin with real applications that run in the browser. Finally,
the plugin was tested using the WyBench test suite.

4. Bugs were found evaluating the plugin on the initial test suite and the WyBench test
suite that have been marked for future work.



Chapter 2

Background

This chapter discusses the Whiley and TypeScript languages as well as related academic
work. Although these papers are not directly related to this project they do have some
relevance and similarities.

2.1 Whiley

The Whiley programming language began development in 2009. The initial goal is to elimi-
nate common errors, such as null dereferences, array-out-of-bounds, divide-by-zero. Whiley
also allows the programmer to write function specifications that are then checked by the
compiler. Verification in Whiley has two aspects: the ability to write specifications for func-
tions and methods; and the ability to check the body of a function or method meets the
required behaviour set by the specification.

Figure 2.1 illustrates a specification for a function that returns the largest of two integers.
The "ensures" keyword is used to declare a post-condition on this function. The first
post-condition says that at least one of the arguments must equal the return value "z".
Therefore, this function must return either the value of "x" or the value of "y". The second
post-condition says that the return value can be no larger than either of the arguments.

[ function max (int x, int y) -> (int 2z) )
ensures x == z || y == z
ensures xXx <= z && y <= z:
if x > y:
return x
else:
return y
& J

Figure 2.1: Whiley function

2.2 TypeScript

TypeScript is a programming language that is a super-set of JavaScript. TypeScript improves
the type safety of JavaScript by adding type annotations and static type checking. The Type-



Script Compiler (tsc) generates JavaScript code as its target which can then execute in the
browser. This compiler also includes features for type-checking and narrowing.

Figure 2.2 shows an example function in TypeScript. The argument "arr" includes a
type annotation of "number []". This tells the compiler that this function will only accept
an argument that is a number array. Furthermore, the function includes a type annotation
for the return type. This tells the compiler that this function must return a value of the type
"number".

s N
function lastIndexOf (arr: number[]): number {

const lastIndex: number = arr.length - 1
return arr[lastIndex]

Figure 2.2: A simple TypeScript function that demonstrates type annotations

TypeScript gives the programmer the ability to create custom types called type declara-
tions that describe the shape of data. TypeScript includes a feature called type manipulation
for creating complex types. Figure 2.3 shows a basic example of type manipulation in Type-
Script. The type "Pick™" creates a type with all specified keys from the given type "T". The
value "pickUser" uses this type "Pick" to create a type that contains the keys "name"
and "age" from the type "User™".

- N

type Pick<T, K extends keyof T> = { [P in K]: T[P] }
type User = {

name: string

address: string

age: number

}

const pickUser: Pick<User, ’'name’ | ’"age’> = {
name: ’'John Smith’,
age: 30
}
& J

Figure 2.3: A basic TypeScript type manipulation example

2.3 Safe & Efficient Gradual Typing for TypeScript

Existing gradually-typed languages such as Dart and TypeScript don’t deal with issues of
scale, code reuse and popular programming design patterns. Gradual typing is a type sys-
tem were type annotations can be omitted and the type of a value is inferred by the compiler.
Gradually-typed languages are easier to write and maintain, but do not prevent type errors
at runtime. A solution to this called Safe TypeScript, is a compiler that achieves soundness
by enforcing stricter static checking and adding runtime checks into the compiled TypeScript
code [16]. This code will then be emitted to a JavaScript file. Safe Typescript is a type-checker
and code generator for a subset of TypeScript such as JavaScript that guarantees type safety



through static and dynamic checks. Safe TypeScript can be used as an extension to the Type-
Script compiler by adding a command-line flag that will enable the Safe TypeScript feature.
The inserted code adds stricter type checking than that found in the TypeScript compiler.

app.ts tsc --safe app.ts
function f(x):number {
return x.f; ‘[ TypeScript parsing ] Syntactic errors
: I
function f(x:any):number { f " h
t £: ] Ty]?eScnpl Static diagnostic
return x.r; type inference -
— - basic type errors
: 3
. - N
function f(x:any):number { Safe TypeScript
return RT.check(RT.Num, type checking Static diagnostics
RT.read(x, "f")); } (& instrumentation ) - inconsistent subtyping
a s - implicit downcast from any
fDP : J' ; ‘ - uninitialized variables
. ) - .
unction f(x) { JavaScript emitting - \'analz)les not i scope
return RT.check(RT.Num, [ G— (tvpe erasure) - unsafe use of this
RT.read(x, "f")); } ~ - o - projecting methods as fields

Figure 2.4: Safe TypeScript Architecture [16]

Figure 2.4 is an example of the TypeScript and Safe TypeScript compilation process. The
process consists of three phases with the third phase being the Safe TypeScript step. This is
essentially the second phase of type checking after the initial type check from the TypeScript
compiler. The third step also illustrates the runtime check code being inserted into the Type-
Script file. This inserted code then remains in the emitted JavaScript code.

This paper’s focus is not on code transpilling, however, it does use translation for trans-
lating TypeScript into Safe TypeScript. This is achieved through the use of an external mod-
ule called "RT” as seen in the above diagram. The Whiley2TypeScript transpiler uses an
external module for various Whiley functions. These functions are then used in the trans-
lated TypeScript code. Although the transpiler is not between two different languages the
transpiler is used to improve the TypeScript language.

2.4 Refinement Types for TypeScript

Another type-checking extension called Refined TypeScript (RSC) adds a refinement type-
system to TypeScript. RSC enables static verification of higher-order, imperative programs.
Higher-order programs use functions, objects and modules as values [18]. An imperative
program uses statements that change a program’s state. The RSC system enables flow-
sensitive typing by translating input programs to an intermediate language in static sin-
gle assignment (SSA) form. Flow-sensitive typing improves type safety and is used, for
example, by the Whiley type system. An intermediate language is used by a compiler to
represent source code. SSA is an intermediate representation that requires that all variables
are assigned once and not defined before their use. RSC supports imperative and dynamic
features of TypeScript including overloading and type reflection [18].

Figure 2.5 shows examples of basic refinement types of RSC. These types closely resem-
ble TypeScript types but with an extra condition added after the property declaration. The
condition is used for static verification so the value set to the property must return the con-
dition as true. For example, the first type, nat, has a property v and a condition 0 <= v.



type nat = {v:number | 0 < v}
type pos = {v:number | @ < v}
type natN<n> = {v:nat | v = n}
type idx<a> = {v:nat | v < len(a)}

Figure 2.5: TypeScript Refinement Types [18]

This says that v must be a value that is greater than or equal to zero. In other words, the
value must be a positive or natural number. This condition would be checked at compile
time by the RSC compiler. These types also closely resemble Whiley types as Whiley also
makes use of type conditions, known in the Whiley language as data-type invariants.

Much like the previous paper, this paper does not focus on code translation but instead
creates an extension to TypeScript to improve the language which requires a translation
method.

2.5 Checking correctness of TypeScript interfaces for JavaScript li-
braries

TypeScript offers support for interacting with existing JavaScript libraries through interface
declarations. This interaction allows for static type-checking of the JavaScript code and auto-
completion. These declarations are contained in a TypeScript declaration file ”.d.ts”. This
paper presents a way of checking the correctness of declaration files by using JavaScript
library code [5].

This declaration file correctness checker operates in three phases

1. Execute the libraries initialization code and extract a snapshot of its state.

2. Check the global object and all reachable objects in the snapshot match the types from
the declaration file using a structural type checking algorithm.

3. Carry out a lightweight static analysis of each library function to check that it matches
its signature in the declaration file.

This paper does not discuss code translational methods, but it does discuss the use
of declaration files and JavaScript libraries. The Whiley2TypeScript transpiler requires a
JavaScript module for executing Whiley functions. A declaration file could be created to
allow for type-checking and auto-completion of these functions in the generated TypeScript
code.



Chapter 3

Design

This chapter discusses the design of the Whiley to TypeScript transpiler. The goal of this
project was to translate Whiley into TypeScript that can be compiled into JavaScript to be
executed in a JavaScript environment. This transpiler is an extension of the existing Whiley
to JavaScript transpiler [17]. This means that an existing architecture is already in place
but needed modifying to support the TypeScript language. These modifications extended
the existing transpiler to output a TypeScript file and, in addition, compile this file into
JavaScript using the command-line TypeScript Compiler (tsc). The main difference from
JavaScript is that TypeScript includes static type-checking. The existing transpiler needs
extending to translate type information between Whiley and TypeScript.

3.1 Design of Existing Translator

The existing Whiley2JavaScript transpiler is a backend plugin for the Whiley compiler. The
outputted IL from the Whiley compiler is passed to the Whiley2JavaScript plugin were it
is translted into a JavaScript IL. This is then translated into JavaScript code and printed to
a file. This file can then be executed in a JavaScript runtime environment. The Whiley to
JavaScript plugin architecture is illustrated in Figure 3.1

The JavaScript IL is represented as an AST (Abstract Syntax Tree). Figure 3.2 shows an
example AST of a variable declaration where the variable "arr" is being assigned to an ar-
ray. When translated into JavaScript code, this IL will look like this; "1et arr = [1,2,3]".

An alternative design to the architecture of the existing Whiley2JavaScript plugin was
considered. This alternative design translated Whiley IL directly into JavaScript code. The
current design translates Whiley IL into a JavaScript IL, and then into JavaScript code. The
reason for choosing the existing design is because it is easier to extend and modify. Fur-
thermore, because TypeScript can be thought of as an extension of JavaScript, the existing
design is an ideal starting place.

The chosen translation method employs an intermediate object structure called an Ab-
stract Syntax Tree (AST). ASTs are common data structures in compilers used to represent
the program code. There are some benefits of using an AST. An AST can store extra informa-
tion about the program, for example, the locations in the code of each element. This allows
for more helpful error messages as they can contain the exact location of the error. In this
transpiler, the AST is a tree-like structure of objects. These objects represent elements of the
TypeScript code that have been translated from Whiley code. This AST is then converted
into a string as TypeScript code. Much of the logic for this was already implemented in the
existing Whiley2JavaScript plugin. However, the TypeScript plugin extends this by adding
type information to the appropriate objects in the AST. Such as functions and variable dec-



larations.

Whiley Compiler 7
Whiley erlll-ley
Parse ;ygfk
JavaScript
Java
Nashorn Script Print || JavaScript /
File IL
% TypeScript :
; Java |
% Nashorn Scl’ipt tsc \ Print |__| TypeSCript/ i
| File IL i

Figure 3.1: This diagram is split into two sections. The top section is the basic architecture of
the Whiley compiler. The bottom section is the architecture of the Whliey2JavaScript plugin
and the Whiley2TypeScript plugin highlighted with a dotted box.

3.2 Modifications to Existing Design

A number of modifications to the existing architecture are required. The JavaScript IL
needed extending to include type information to the necessary elements such as functions,
variables etc. The transpilation process and the file printer were modified to accommodate
the changes to the JavaScript IL. The transpilation process needs to translate Whiley types
into TypeScript types, and the file printer needs to be able to read the TypeScript IL and
print the new type information. The modified architecture is illustrated in Figure 3.1

Figure 3.2 demonstrates an AST of the TypeScript IL. This example shows an extension
of a JavaScript AST. This extension is illustrated as a type property on the “Variable Decla-
ration”. This type property contains the type information of this variable. The type for this
variable is an array type. This array type has a property that describes the type of the array
elements that this array stores. In this case the array stores elements of type "number™".



Variable

% Declaration |
S

i :
! 1
Kind Name ' Type E Initialiser
! 1
! 1
i ! \
| ! Array
Let “arr” i TypeArray | Initialiser
1
! 1
I | :
i :
i | Type.Number i Constant Constant
! 1
H 1
T I I
1 2

Figure 3.2: This is an example AST for a variable declaration. The dotted box highlights the
extension to the JavaScript AST that adds type information to the variable declaration.



Chapter 4

Implementation

This chapter discusses the implementation of the Whiley2TypeScript translator. As the im-
plementation of the translator consists of extending an existing translator, the key extensions
to the translator are discussed.

4.1 Base Types

The aim initially was to translate the basic primitive types first, then continue with translat-
ing more complex types. These primitive types in TypeScript are used for variable, parame-
ter and return types. First the Whiley type is received and translated into a TypeScript type.
For example, the Whiley type int could be translated into the TypeScript type number.
Figure 4.1 and 4.2 demonstrates one possible translation of a Whiley function.

function sum(int a, int b) —> (int r):
return a + b

Figure 4.1: Whiley function

function sum(a: number, b: number): number {
return a + b

}

Figure 4.2: TypeScript function

Whiley integers are larger in size compared to the TypeScript number type as Whiley in-
teger types are unbounded. Using the number type would limit the integer size you could
use in Whiley if you aim to translate that Whiley code into TypeScript as number is 64-bit
floating point. The solution to this is to use a the JavaScript’s bigint type as this is un-
bounded. One problem here is that this type is only supported in ECMAScript 2020 or later.
To handle this when a Whiley integer is encountered, the TypeScript compiler version will
be checked. If the version supports bigint then use it in place of Whiley integer. Otherwise
using the number type with an appropriate warning being emitted.

10



Once primitive types were being correctly translated for variable, parameter and return
types, more complex translations can be considered. Firstly, this includes the translation
of Whiley records to TypeScript type declarations. The syntax between them are conve-
niently similar, with only minor differences between them. In Whiley this operator is the
is operator and in TypeScript it is =. In both languages these declarations can be writ-
ten in two different ways. One way is to assign a type to another type. For example in
TypeScript, type A = number. With this the type alias A, can now be used as a number
type. The second way is to assign a type to an object structure. For example in TypeScript,
type B = {x: number, y: number}. The type alias B now references an object with
two properties x and y.

- N

type A = number
type B {x: number, y: number}

function sum(b: B): A {
return b.x + b.y

Figure 4.3: TypeScript type declarations example

The translation of array types can also be considered. These types are also similar in
Whiley and TypeScript which makes the translation fairly simple. The translator will first
get the array element type, this type could be another array type of a certain number of
dimensions or a single type such as number or boolean. If the element type is an array
type, that means it’s a multidimensional array.

Another type translation is the Whiley byte type. This type is not supported in Type-
Script, however the current JavaScript backend contains methods for creating a byte using
the number type. This makes the translation very simple, because when the byte type is
encountered in Whiley, the type to use is simply number and the existing backend code will
take care of the logic.

The final basic types to be translated are related to Whiley string types. In Whiley strings
are represented as integer arrays. The current JavaScript backend handles this similarly to
the byte type. This means the translation for this is very simple as it can just be translated to
the number type.

Whiley also supports JavaScript strings which are imported into a Whiley program as
shown in Figure 4.4. This is also a simple translation as TypeScript has a string type.

import std::ascii
import js::core

ascii::string asciiString = "Hello World"
core::string jsString = asciiString

Figure 4.4: Whiley JavaScript string example

11



4.2 Union Type Translation

The translation of union types was relatively challenging. Adding the union type object
to the translator was simple as Whiley and TypeScript represent union type in a similar
way. The challenge came from the difference in how Whiley and TypeScript handle type
checking of union types. As a union type can be any type given in the union, the value
assigned to a variable with a union type must be checked to ensure there are no type mis-
match errors. In Whiley this is achieved with a condition that uses the is operator. For
example, if (a is int). TypeScript has a similar operator, t ypeof. However, this is
much less powerful and does not operate in the same manner. In TypeScript a function has
to be created, called a “type guard”, were the return type is a predicate that asserts that a
given variable has a given type. Figures 4.6 and 4.5 demonstrates a translation of a Whiley
union type with a type checking condition. The main difference is the TypeScript program
contains a type guard function for checking if a given value is of type "number".

s Y

type MyUnion is int[] | int | bool;

MyUnion value = 123;
if (value is int):
value += 1; //Typeof valueis int

Figure 4.5: TypeScript type guard example

type MyUnion = string | number | boolean

// Type quard function
function isNumber (x: string | number | boolean): x is number
if (typeof x === "number") { return true }

return false

let value: MyUnion = 123
if (isNumber (value)) { value += 1 } //Typeof valueis number

= J

Figure 4.6: TypeScript type guard example. When the function “isNumber” returns true, the
TypeScript assumes that ”x is number” holds.

4.3 Lambda Translation

The translation of Whiley lambda expressions is already implemented in the Whiley2JavaScript
transpiler. For the translation of Whiley lambda expressions to TypeScript, the necessary
type information needed to be added. Whiley and TypeScript both provide the ability to
use function types. Figures 4.7 and 4.8 demonstrate the translation of Whiley lambda ex-
pressions to TypeScript functions. Figure 4.8 shows the translation of a Whiley function
type function (int) -> int toaTypeScriptfunctiontype (a: number) => number.

12



type func is function(int) -> int

function g () —> func:
return & (int x —> x + 1)

func £ = g{()
assume f (1) == 2

Figure 4.7: Whiley lambda expression example

type func = (a: number) => number
function g (): func {
return function(): (a: number) => number {
return function (x: number) : number ({

return x + 1;

PO

let f: func = g();
Wy.assert (f (1) === 2);

Figure 4.8: TypeScript lambda expression translation

4.4 Generic Translation

Generic types are a common feature in statically typed languages that allow types to be
parameterized. Generics in Whiley and TypeScript behave identically and use a very similar
syntax. This made implementing the translation relatively straightforward. Figures 4.9 and
4.10 demonstrate the translation of generic types between Whiley and TypeScript. These
examples implement a linked list where the link data property is a generic type. A new
LinkedList record is created in g with the generic type assigned to int. This is translated
into number in the TypeScript code. Figure 4.10 that uses the Wy . copy function. This is

explained in section 4.7.

type Link<T> is { LinkedList<T> next, T data }
type LinkedList<T> is null | Link<T>

function g () :
LinkedList<int> 11 = null
Link<int> 12 = { next: 11, data: O
1

}
Link<int> 13 = { next: 12, data: }

Figure 4.9: Whiley generics example

13



type Link<T> = {
next: LinkedList<T>
data: T
}
type LinkedList<T> = null|Link<T>
function g () : void {
let 11: LinkedList<number> = null;
let 12: Link<number> = new Wy.Record (
{ next: Wy.copy(ll), data: 0 }
)
let 13: Link<number> = new Wy.Record (
{ next: Wy.copy(l2), data: 1 }

Figure 4.10: TypeScript generics translation

4.5 Reference Translation

The translation of Whiley references has been implemented in the existing Whiley2JavaScript
plugin. As both JavaScript and TypeScript don’t implement any pointer to some type T, the
behaviour can be replicated using objects. The JavaScript runtime contains a constructor
function for creating a property "$ref" that is assigned to a given value. This property
acts as a reference to the given value. For example, let y = new Wy.Ref (2) will cre-
ate a $ref property on y which is assigned a value of 2. This means that this value can
be retrieved by accessing the $ref property, y.$ref == 2. Accessing the $ref prop-
erty acts as a dereference as seen in Whiley. Figures 4.11 and 4.12 demonstrate the trans-
lation of Whiley references to TypeScript. As TypeScript requires type information, a type
declaration must be used when creating a reference property. This can be achieved with
type Refer<T> = { Sref: T .

method swap (&int x_ptr, &int y_ptr):
int tmp = xx_ptr

*X_ptr = xy_ptr

*y_ptr = tmp

public export method test () :

&int x = new 1
&int y = new 2
swap (x,V)

Figure 4.11: Whiley reference example

14



type Refer<T> = { S$ref: T }
function swap (
X_ptr: Refer<number>,
y_ptr: Refer<number>
) : wvoid {
tmp: number = x_ptr.Sref;
{
let $0: number = y_ptr.Sref;
X_ptr.Sref = $0;

let $1: number = tmp;
y_ptr.Sref = $1;

function test (): wvoid {
let x: Refer<number> = new Wy.Ref (1);
let y: Refer<number> new Wy.Ref (2);
swap (x, Vv);

Figure 4.12: TypeScript reference translation

4.6 Import Statement Translation

The translation of import statements is an important aspect of the Whiley2TypeScript tran-
spiler as, unlike JavaScript code, TypeScript requires modules to be imported to be con-
sidered correct by the compiler. The Whiley language currently has three distinct import
statement types. The "import package.File" example, imports the “File” compilation

unit from the package "package". This then allows named entities within the compilation

unit to be referenced from a partially qualified name that omits the package component,
"File.Entity". The "from" importstatements ("import Entity from package.File")
import the given named entities from the given compilation unit only. They do not import

the entire compilation unit. The "with" import statements ("import Entity from package.File")
import the given named entities from the given compilation unit, and they import the entire
compilation unit as well.

TypeScript also includes import statements for importing named entities and the entire
module. Figures 4.13 and 4.14 demonstrate the translation of the three Whiley import state-
ment types into TypeScript. You will notice that import translation ”3” includes two import
statements in the TypeScript code. This is because no import statement that matches the
functionality of the "with" import in Whiley in TypeScript. However, a combination of
two import statements does provide the correct functionality.

4.7 JS Runtime Declaration file

The JS runtime is a JavaScript library that contains functions that imitate Whiley language
behaviour. These functions are then used in the translation process to support common

15



import package.File //1
import Entity from package.File //2
import Entity with package.File //3

Figure 4.13: Whiley import statements

import * as package from ’./file’ //1
import { Entity } from ’./file’ //2
import * as package from ’./file’; //3
import { Entity } from ’./file’

Figure 4.14: TypeScript import statements translation

Whiley language features. Some examples that are included in this library are a copy func-
tion that provides a deep clone of values or objects, an assert function that provides a
mechanism for raising assertions and an equals function for checking the equality of ob-
jects. This library also includes constructor functions to create Whiley record and reference
objects.

The JavaScript runtime library is currently used in the existing Whiley2JavaScript tran-
spiler. Using this library as is with the Whiley2TypeScript transpiler would cause some
problems. Firstly, referencing a JavaScript library from a TypeScript file would cause type-
checking errors in strict compiler modes. As JavaScript is dynamically typed, the TypeScript
compiler will not be able to guarantee these types. Secondly, because the compiler will not
be able to guarantee the correctness of the JavaScript runtime types, there is no way of
checking whether the translation of the Whiley types into TypeScript is correct.

The solution to these problems is to create a TypeScript declaration file. A declaration
file is used to give JavaScript libraries type information. This was achieved by creating a
type declaration for all properties within the JavaScript library. Figure 4.15 demonstrates an
example of the "equals" function declaration within the "Wy " object which is part of the
JavaScript runtime. The "equals" function is a property on the "Wy" object, so the name of
the property is included in the declaration as well as the type information. A problem with
declaration files is they are prone to mistakes. For example, if incorrect type information
is given to a property within the declaration file, then a programmer could give the correct
type but will receive a compiler error. Furthermore, the programmer could give an incorrect
type and the compiler will not return an error. Fortunately, the TypeScript compiler contains
a feature for generating declaration files from a given JavaScript file.

declare Wy: {

equals: <T, U>(ol: T, o02: U) => boolean;

Figure 4.15: TypeScript JS runtime declaration example

16



Chapter 5

Evaluation

This chapter describes the evaluation methods used for the Whiley2TypeScript transpiler.
The aim of the transpiler is to take a Whiley program and generate the equivalent Type-
Script program. For a given Whiley program the equivalent TypeScript program should
produce the same output. The TypeScript code can then be compiled down to JavaScript
and executed in the browser. Three different evaluation methods have been used. The first
method used a test suite from the existing Whiley2JavaScript plugin which are originally
from the Whiley compiler itself. This tests the translation of specific aspects of the Whiley
language into TypeScript. The TypeScript is then compiled into JavaScript to be executed.
The second method used WyBench which is a suite of benchmark programs used for test-
ing and demonstrating the Whiley language. Some examples of these benchmark programs
include, LZ77 compression/decompression, Matrix Multiplication and N Queens problem.
The final method aimed to test the translation of web applications written in Whiley. This
posed a number of challenges that simple test cases do not, such as linking dependencies
and managing modules.

5.1 Test Suite

The Whiley2TypeScript plugin is tested using 733 test cases from the Whiley compiler test
suite. Figure 5.1 shows an example test case. These tests are used to validate specific transla-
tion components from the Whiley language. These tests consist of a Whiley file that contains
the program that will be tested. Included in the program are one or more assume state-
ments that are used to test whether a given condition is true. This file is passed through the
Whiley2TypeScript plugin and the corresponding JavaScript file is outputted. The assume
and assert statements from the Whiley file are translated into the assert function from
the JavaScript runtime which takes a boolean value. If this boolean value is false then an
Error is thrown. This indicates that the test has failed. The JavaScript file is executed using a
JavaScript runtime environment called Nashorn. If any errors are thrown from the executed
JavaScript, then the test has failed. Before the JavaScript can be executed, the TypeScript
code needs to be compiled. If any errors are returned then the test fails. This ensures that
the TypeScript code translated is correct. Correctness here means the code is free of syntax
errors, runtime errors and type-checks without error.

5.1.1 Results

Out of the 733 test cases, 46 are ignored as these tests contain Whiley features that are not
yet supported by this plugin. Out of the supported test cases, all but one compiles and
executes successfully using the Whiley2TypeScript plugin developed in this project. The

17



type list is int[]

function index (list 1, int index) —> int
requires index >= 0 && index < |1]:
return 1[index]

public export method test ()
int[] 1 = [1, 2, 3]
assume index (1,0)
assume index(l,1)
assume index (1, 2)

1
2
3

N\ J

Figure 5.1: An example test case from the Whiley compiler test suite that was used to test
the Whiley2TypseScript transpiler. This test case tests array access.

test case that fails does so because of a TypeScript compiler error. This test case aims to test
recursive types. A recursive type is a data type that contains values of the same type. Figure
5.2 demonstrates a recursive type in TypeScript. The type Node<T> contains two properties,
value and nodes. The nodes property is an array of the current type. This type describes
a tree data structure where a node may contain a collection of other nodes. A null reference
to the nodes property would indicate a leaf node. The failing test case does not fail because
of the in-correctness of the recursive type translation, but instead fails because of the way
conditional type checking is translated. A condition is created that is always true which
creates unreachable code.

type Node<T> = {
value: T
nodes: Node<T>[]

Figure 5.2: TypeScript recursive type.

5.2 WyBench Tests

WyBench is a collection of Whiley program that are representative how Whiley might be
used. These programs can be used with different Whiley backend tools for the purpose
of testing their correctness. The tests in WyBench start with trivial calculations such as the
Fibonacci sequence and increase in complexity. The Whiley2TypeScript transpiler was tested
using the WyBench test suite. Each Whiley project was built using the Whiley2TypeScript
backend. This generated a TypeScript file which is the translation of the Whiley file included
in the project. As TypeScript is just syntactic sugar over JavaScript, the TypeScript file will
need compiling down into JavaScript. The result will be a project that now contains a Whiley
file, TypeScript files and JavaScript files. To test the output, the code must be executed in
a browser. Ideally, the code would be executed using a JavaScript runtime tool such as
Node]S. However, the transpiler is set up to output code that is set up for running in a

18



browser.

5.2.1 Results

The WyBench test suite contains groups of tests varying in size. The smallest group, “micro”,
contains 24 programs that can be used to test the Whiley2TypeScript transpiler. Out of the
24 tests, 19 passed. Table 5.1 shows the details of the failing tests. Three of the programs that
failed involved testing the behaviour of arrays. This means that the translation of the array
functionality is either incorrect or could contain a bug. This also means that the 687 tests
from the test suite do not adequately test the translation of Whiley arrays into TypeScript
arrays.

Name Description Result

00l.-average | Average over integer array. Pass

002_fib Recursive Fibonacci generator. Pass

003_gcd Classical GCD algorithm. Pass

004_matrix Straightforward matrix multiplication. Fail: Invalid Output.

006_queens Classical N-Queens problem. Pass

007 regex Regular expression matching. Pass

008_scc Tarjan’s algorithm for finding strongly | Pass
connected components

0091277 LZ77 compression / decompression. Pass

010_sort Merge Sort. Pass

011_codejam | Solution for Google CodeJam problem. Pass

012_cyclic Cyclic buffer Pass

013_btree Binary search tree with insertion / | Fail: Whiley compiler
lookup. error.

014 _lights Traffic lights sequence generator. Pass

015_cashtill Simple change determination algorithm. | Fail: Invalid Output.

0l6_date Gregorian dates. Pass

017_math Simple math algorithms Pass

022 cars Controlling cars on bridge problem. Pass

023_microwave Classical microwave state machine. Pass

024 bits Algorithms for bit arrays. Pass

025 _tries String trie with lookup / insertion. Pass

026_reverse Reversing an array. Pass

027_c_string | Model of C strings. Pass

028_flag Dutch national flag Problem Pass

029_bipmatch | Perfect matching for bipartite graphs. Fail: Java Exception in

transpiler.
030_fraction | Big rationals. Pass
032_arrlist ArrayList implementation. Fail: Invalid Output.

Table 5.1: All benchmarks that were translated into TypeScript. The name, de-
scription and result are included. The WyBench test suite can be found at
https:/ /github.com/Whiley /WyBench

19



5.3 Case Studies

Once the test suite had a sufficient pass rate, more complex programs were tested. These
programs are web-based applications written in Whiley using two Whiley dependencies,
Web.wy and Dom.wy. The Web.wy dependency is responsible for the state of the DOM
which also includes updating and manipulating the DOM. Dom.wy holds Whiley bind-
ings for the W3C Document Object Model. The transpiler should be able to transpile the
Whiley application into TypeScript. This includes transpiling the dependencies the ap-
plication requires. Each Whiley file that the application requires is passed through the
Whiley2TypeScript transpiler. The main Whiley file and each dependency will have its
corresponding TypeScript file. This TypeScript code should then be able to be compiled
into JavaScript to be executed in the browser. The correctness of the translation is tested by
checking the behaviour of the application is as intended. This is achieved through a series
of inputs specific to the application being tested. The following list explains each of the
programs that were tested.

WebCalc https://github.com/DavePearce/WebCalc.wy
The Whiley WebCalc web application is a very simple calculator that can compute
simple mathematics operations. Testing this application is very easy. Once the cal-
cualte button is clicked, the number output to the screen should be as expected and
not errors should be displayed in the console.

Conway’s Game of Life https://github.com/DavePearce/Conway.wy

This program is a web application that implements Conway’s Game of Life. This pro-
gram is more difficult to test than the WebCalc program as the outcome is often un-
predictable. However, this program can be tested against another implementation of
Conway’s Game of Life by comparing the outcome of a given input. Also, there are
certain predictable starting patterns that can be used. One of the most common pat-
terns is called the “glider”. This pattern is set-up in a way were the state changes of the
grid positions moves the pattern across the board in a single direction. The program
is correct if this pattern is able to achieve this movement and not errors are displayed
in the console.

Minesweeper https://github.com/DavePearce/Minesweeper.wy
The Minesweeper game is a step up in complexity from Conway’s Game of Life as
it involves more game states. Furthermore, the games are randomly generated so a
given input from two different Minesweeper implementations will not produce the
same output. However, given inputs can be verified for correctness very easily as the
output is produced with very view operations when compared to Conway’s Game of
Life.

5.3.1 Results

The three Whiley web applications were successfully translated into TypeScript then com-
piled into JavaScript and executed in the browser with the intended functionality. Figure 5.3
and 5.4 demonstrate the Conway’s Game of Life and Minesweeper applications running in
a browser. Although each case study was successful, the translation of these application was
not straight forward. It required reasonable effort to generate executable JavaScript with the
intended functionality.

20



Conway's Game of Life (in Whiley)

START

Figure 5.3: Conway’s Game of Life web application.

Minesweeper (in Whiley)

| Beginner (8x8) || Intermediate (16x16) || Expert (30x24) |

O 1_| |
o 1 13 | HE
1_| 2 2 [

| ]2 |3 _|2 = HE
11 11122 [
1 R I~
2 213 [
2 21 1 [
122 |11 1 [
1 |1 11 [

1 |1 1T | N

11 111 113 _|312 |
311 111 1_|
1 2 |
|31 112111 |

A I 1 A A

(use shift-click to flag squares)

Figure 5.4: Minesweeper web application.

21



Chapter 6

Conclusions and Future Work

6.1 Conclusion

In this project, a Whiley compiler plugin called Whiley2TypeScript was designed and im-
plemented with the purpose of translating Whiley into TypeScript. Generated TypeScript
code can then be compiled down into JavaScript to be executed in a JavaScript environment.
It was decided that the existing Whiley2JavaScript plugin was a natural starting point as it
has a favourable architecture and can be extended to support the translation of Whiley to
TypeScript. The Whiley2TypeScript plugin successfully translates Whiley into TypeScript
with many of the Whiley features supported in the Whiley2JavaScript transpiler are also
supported in the Whiley2TypeScript transpiler. This results in all but one passing test case
from the Whiley Compiler test suite. Furthermore, a 19 out of 24 pass rate for benchmarks
from the WyBench benchmark suite and the successful translation of Whiley web applica-
tions including WebCalc, Conway’s Game of Life and Minesweeper.

6.2 Future Work

The completion of this project opens up avenues for future work.

* One failing test from the Whiley Compiler test suite. One of the 687 tests from the
test suite is currently failing. This test is failing due to a condition that aims to type
check an argument of a function at runtime. This is necessary in JavaScript to retain the
behaviour of the Whiley code. However, because TypeScript function parameter types
are checked at compile time, it is possible to create unreachable code. This failing test
generates a condition that is always true so generates unreachable code which returns
an error from the TypeScript compiler.

* Failing WyBench tests. A small portion of tests in the WyBench benchmark suite that
involve testing array functionality fail. This is interesting as the array tests from the
main test suite all pass. This uncovers two problems; Firstly, the main test suite does
not sufficiently test array translation. Secondly, there is a bug in the array translation.

¢ Compiling TypeScript to JavaScript correctly. As browsers don’t yet have support for
modules, the generated TypeScript code must be compiled into JavaScript and bun-
dled in a way where the functionality of the program is maintained and the browser
can execute this program successfully. Progress was made with bundling the Type-
Script code into a single JavaScript file. However, certain TypeScript compiler errors
prevented the JavaScript output from executing without error. This is because the

22



bundler requires correct module behaviour to successfully bundle all TypeScript files.
The module behaviour is mostly correct, the problem arises when JavaScript code is
appended to dependency files. This JavaScript code has properties that are referenced
from other TypeScript files but this JavaScript code does not export them. Another
problem is the import names and the references to the import names do not match.

Test larger programs. The evaluation of the Whiley2TypeScript transpiler involved
testing the translation of web applications. All web applications tested were success-
fully translated and executed in the browser. Further testing of larger applications can
be carried out.

Generate bindings from existing TypeScript definition files for Whiley. Whiley lan-
guage bindings for JavaScript and the W3C Document Object Model have been man-
ually created in Whiley. Automatically generating these language bindings would
give greater accuracy, easily support further language bindings for other JavaScript
libraries and handle any changes that may occur to JavaScript libraries that already
have language bindings.

23



Bibliography

[1] BARNETT, M., FAHNDRICH, M., LEINO, K. R. M., MULLER, P., SCHULTE, W., AND
VENTER, H. Specification and verification: The spec experience. Commun. ACM 54, 6
(June 2011), 81-91.

[2] BICARREGUI, J. C., HOARE, C. A. R., AND WOODCOCK, J. C. P. The verified software
repository: a step towards the verifying compiler. Formal Aspects of Computing 18, 2 (Jun
2006), 143-151.

[3] CHONG, N., COOK, B., KaLLAs, K., KHAZEM, K., MONTEIRO, F. R., SCHWARTZ-
NARBONNE, D., TASIRAN, S., TAUTSCHNIG, M., AND TUTTLE, M. R. Code-level
model checking in the software development workflow. In Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering: Software Engineering in Practice
(New York, NY, USA, 2020), ICSE-SEIP "20, Association for Computing Machinery,
p. 11-20.

[4] CuoQ, P., KIRCHNER, F., KOSMATOV, N., PREVOSTO, V., SIGNOLES, ]J., AND
YAKOBOWSKI, B. Frama-c. In Software Engineering and Formal Methods (Berlin, Hei-
delberg, 2012), G. Eleftherakis, M. Hinchey, and M. Holcombe, Eds., Springer Berlin
Heidelberg, pp. 233-247.

[5] FELDTHAUS, A., AND MOLLER, A. Checking correctness of typescript interfaces for
javascript libraries. SIGPLAN Not. 49, 10 (Oct. 2014), 1-16.

[6] FILLIATRE, J.-C., AND PASKEVICH, A. Why3 — where programs meet provers. In Pro-
gramming Languages and Systems (Berlin, Heidelberg, 2013), M. Felleisen and P. Gardner,
Eds., Springer Berlin Heidelberg, pp. 125-128.

[7] FLANAGAN, C., LEINO, K. R. M., LILLIBRIDGE, M., NELSON, G., SAXE, J. B., AND
STATA, R. Extended static checking for java. SIGPLAN Not. 37, 5 (May 2002), 234-245.

[8] HOARE, T. The verifying compiler: A grand challenge for computing research. In Com-
piler Construction (Berlin, Heidelberg, 2003), G. Hedin, Ed., Springer Berlin Heidelberg,
pp- 262-272.

[9] LEINO, K. R. M. Dafny: An automatic program verifier for functional correctness.
In Logic for Programming, Artificial Intelligence, and Reasoning (Berlin, Heidelberg, 2010),
E. M. Clarke and A. Voronkov, Eds., Springer Berlin Heidelberg, pp. 348-370.

[10] MICROSOFT. typescriptlang (home page), 2021.

[11] MICROSOFT. typescriptlang (migration stories), 2021.
[12] NPM, I. Npm (typescript package), 2021.

[13] PEARCE, D. ]J. Whiley.org.

24



[14] PEARCE, D. J. Getting started with whiley. Tech. rep., School of Engineering and
Computer Science, Victoria University of Wellington, 2018.

[15] PEARCE, D. J., AND GROVES, L. Designing a verifying compiler: Lessons learned
from developing whiley. Science of Computer Programming 113 (2015), 191-220. Formal
Techniques for Safety-Critical Systems.

[16] RASTOGI, A., SWAMY, N., FOURNET, C., BIERMAN, G., AND VEKRIS, P. Safe efficient
gradual typing for typescript. SIGPLAN Not. 50, 1 (Jan. 2015), 167-180.

[17] SLATER, C. Developing a whiley-to-javascript-translator. Tech. rep., School of Engi-
neering and Computer Science, Victoria University of Wellington, 2015.

[18] VEKRIS, P., COSMAN, B., AND JHALA, R. Refinement types for typescript. SIGPLAN
Not. 51, 6 (June 2016), 310-325.

25



