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Abstract 
An instrumentation tool has been developed for the Linux kernel that uses the relatively new technique of runtime 

code splicing. This permits instrumentation of a running system, without any source code modification, by 

redirecting the flow of control to pass through carefully written code patches. 

 

The result is a tool that can insert arbitrary code before and after almost every basic block of an executing Linux 

kernel. A new twist on the original technique has been developed, called local bounce allocation, that overcomes 

some of the problems encountered on variable length architectures. Furthermore, the tool has been demonstrated to 

produce results that are at least as accurate as an existing instrumentation tool whilst providing a major improvement 

upon it. 
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Foreword… 
In the development of a high performance engine, the mechanical engineer faces the problem of guaranteeing that 

the components will not fail under the high stresses involved. He must ensure, for example, that a component will 

not crack at high temperature. To do this, he must be able to predict how each atom of the component will react at 

temperature, and what effect this will have on its neighbours. He must also predict how the components will react 

with each other and how air molecules passing through the system affect pressure and dynamics. In short, a 

monumental number of variables are involved and must be tamed for the engine to work correctly. In spite of all 

this, the mechanical engineer can produce an engine that will operate in extremely harsh conditions in a predictable 

manner. How does he do this? How can the behaviour of the system be known when such a large number of 

variables are present? 

 

The answer, of course, is that he doesn’t know how the system will behave until it has been built. Instead, the 

engineer uses design procedures to help remove some of the uncertainty. But, for such a complicated beast as the 

high performance engine, this will not be enough. The final trick in the engineers hand is to observe the engine in 

motion and determine if it is indeed behaving as expected. He will then tweak the engine in an effort to obtain the 

expected behaviour and once this is achieved, he will feel confident that he understands what takes place inside the 

engine whilst it is running. 

 

I was inspired by the ability of modern engineering to achieve such feats as described above because I felt that the 

typical programmer rarely gains the same level of understanding for the software he develops. This was illustrated to 

me by a few emails sent between developers of the Linux kernel. They were discussing how to make a sensitive 

measurement regarding the optimal design of the scheduler. I was surprised to find that the effects of extreme 

optimisations, such as fitting structures into cache lines, were being discussed using, almost exclusively, the 

speculation of a few individuals. Although these people were experienced programmers it seemed that the number of 

variables was too large to be accounted for. Some measurement was required to back up the speculation and all that 

was on offer were the results of a few primitive tests. The aim of my project was to address this by finding a way to 

accurately observe the behaviour of the Linux kernel. 

 

Many thanks go to my supervisor, Paul Kelly, who has on many occasions pointed me in the right direction. Also, 

thanks should go to Ariel Burton who has also provided some invaluable help. 
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1 Introduction 
 

The aim of this project was to find a way of measuring aspects of the Linux kernel that might uncover otherwise 

hidden information regarding its behaviour. To this end, an instrumentation tool called GILK, has been developed 

for the Linux kernel that is capable of extremely sensitive measurements. The tool makes use of a relatively new 

technique applicable to instrumentation, called runtime code splicing. This allows GILK to insert measuring code 

before and after almost any basic block in the kernel.  

 

1.1 Achievements 
 

The main achievements of this project are: 

 

 A new twist on the existing method of runtime code splicing, termed local bounce allocation, has been 

developed. 

 

 An implementation of the runtime code splicing technique has been developed for a variable length instruction 

set (the Intel x86 architecture) and a detailed account is presented in this document. 

 

 An advanced instrumentation system for the Linux kernel has been produced that is capable of extremely 

sensitive measurement. 

 

1.2 What was involved 
 

The project involved the development of the instrumentation tool plus an analysis of it. The development took the 

majority of the effort and required extensive knowledge of the Linux kernel as well as the Intel x86 architecture. 

 

The analysis involved using the tool in an effort to establish the validity of its results. Success was achieved in 

showing that, for the same sequence of events, GILK and another tool, called IKD, took identical measurements. 

The second half of the analysis was concerned with measuring the impact on system performance caused by 

instrumentation with GILK. A figure has been obtained that provides an indication of the overhead imposed by 

using GILK. 

 

1.3 Overview of the remainder of this document 
 

The remainder of this document will begin with an introduction to program instrumentation. This will cover the 

main techniques currently used in the field and will also provide an indication of other work that relates to this 

project. Some relevant material on the Linux kernel will also be provided, as this is necessary for an understanding 

of the methods employed in GILK. 

 

After this, an overview of the implementation will be provided. This will focus primarily on the runtime code 

splicing technique used in GILK as a detailed account of such an implementation has not been encountered before. 

 

The analysis performed on GILK will be presented in section four. This will attempt to outline the experiments 

performed and provide an explanation of their meaning. Finally, a reflection on the project and a list of future work 

will be presented. 
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2 Background to Program Instrumentation 
 

This section will take the reader on a journey through the field of program instrumentation. The primary objective is 

to cover the existing techniques for program instrumentation and their associated problems. The secondary objective 

is to introduce some of the concepts that will be used throughout the remainder of this document 

 

2.1 Instrumentation Techniques 
 

Program Instrumentation can be performed by adding instrumentation code to a target program. This can be 

performed at four distinct stages of a program’s lifecycle. These are the source code, compilation, binary and 

executing stages. There also exists another method, termed non-intrusive instrumentation, which allows 

instrumentation to take place without modification of the target program. 

 

2.1.1 Source Code Augmentation  

 

Programmers typically add instrumentation code by hand to their software whilst it is being developed. This 

instrumentation code, often called debugging code, is used to provide the programmer with a better understanding of 

how his program is working. It is very common to see simple print statements (such as “printf” in ‘C’) being used to 

output the value of variables at specific program points, provide execution tracing and to highlight otherwise 

unnoticeable errors. This primitive instrumentation method is quick and simple. But, it has many drawbacks 

including a dependency on the program in question and the difficulty of removing such code. 

 

A slightly more advanced way of achieving the above is to provide a conditional compilation option. For example, 

in the ‘C’ language it is usual to find a macro called ENABLE_DEBUGGING (or something similar) which when 

defined causes simple debugging code to be included during compilation of the program. This is advantageous to a 

more manual use of debugging code, because a production version of the program can be generated simply by 

undefining the macro. 

 

There are some more subtle problems, which relate to program instrumentation at the source code level. The most 

important of these being the change in behaviour of the program. This happens because parameters of the program 

such as size, relative location of functions, heap fragmentation and stack usage typically differ between the 

instrumented and non-instrumented versions of the program. 

 

Some examples of serious program instrumentation implemented at the source code level include IKD [15] and 

KernProf [14]. Both of these provide some form of instrumentation for the Linux Kernel. They require a patch to be 

applied to the kernel source tree, which necessitates a recompilation of the kernel before instrumentation can take 

place. This introduces an interesting problem. The patches are dependent on specific versions of the Linux kernel 

and so must be updated with each kernel release. This generates a lot of work for the patch maintainer, as new 

versions of the Linux kernel are released almost every month. The net result is that the patches usually lag behind 

the latest kernel releases. 

 

2.1.2 Compiler Level Augmentation 

 

A solution to the dependency problem described above is to insert instrumentation using the compiler. In this 

method, the source code is not touched and instrumentation is added by compiling the program. An example of this 

is the ‘–pg’ switch of GCC. This switch causes GCC to automatically insert a call to the function “mcount” at the 

start of each function. The “mcount” function simply increments the current call count and writes it to an output file. 

This is illustrated in figure 2.1. 

 

The call count can then be viewed using gprof[13]. The advantage to this approach is that instrumentation is 

decoupled from program source. However, GCC (for example) can only provide a very limited amount of 

instrumentation, including function profiling, basic block profiling and critical path profiling. If more complex 

instrumentation is required, a patch to GCC must be written.  
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The main drawback of this approach is 

the requirement to recompile the target. 

For a large piece of software, this can 

consume a significant amount of time. 

Also, it is often difficult to restrict the 

instrumentation to just the relevant 

program points. This results in the 

burden imposed by instrumentation 

being greater than really necessary.  

 

However, there is an important 

advantage to this approach. During 

compilation, a great deal of information 

is generated by the compiler, about the 

structure of the resultant executable. This 

includes information such as control flow 

graphs, live register analysis, symbol 

information and knowledge of which 

parts represent machine instructions. The 

last part may seem mysterious, as modern executables are divided into code and data segments. However, compilers 

commonly put read-only data in the code segment for reasons of performance and it is often difficult to distinguish 

data from instructions in these cases. 

This information, critical for instrumentation at the machine code level, is discarded once compilation is completed. 

Instrumentation tools, which work at the machine code level, go to great lengths to recover this information. 

Therefore, a tool which works at the compilation level is in the unique position of having access to this information 

for free. This means that instrumentation can often be added with a minimal impact on program performance. These 

topics are discussed in [1] and [2]. 

 

2.1.3 Binary Rewriting Methods 

 

A number of instrumentation tools have been developed which add instrumentation code to the target’s executable. 

Examples of this solution include QP,QPT [1], EEL [6] and BIT [7]. These tools remove the need to recompile the 

target in order to perform instrumentation. This addresses two issues. Firstly, the turnaround time for 

instrumentation is significantly reduced. Secondly, it becomes possible to instrument software when the source code 

is unavailable. This is a major improvement over previous methods for the following reasons: 

 

1. A software program is normally linked with executable libraries. The source code for these is not always 

available. However, to better diagnose the performance of a program it is useful to understand the 

characteristics of any libraries it uses.  

 

2. The effects of compiler optimisations are visible in the executable file. This means that they can be measured to 

determine the impact on the target program. 

 

The advantages to this approach are offset by the additional complexity of implementing it. These topics will be 

briefly covered here. A more detailed examination can be found in an excellent paper by James Larus and Thomas 

Ball [1]. 

 

The technique used by the QP/QPT binary rewriting tools begins by generating a control flow graph of the program. 

Then, instrumentation is added to the incoming edges of basic blocks. This is achieved by shifting program code 

along to make space for the instrumentation code. This results in the relative positioning of the original instructions 

being changed. Therefore, all branch and call instructions must be adjusted to accommodate for this. These ideas are 

illustrated in figure 2.2. 

 

.data 

.LP1: .long 0 

foo: 

 pushl %ebp 

 movl %esp,%ebp 

 movl $.LP1,%edx 

 call mcount 

 leave 

 ret 

void foo(void) 

{ 

} 

foo: 

 pushl %ebp 

 movl %esp,%ebp 

.L1: 

 leave 

 ret 

Figure 2.1 - Showing the function foo (top) being compiled without 

the -pg switch (left) and with the -pg switch (right) 
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Most architectures provide the ability to 

perform indirect branches and these hinder 

the generation of control flow graphs. The 

reason for this is obvious: How can the 

destination of an indirect branch be known 

beforehand, when its value depends upon a 

runtime variable (register or memory)? 

 

Data flow analysis may uncover the 

destination of a few indirect branches, but not 

all. However, the work done by Larus and 

Ball indicates that compiled code makes use 

of indirect jumps in a controlled fashion, 

which can be analyzed.  

 

In fact, they argue that indirect branches are 

used almost exclusively for the switch 

statements found in most high level 

languages. Moreover, compiled switch 

statements use (static) jump tables. If these 

tables can be located, their values can be adjusted to reflect the new structure of the executable. 

 

Therefore, what remains is the (rare) case of an indirect jump being encountered which is not part of a switch 

statement or its jump table cannot be located. To solve this, a slightly unusual method can be employed. Small 

pieces of code are inserted before problematic indirect branches. This code performs a runtime analysis of the 

indirect destination and adjusts it where necessary. In order for this to work in the general case, a complete mapping 

from the original addresses to the new addresses is required and this imposes a serious overhead on the 

instrumentation. 

 

The instrumentation code inserted normally saves and restores the entire state of the machine. This effectively hides 

it from the program being executed. However, this has a significant overhead. To overcome this, QP/QPT performs 

a live register analysis whilst constructing the control flow graphs. In some cases, this allows for a reduction in the 

cost of instrumentation. It should now be clear why the detailed information discussed before, which is discarded by 

the compiler, is so valuable to an instrumentation tool. 

 

2.1.4 Runtime Code Splicing 

 

This is really a novel way of applying the techniques used in binary rewriters. The idea is still to insert 

instrumentation code into the program at the machine code level. However, instead of statically rewriting the  

executable, the target program is dynamically modified whilst executing on the system. The problems of indirect 

branches, control flow graph generation and live register analysis, which are faced by the binary rewriter, must also 

be faced by the runtime code splicer. However, there is the additional complexity of adding instrumentation whilst 

preserving the program’s integrity at all times. An excellent discussion of this method can be found in a paper by 

Barton Miller and Ariel Tamches [2]. This paper focuses on their tool, called KernInst. However, since writing that 

paper a more advanced performance tool, called Paradyn, has been developed and documented by Miller, et al [8] 

and [9]. Another system which uses this idea is called Aprobe [10]. 

 

This approach has several advantages over binary rewriting. Firstly, instrumentation can be performed on the 

program’s original executable. This is significant because it paves the way for instrumentation of running systems 

that cannot be restarted. Secondly, the instrumentation can be changed during execution of the program. This means 

that the overhead can be reduced by staggering instrumentation throughout execution. In a binary rewriting system, 

the instrumentation is active for the duration of execution.  

 

2.1.4.1 Theory of runtime splicing 

 

Block A 

Instrumentation 

Code 

Block B 

Branch 

Branch 

Block A 

Block B 

Branch 

Branch 

Figure 2.2 -Showing part of an executable file before (left)  

and after (right) instrumentation has been added to basic block A.  

The branch leading to block B has been adjusted to allow 

 for the change in location of its target.  
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Runtime code splicing is achieved by using branch instructions (called splices) to divert the normal flow of control, 

so that it passes through the desired instrumentation code. These branches overwrite existing instructions in the 

program. To preserve behaviour, the overwritten instruction(s) are “relocated” to the instrumentation patch 

(sometimes called a base trampoline). The act of relocation must adjust any PC relative instructions. The 

instrumentation patch must also insure that control is always returned to the correct place. This is illustrated in figure 

2.3. 

 

The above is really just a binary 

rewriting technique. The focal point of 

doing the it at runtime is the moment 

when the splice is written to memory. 

This is critical because another process 

(or thread) may be about to execute or is 

executing the instruction(s) overwritten. 

If the splice is not atomically written, a 

sleeping process/thread, whose PC 

points to the instruction being 

overwritten, may be scheduled CPU 

time during the write. The result is the 

process/thread executing a semi-

overwritten instruction which, in turn, 

leads to unpredictable behaviour. 

 

Clearly, the above scenario must be prevented from taking place. The KernInst tool [2] overcomes this by ensuring 

that the splice is inserted using an atomic write. This only solves the problem for the case when the splice instruction 

overwrites a single instruction. On fixed length instruction architectures, such as RISC, this property always holds, 

thus splicing is safe.  

 

Variable length instruction sets pose an additional complication, as a splice may overwrite multiple instructions. 

This is a problem for two reasons: 

 

1. The PC of a process/thread may point to one of the instructions (other than the first) overwritten by the splice. 

Then, when the process/thread gets CPU time, its PC will no longer be aligned with an instruction boundary. 

 

2. The destination of a branch, located elsewhere in the program, may be one of the instructions (other that the 

first) which gets overwritten by the splice. Then, when the branch is taken, the PC will become misaligned as 

before. 

 

These are illustrated in figure 2.4. The second point is quite easily resolved by building a control flow graph of the 

program. Each node in the control flow graph represents a basic block, which is a consecutive sequence of 

instructions where control always enters at the beginning and can only branch at the end. A good source of 

information on control flow graphs and basic blocks is the “Dragon” book [4]. The point of doing this stems from 

noting that the situation described in point two (above) arises from overwriting a boundary between two basic 

blocks. This can either be prevented from happening, meaning some instructions cannot be spliced, or the 

problematic branches can be adjusted in some way. 

 

Finally, there is an issue of splice range. In some circumstances, the splice instruction used may have insufficient 

range to reach the instrumentation patch. The solutions employed in [2] and [11] use branch bouncing to overcome 

this. A bounce is simply another branch instruction located elsewhere in the program. The splice instruction then 

uses it as a stepping stone to the instrumentation patch. The only complication with this is finding a place to locate 

the bounce. One solution is to identify sections of code that are never executed again and, hence, can be overwritten. 

This is the bounce location policy used by KernInst [2]. 

Splice 

A 

B 

D 

C 

Instrumentation 

Code 

A 

B 

D 

C 

Figure 2.3 - Shows part of a program before (left) and after (right) 

splicing has been performed. The letters A-D represent arbitrary machine 

instructions. 
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2.1.4.2 Use of the Stack 

 

There exists a simple method for providing pre and post function instrumentation, proposed by Ariel Butron. This 

works through a slight abuse of the stack. The key idea is to arrange for the return address of the current stack frame  

to point to the desired post-function instrumentation code. Then, when the function terminates (via a return 

instruction) the post function instrumentation will be activated. 

 

In order to set this up, a splice is written over the first instruction of the function. This points to a code patch that 

performs the stack manipulation, any desired instrumentation, the execution of overwritten instructions and then 

returns to the correct location in the original function. 

 

A few possibilities arise from this. Firstly, the overwritten instructions could be written back to their original 

location in the function. Control would then be returned to the start of the function, which would proceed as normal. 

This prevents any instruction relocation and also helps alleviate the problem of overwriting more than one 

instruction with the splice. Then, when the post-function patch gets activated the splice could be rewritten back over 

the function entry point, allowing instrumentation of the next call to the function. However, recursive calls would be 

lost. Also, for variable length instruction sets, care must be taken to either ensure control is never within the function 

when the splice is written or that no branch points to any overwritten instructions. Failure to do this would risk the 

problems already discussed with splicing for variable length instruction sets. 

 

Secondly, the actual return address of the function can be saved in a couple of ways. It could simply be stored in a 

variable by the pre-function patch which is then read by the post-function patch. However, recursive calls and 

multiple threads pose a serious obstacle. Alternatively, the current stack frame could be duplicated with the return 

address being modified. This provides for recursive calls and multiple threads, but has the disadvantage of requiring 

knowledge of the prototype of the function being instrumented.  

 

At the time of writing, however, know known implementation of this technique exists. 

 

2.1.5 Non-intrusive instrumentation 

 

All of the instrumentation techniques mentioned so far have attempted to insert code into the program, which makes 

the necessary measurements. However, statistical sampling methods provide a way of gathering information about 

the behaviour of a program without modifying it at any level. Good examples of this are Morph [12], DCPI [5], 

gprof[13] and KernProf[14]. What these programs do is arrange for the target program to be periodically interrupted. 

The value of the program counter (or other registers) before interruption can then be logged along with a timestamp. 

This provides information on how the program counter changes over time, which can be used to approximate 

function duration, find frequently executed program points and much more. 

 

PC of a sleeping process/thread 

points here 

Branch 

Figure 2.4 - Illustrates the two problems of splicing on a variable length instruction set.  

On the left, instruction misalignment occurs because a process has been put to sleep on the second 

instruction overwritten. When it awakes, it will find itself in the middle of a branch instruction! 

On the right, a branch in the program points to the second  instruction overwritten. When that branch is  

taken control will be transferred to the middle of the splice instruction. In both diagrams, the shaded area 

represents the instructions overwritten by the splice and the dotted lines represent instruction boundaries. 
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Morph uses the hardware timer interrupt to generate samples. This means that sampling occurs at regular intervals, 

which can be slightly disadvantageous because events that are coherent with the timer interrupt will always be 

missed. DCPI, makes use of the Alpha’s hardware performance counters to generate the required interrupt. These 

counters can be configured to cause an interrupt on overflow. The period between samples is changed after each 

interrupt by initialising the hardware counter with a pseudo-random number, which results in it overrunning after a 

varying number of events. 

 

The main advantage of this method comes from the large number of samples generated at only a small cost on 

system performance (estimated at 1-3% for DCPI and less than 0.3% for Morph). 

 

The disadvantage comes from the accuracy of results generated. For example, the time taken for a function could be 

measured by finding a sequence of consecutive samples whose PC values are within the function. The time between 

the first and last sample of the sequence would then be the estimated value for duration. Clearly, the accuracy of the 

result obtained depends upon the frequency of sample generation. This can be improved by averaging such 

approximations, but much information on how duration changes with time is then lost. 

 

2.2 Types of Instrumentation and their representation 
 

This section will attempt to identify some types of information, useful to performance optimisation, and also how 

they can efficiently be represented. 

 

2.2.1 Timers and Counters 

 

The simplest type of information that can still be of use is an event count, over time. Interesting events for counting 

include function entry and exit, cache misses, branch mispredictions and I/O writes/reads. Counters provide a 

relatively efficient way of representing data. Typically, they are used in a time histogram [16], which is a fixed 

length array of counters (also called buckets). Each counter maintains the event count for a specific time interval, 

hence the time histogram represents a finite amount of time. If the time histogram overflows its capacity can easily 

be increased by changing the time interval each counter represents and merging counter values, which reduces the 

granularity of results. This arrangement of counters is used by Paradyn and DCPI.  

 

Another useful instrumentation is the execution time taken for a code section. This type of measurement requires 

starting a timer and then awaiting a trigger to stop the timer. Storage of this type of data is a little harder. The 

obvious solution is to log every time value recorded. For code segments that have a very high frequency of 

execution, this results in a large amount of data being produced. It is not desirable to deal with such large amounts of 

data for a number of reasons. Firstly, it is often difficult to extract useful information from a large data set. 

Secondly, moving copious amounts of data through the system will hit on performance and possibly affect the 

validity of the results. This can be overcome by averaging the results, possibly over time intervals in a fashion 

similar to the time histogram. A better solution, used in Paradyn, is to periodically sample the timer value itself. This 

reduces the amount of data produced, but does not lose the accuracy of the timings taken. So long as the period used 

is not regular, a statistical picture of how the execution time varies with time will be generated. This is pointless for 

programs that are completely irregular (unless data is captured over a set of runs), but as most programs exhibit 

some regularity in their control flow, it can be quite useful. 

 

2.2.2 Path Profiling and Critical Paths 

 

Another interesting aspect of a program is the execution path taken through it. Identifying frequently executed paths 

allows the programmer to concentrate his optimisation efforts. Alternatively, finding individual paths that take an 

unreasonable amount of time to execute can also lead to important optimisations.  

 

An efficient method for computing the execution frequency of basic blocks, which only adds instrumentation to arcs 

on the minimal spanning tree, is described in a paper by Larus and Ball [17]. The paper also discusses the problem 

of efficient path representation. A simple solution to this is to instrument each basic block so that it logs its 

identification number upon execution. This produces a sequence of block identification numbers which represents 

the path taken through the control graph. However, many logs are made for the identification of one path which is 

somewhat inefficient. The optimal solution is to assign each unique path with a unique number. This number can be 
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logged at the terminating nodes of the graph to produce a profile of the paths taken through the control flow graph 

over time. This is achieved in [17] by use of a variable, initialised at the entry point, which is incremented on 

traversal of certain arcs in the control flow graph. The net result is that a value is available at the terminating nodes, 

which uniquely identifies the path taken. 

 

2.2.3 Usage Patterns 

 

The methods described above are normally used to locate generic bottlenecks and inefficiency within a program. 

However, knowledge of the typical/desired usage of the program can open up new optimisation possibilities. For 

example, recording function parameter values can provide useful information. It is often the case that certain 

parameter values occur frequently. Hence, the function can be optimised for these cases. Better still, specialised 

versions of the function can be produced for specific parameter values. The representation of this type of 

information is dependant upon the function parameters being logged and as such, has no optimal storage method. 

 

2.3 Additional Background 
 

The following section covers a few pieces of additional information that are relevant to the remainder of this paper. 

 

2.3.1 Methodology in the Linux Kernel 

 

As already mentioned, runtime splicing with a variable length instruction set poses a few problems. For it to be safe, 

it must be possible to atomically write the splice instruction to memory. Also, the possibility of instruction 

misalignment must be prevented. This last point can be partially achieved by constructing a control flow graph and 

all that remains of it is to ensure no process can sleep at an instruction overwritten by the splice. 

 

To this end, the methodology of the Linux Kernel provides some help. The main points are: 

 

 A process executing in kernel space must run to completion unless it voluntarily relinquishes control. 

This means that, when it is in kernel space, it won’t be scheduled off the processor even if its timeslice 

expires. 

 

 Processes running in kernel space may be interrupted by hardware interrupts. This may appear to 

contradict the first rule. But, control is always returned to the process executing in kernel space and it 

remains possible for processes to prevent interruption over specified segments of code. 

 

 An interrupt handler cannot be interrupted by a process running in kernel space. At first, this may 

seem a little irrelevant. However, this fact ensures that any process (executing in kernel space) that is 

interrupted will always regain control after the interrupt and before any other process. 

 

The three points above, taken together, allow kernel functions to overcome the remaining problems of a variable 

length instruction set. Firstly, a kernel function can block interrupts whilst the splice instruction is being written to 

memory. This guarantees that the splice is written atomically1. 

 

Secondly, a process can only sleep whilst in kernel space if it voluntarily releases control. This is performed by 

(indirectly) calling the schedule function of the kernel. Therefore, the PC of a sleeping process will always be within 

the schedule function itself. This fact solves the second half of the instruction misalignment problem. Although it 

does mean that the critical part of the schedule function cannot safely be instrumented. 

 

Further discussions on these topics can be found in "Linux Kernel Internals" [3]. 

                                                           
1 Actually, it only guarantees it for a single processor compile of the kernel. However, the use of spinlocks 

guarantees this for SMP versions of the kernel. Also, use of spinlocks on a single CPU version evaluates to blocking 

interrupts, thus the code is portable. 
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3 Overview of the GILK instrumentation tool 
 

The GILK tool is the implementation part of the project. It provides a powerful runtime instrumentation tool along 

with a Graphical User Interface to drive it. It has been designed to run under a GNU/Linux based operating system 

on an Intel processor. It also requires the GTK widget library. This section will cover the main topics regarding the 

implementation of GILK. The focus will be on the implementation of runtime code splicing used in GILK, as this is 

the important part of the tool. 

 

3.1 Design Criteria 
 

3.1.1 Objective 

 

As stated in the introduction, the aim of this project was to find a way to instrument the kernel that might provide 

unique insight into its behavior. In order to achieve this, an instrumentation tool had to be developed. Hence, a 

design decision arose regarding the instrumentation technique that would be used by this tool. The objective of this 

subsection is to identify the main factors that influenced this decision. 

 

3.1.2 Requirements 

 

Having determined that an instrumentation tool was to be developed, the next stage was to identify the minimal 

requirements of such a tool. These requirements revolve around two main points. Firstly, new kernel versions are 

released very regularly. Secondly, the purpose of the tool is to provide accurate results. The requirements of the tool 

were 

 

 No source modification - Modifying the kernel source to add instrumentation is not an attractive approach. 

This is mainly due to the need to update the tool for each kernel release (see section 2.1.1). This problem is very 

pertinent to Linux because of the relatively small time between kernel releases. 

 

 Minimal Impact to Overall Performance - The ideal instrumentation tool would take measurements without 

affecting the performance of the system. Although this ideal is unachievable (with software instrumentation, 

atleast), it is still desirable to get as close to it as possible. The reason is simple: If the act of measuring a system 

dramatically affects its performance/behaviour, any measurements taken will reflect this and, as a result, maybe 

misleading. 

 

 Safe Instrumentation – Obtaining information on real life applications can provide insight on kernel usage. 

However, Instrumenting real applications poses a problem. For example, data on a file server could be 

generated through instrumentation of an identically configured machine. It then remains to carefully simulate 

the input to the original server. This is not a trivial task and it would be simpler to directly instrument the file 

server. Clearly, no system administrator would allow this without some assurance regarding the safety of the 

instrumentation process. Therefore, the tool should be able to instrument without risking the integrity of the 

target system. 

 

Other requirements could have been adopted. These include requirements on security related issues, the types of 

instruments possible and on the portions of the kernel, such as dynamically loaded components, which are available 

for instrumentation. However, in an effort to reduce the complexity of the tool, it was decided to concentrate only on 

the three requirements listed above. 

 

3.1.3 Design Choice 

 

The three methods that satisfy the above requirements are binary rewriting, runtime code splicing and statistical 

sampling. The approach chosen for the instrumentation tool was runtime code splicing. This technique, discussed in 

section 2.1.4, fits the requirements of the instrumentation tool very well. It doesn’t require any source code 

modification and the overhead, while not as low as that of statistical sampling methods, is still small. In particular, 

the ability to instrument without restarting the system makes this a very attractive approach for kernel 

instrumentation. 
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Runtime code splicing falls down in one area: the safety of the system being instrumented. This is because, although 

runtime splicing is theoretically safe, the complexity of the technique (particularly on variable length architectures) 

makes it difficult to realize this. 

 

The final factor in the decision to use this technique was the limited amount of existing work available, especially 

with respect to variable length instruction sets, when compared with the alternatives. 

 

3.2 Terminology 
 

Under GILK, an instrument may be applied to a basic block from the control flow graph of a kernel function. There 

are two types of instrument, the pre-hook instrument and the post-hook instrument. A pre-hook instrument will be 

executed before the first instruction of the basic block. In contrast, a post-hook instrument is executed after the last 

sequential instruction of the block. A sequential instruction being neither a branch nor function call return. In other 

words, for a sequential instruction execution always proceeds to the instruction located physically after it. 

 

An instrument is a triple consisting of a unique identifier, a call sequence and an instrument function. An 

instrumentation is a set of instruments that are applied in some order. Under GILK, the order that instruments are 

applied is defined in terms of time. The launch time of an instrument refers to the time, in seconds, from the start of 

the instrumentation that the instrument is activated. Conversely, the splash time is the time at which the instrument 

is deactivated, taken in seconds, from the start of the instrumentation. 

 

A call sequence is a sequence of assembly language instructions. It is responsible for calling the instrument 

function., which involves setting up required parameters on the stack, making the function call and restoring the 

state of the stack. Different call sequences may be used for different instrument functions, allowing different 

prototypes for the instrument functions.  

 

The instrument function is a normal function, written in C. Its prototype is determined by the designer of the 

function. However, it must be called by an appropriate call sequence.  It is usual for the instrument function to 

accept at least one parameter, which is the unique instrument identifier. 

 

Each instrument will generate samples. Hence, it must be possible to identify the instrument responsible for each 

sample. This is achieved through the unique instrument identifier. This is more of a fingerprint for the instrument. 

It consists of the major number, the instrument type, the block index and the instrument order. The major 

number identifies the kernel function the instrument is located in. The instrument type indicates whether the 

instrument is a pre or post-hook instrument. The block index identifies the basic block within the control flow graph 

of the kernel function. Finally, the order index indicates the relative execution order of the instrument with respect to 

other instruments of the same type that are applied to the same basic block. Hence, an order index of zero indicates 

that the instrument will be executed before all other instruments of identical type and block index. It is not possible 

for two instruments to have the same identifier. 

 

A sample is a tuple consisting of a unique identifier and a value. The meaning of the value component is determined 

by the instrument function that produced it.  

 

The word splice represents a branch instruction used to overwrite existing instructions, in order to insert additional 

instructions into the program, whereas a bounce is a branch instruction that is used by a splice as a stepping stone to 

a destination out of the splice’s range. These ideas have already been introduced in section 2.1.4. Finally, a bounce 

slot refers to an area of kernel memory which may be used for a bounce. A splice may “expose” a number of bounce 

slots, which are then “allocated” to specific bounces where required. 

 

3.3 The structure of GILK 
 

An overview of the internal structure of GILK is shown in figure 3.1. This diagram serves only to highlight the main 

components of the instrumentation tool. 
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A custom disassembler is used 

because additional instruction 

information is required for 

generating the control flow 

graphs used by GILK. The 

instrumentation manager is 

responsible for constructing and 

installing the splices, bounces 

and code patches. The kernel 

analyzer is used to generate 

control flow graphs from the set 

of available kernel symbols. If 

the kernel analyzer cannot 

completely construct the control 

flow graph for a symbol, it will 

mark the symbol as “not 

instrumentable”. This happens, 

for example, when a function 

containing a jump table is 

encountered, as GILK does not attempt a more aggressive analysis in these situations. However, this does not turn 

out to be much of a limitation, as only a very small percentage of the kernel functions make use of jump tables. 

 

3.4 Valid Splice Points 
 

As already mentioned, a control flow graph is generated for each kernel symbol. This is necessary to identify 

instruction boundaries that are unsafe to overwrite. The problems involved in splicing with a variable length 

instruction set have already been mentioned (see section 2.1.4) and it should be made clear that a splice cannot be 

placed across a basic block boundary. This is because a basic block boundary is necessarily the target of a branch or 

call instruction. 

 

It is, however, safe to place a splice at any point within a basic block, so long as it begins on an instruction 

boundary. In order to make the tool more practical GILK does not allow such fine grained splicing. Instead, it allows 

a “pre-hook” and/or “post-hook” splice to be added to a basic block.  

 

A pre-hook splice is placed at the beginning of a basic block whereas a post-hook splice is placed at the end of a 

basic block. A post-hook splice must still begin on an instruction boundary, and so may not always be exactly at the 

end of the block.  

 

3.4.1 Local Bounce Allocation 

 

There is a slight complication with the above. On an Intel x86 processor a 32-bit branch instruction is five bytes 

long. But, a basic block may be only a single byte in length. Clearly, it would be unsafe to splice such a small basic 

block using a five byte branch instruction, as this would result in the splice straddling a block boundary. 

  

GILK uses a simple method to expose space for local bounces. A local bounce is a bounce that is located within the 

same kernel function as the splice which uses it. 

 

When asked to instrument a basic block, GILK examines the size of the block. If it is less than thirty-two bytes in 

size2, it will relocate the entire block into a code patch. Otherwise, it will just relocate those instructions overwritten 

by the splice.  

 

                                                           
2 32 was chosen because it meant the every basic block that wasn’t relocated would have to contain atleast two 

instructions. This saved some complication in design of the tool. 

Disassembler 

Kernel 

Analyzer 

Dynamic Code 

 Generator 

Instrumentation  

Manager 

User Interface 

Device  

Driver 

Figure 3.1, showing a structural overview of the GILK instrumentation 

tool 



 20 

Now, if a basic block that is ten bytes or 

more in size is completely relocated it 

will expose at least five bytes within the 

kernel function that are never executed. 

Figure 3.2 helps make this clearer. 

Therefore, the exposed bytes are 

available for use as bounces.  

 

There remains one point to note about 

GILK’s solution to the awkward block 

problem. It does not permit the 

instrumentation of single-byte basic 

blocks, as there is no single byte branch 

instruction in the Intel x86 architecture.  

 

 
3.4.2 A More Aggressive Bounce allocation Strategy 

 

The simple strategy outlined above allows splicing of awkward blocks in many situations. However, GILK was 

designed with a more aggressive strategy in mind and only time has prevented its full potential from being realized. 

 

It is straightforward to see that, relocating instructions from a basic block exposes space in that block that can be 

safely overwritten. Therefore, instead of just relocating the instructions overwritten by a splice, extra instructions 

after the splice could also be relocated in order to expose additional free space for local bounces. 

 

This could be taken a stage further. If a bounce is required for a particular splice and the previous methods cannot be 

applied, then an entire basic block could be relocated just for the purpose of exposing space for a bounce. This 

should be used as a last resort, because it introduces two unnecessary branches into the instruction stream. 

 

All of this raises the obvious question: Why not just relocate the entire function and apply existing binary rewrite 

methods to insert the required instrumentation?  

 

The answer to this question depends upon the intended use of the instrumentation tool. If a large number of 

instruments are to be made simultaneously, then relocating every function that is to be instrumented would consume 

a lot of kernel memory. Kernel memory cannot be swapped to disk, and thus the amount of available physical 

memory for user space processes would be reduced, which may impact upon system performance.  

 

However, if only a few instruments are to be made simultaneously then it makes sense to relocate the entire 

function, particularly as it would permit instrumentation of all basic blocks (including single byte blocks) without 

complication.  

 

3.5 The Relocated Sequence 
 

As discussed above, GILK determines which bytes are to be relocated based upon the size of the block and what 

instrument(s) are being applied to the block. The set of instructions actually relocated for an individual splice is 

termed the “relocated sequence”. 

 

The instructions that make up the relocated sequence are not always identical to those in the original block. GILK 

must modify any instructions that use relative addressing. In some cases, this requires a new instruction and others 

simply an adjustment of the relative address, taking into account the new location of the instruction. 

 

3.6 The Code Patch 
 

Each splice connects to a unique code patch (possibly via a bounce). The contents of the code patch are determined 

by the instrument(s) being applied to the basic block and the relocated sequence. 

Basic block 

boundaries 
Block X 

Block Y Block Y 

Block X 

Splice 

Figure 3.2, showing part of a kernel symbol before (left) and  

after (right) a splice has been made. The shaded area represents  

space exposed by relocating the whole of block X. The exact contents 

of the code patch is not important for this example. 

The code patch 
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For example, suppose that some pre-hook instruments are being applied to a basic block and the block is large 

enough to avoid complete relocation. In this case, the call sequences of the instruments are placed at the start of the 

code patch. In this way, the call sequences and the instrument functions they connect to will execute before the first 

instruction of the basic block. 

 

The procedure for a post-hook instrument applied to a large basic block is similar, except that the call sequences are 

placed after the relocated sequence. There is one complication, as the last instruction of a basic block may be a 

branch or function call return. This is a problem because the presence of such an instruction may prevent the call 

sequences (located after it in the code patch) from being executed. In this case, GILK “splits the block end”. What 

this means is that the offending instruction is separated away from the relocated sequence. The call sequences are 

then sandwiched between the remainder of the relocated sequence and the offending instruction. This results in the 

call sequences being executed after the last sequential instruction of the basic block. Figure 3.4 shows a good 

example of a post-hook instrument being applied. 

 

The final case to cover is the application of instruments to a basic block that needs complete relocation. In this 

situation, the splice instruction is always written over the start of the basic block and the relocated sequence consists 

of all the instructions that make up the basic block. If a pre-hook instrument is requested for the block then its call 

sequence is located before the relocated sequence. Also, if a post-hook instrument is requested for the block, then its 

call sequence is located after the relocated sequence, with the block end being split when necessary. Figure 3.3 

shows the three possible code patch configurations. 

 

 

3.6.1 State Saving 

 

In order for the kernel symbol being instrumented to behave exactly as it did before, it is necessary for the state of 

the machine to be preserved across all call sequences in a code patch. On the Intel architecture, preserving the state 

of the machine consists of preserving the values of all the registers, including the flags register. 

 

3.6.2 The Return Point 

 

There is one aspect of the code patch that has not yet been mentioned. That is, where control goes after the code 

patch has been executed. Clearly, it must return to the instruction that originally followed the last instruction of the 

relocated sequence.  

 

There are four types of basic block that are of concern when considering this problem: 

 

1. The block has no arcs leading from it. This occurs when the final instruction of the block is a return instruction. 

 

2. The block has a single “follow-on” arc. A follow on arc occurs when a sequence of instructions produces two 

basic blocks in the control flow graph because one of the instructions is the destination of some branch located 

Relocated  

Sequence 

Call 

sequences 

First part of 

Relocated  

Sequence 

Call 

sequences 

The Block 

End 

Call 

sequences 

Call 

sequences 

First part of 

Relocated  

Sequence 

The Block 

End 

Figure 3.3 - The three possible code patch configurations. 

 Note that the block end will be empty in some cases 
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elsewhere. The follow-on arc is therefore the arc that connects these two blocks together. It represents the fact 

that the two basic blocks are physically located next to each other. An example of a follow-on arc is the arc 

from block two to block three in the control flow graph of figure 3.4.  

 

3. The block has a single outgoing arc that is not a follow-on arc. This occurs when the final instruction of the 

block is an unconditional branch. 

 

4. The block has two outgoing arcs. This occurs when the block’s final instruction is a conditional branch. In this 

case, one arc is effectively a follow-on arc and the other points elsewhere in the control flow graph. 

 

There are also a few more points that should be noted. Firstly, there can be at most one branch or return instruction 

in the relocated sequence. Secondly, if a branch or return instruction is present in the relocated sequence then it is 

always the last instruction. Hence, splitting the block end guarantees that all the call sequences will be executed 

before any branch or return instruction in the relocated sequence. 

 

GILK ensures that control returns to the correct location in the original function by making the last instruction of the 

code patch an unconditional branch, called the terminating branch. This points to the instruction that would 

normally be executed after the last instruction of the relocated sequence. 

 

To see that this works, consider the four cases outlined above. The first case is trivial as a return instruction will 

always return to its call site. Hence, in this case the terminating branch is unnecessary. 

Figure 3.4 - On the left we see part of a kernel function and its control flow graph. On the right we see 

the result of applying a post-hook instrument to block 1. Some of the instruction operands have been 

omitted purely for simplification. In the code patch, notice that the relocated sequence has been 

separated as a result of splitting the block end and that the conditional branch, although relocated to the 

code patch, has been fixed so that it still points to its original destination. Also, the destination of the 

terminating branch is the instruction that originally followed on from the conditional branch. As a final 

note, the unused slots in the new block 1 are available to be allocated for local bounces. 
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In the second case, there are no branch instructions in the relocated sequence. Therefore, the terminating instruction 

will eventually be executed and control will return to the correct point. 

 

In the third case, the mechanism for generating the relocated sequence will ensure that the unconditional branch at 

the end of the relocated sequence still points to its original destination. Again, the terminating branch is unnecessary 

here. 

 

The final case is a mixture of the above. The conditional branch is adjusted when generating the relocated sequence 

so that the taken destination is still the original destination. If the branch is not taken, control will fall through to the 

terminating branch and the follow on arc will effectively be taken. This case is illustrated in figure 3.4. 

 

3.7 Splice Dependence 
 

The use of local bounces introduces a dependence 

problem. This occurs because a bounce is dependent upon 

the space it overwrites being unused. As an example, 

suppose that splice SB is a splice that requires the local 

bounce B1. Additionally, the splice SE exposes the 

bounce slot allocated to B1. This is shown in figure 3.5. 

 

Now, B1 is dependent upon SE because it cannot be 

installed (written to kernel memory) unless SE is already 

been installed. This is because the bounce slot used by B1 

is only available when SE is installed. Also, SB is 

dependent upon B1 as it cannot be installed before B1. 

The best solution to this problem is to atomically install all 

splices and bounces together. At the current time, 

however, GILK does not install them all together. Instead, 

GILK installs splices and bounces in an order which 

preserves the dependencies among them.  

 

3.8 Dynamic Code Generation 
 

The code patch is actually assembled in GILK from strings of assembly language instructions that represent the call 

sequences, some state saving instructions and the relocated sequence. The assembly language instructions for 

individual call sequences are obtained from separate files on disk. The assembly language for the relocated sequence 

is obtained by first disassembling the instructions marked for relocation and then passing them through a filter, 

which amends any program counter relative instructions, and generates the actual relocated sequence.  

 

All parts of the patch are then concatenated together into a single string and fed into the dynamic code generation 

module. This module first assembles the instructions into object code using the GNU assembler “as” and then links 

them using the GNU BFD object file library to produce the actual machine code representation of the patch. This 

patch is then uploaded into kernel memory via the device driver, which is discussed later. 

 

3.9 The Instrument Function 
 

In order to get an idea of what an instruction function is and what it does, a simple instrument function that counts 

the number of times it has been called is presented: 

 
void counter_instrument(unsigned int iid) 

{ 

  static int i=0; 

  ilk_log_integer_sample(i++,iid); 

} 

 

Block X 

Block Y 

SE 

B1 

SB 

Figure 3.5, showing part of a kernel function before (left)  

and after (right) an instrumentation has been applied.  

In this case, splice SB is dependent upon  

bounce B1, which is dependent upon splice SE. 
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The function accepts a single parameter, the unique instrument identifier. It then generates a sample by logging the 

current call count with the identifier. The instrument function is loaded into the kernel as a kernel module. What this 

means is that the task of dynamically linking its symbols is performed by the kernel, which saves some complication 

in GILK. 

 

The instrument functions are free to use any kernel functions available to normal device drivers. This raises a 

potential pitfall, which GILK fails to prevent. If an instrument function makes use of a kernel symbol that is being 

instrumented using itself, an infinite loop will be setup which may cause the kernel to grind to a halt. 

 

3.10 The ILK Device Driver 
 

ILK is the name given to the device driver component of GILK. The job of this component is to collect samples 

from all the active instruments and to provide a means for those results to be copied from kernel space to user space. 

It also provides an interface to some kernel functions, such as kmalloc which is used for allocating the kernel 

memory for the code patches.  

 

This is an important part of the instrumentation tool. Throughput is an issue, so it must be able to cope with a 

reasonably high rate of sample generation. 

  

In order to keep the sample collection efficient, a design decision was made that fixed the type of sample that could 

be logged to a tuple of the instrument identifier and a single value. It would have been nice to allow more than one 

value to be logged with each identifier. For example, suppose the parameters of a function were to be recorded. In 

this case, it would be ideal if all the parameters were logged with the instrument identifier as a single sample. 

Instead, each parameter must be separately logged, generating multiple samples. This introduces a certain amount of 

waste and complicates analysis of the samples. 

 

ILK uses an array of fixed size structures to store the samples as they are generated. This array is used as a cyclic 

buffer with ILK writing samples into it and GILK reading them out 

. 

This results in a complication, which GILK does not attempt to address. If the sample generation rate is high, then 

GILK will be working hard copying data from the device driver. This is a relatively expensive procedure as it 

involves a context switch. This additional load on the system may well affect the samples generated. The options are 

limited on how to decrease the impact on performance from this copying. The samples could be stored in kernel 

memory for the duration of the instrumentation. However, it is not uncommon for five MegaBytes (or more) of data 

to be generated for only a sixty second instrumentation. Clearly, storing all of that in unpageable kernel memory 

would hit upon the performance of the system. Alternatively, a large buffer could be used that gets flushed with a 

low frequency. However, existing implementations of this method suggest that performance is still affected, as the 

copying of samples to user space is more furious than before.  

 

3.11 Sample Collection 
 

To collect the samples being generated during instrumentation, GILK forks of a separate child process whose sole 

purpose is to continuously copy samples from user space and write them to disk. The idea behind this is that it 

allows the user interface of GILK to continue working without affecting the amount of processor time devoted to 

copying samples from the device driver. 

 

The file generated by the “collector” child-process contains a mapping from major instrument numbers to kernel 

symbols, as well as the samples generated. This file, together with the control flow graphs of the relevant kernel 

symbols, can be used to generate a picture of how the measured items changed throughout the instrumentation 

period. 
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4 Analysis of GILK 
 

This section will present the results obtained from the analysis of GILK. The reason for performing the analysis on 

GILK was to establish a level of confidence in it. The first half of the analysis was concerned with showing that the 

results produced by GILK are valid. The second half was interested in obtaining a figure for the overhead imposed 

on system performance by instrumentation with GILK.  

 

4.1 Correlating with IKD 
 

In order for an instrumentation tool to be used to influence the design of a software program, there must exist a 

certain level of confidence in the results generated by the tool. In other words, if the tool cannot be trusted to 

generate valid results why would anyone use it? To this end, some considerable effort was undertaken to show that 

at least some of the results generated by GILK are valid. To show that all results generated by GILK were valid 

would require either generation of all possible results (very impractical) or a mathematical proof that showed an 

invalid result could not be generated. The author speculates that the latter is intractable due to the infinite 

combinations in which the tool can be used and the infinite set of results which can be produced for each 

combination. 

 

The aim of the experiments outlined in this section was to show a correlation between measurements taken by GILK 

and those by another tool, called IKD, for the same sequence of events. This goes someway towards proving that 

measurements taken by GILK are valid. 

 

4.1.1 A brief introduction to IKD 

 

IKD [15] is a set of utilities that instrument certain aspects of the Linux kernel. It is supplied as a kernel patch that 

must be applied to the source tree before instrumentation can be performed. The tool is capable of a number of 

different instrumentation modes. However, for the purposes of this section only the “ktrace” mode is of interest as 

only this mode can produce results which can be compared with those of GILK. Further information regarding 

configuration of the tool to produce data comparable with GILK can be found in Appendix A. 

 

4.1.2 Design of the experiment 

 

The idea behind this experiment was to get both tools to record the time at which each event, from a known 

sequence of events, took place. This would allow a direct comparison of the timings made by each tool and hence, a 

conclusion regarding any correlation between them could be made. This event sequence would ideally be free from 

any random factors, as the presence of such factors could prevent a comparison being made.  

 

Therefore, the outline of the experiment was to boot into a clean system, set the tool measuring and then play the 

event sequence. This was performed for both GILK and IKD and produced two data sets (one for each tool) that 

were directly compared for discrepancies. The period of time during which measurements were being taken is, 

henceforth, to be termed the measurement period. Thus, the experiment contained two measurement periods: one 

for GILK and one for IKD. 

 

4.1.3 The Event Sequence 

 

As already mentioned, the IKD tool has only one mode of operation, the ktrace mode, which can produce results 

comparable with those of GILK. This mode records timestamps for entry events. An entry event occurs when 

control enters a function. GILK is capable of measuring many types of event, including the entry event. The entry 

event was therefore the common event type that could be measured by both GILK and IKD. Therefore, the event 

sequence had to be comprised purely of this event type. To simplify matters, only the entry events for a single 

function were to be timed. 

 

The function selected for this was “sys_fork”, which is called when a process splits itself in two. The exact details of 

this function are not relevant, and a concise account of its inner workings can be found in [3]. Sys_fork is 

particularly suitable because it has a certain property. This property is that, when the system is idle, sys_fork is 
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never called unless a user (indirectly) requests it to be3. This means that during the measurement periods and with 

user interaction prohibited, a single 

program can be used to generate the 

event sequence by calling sys_fork 

via the Linux ‘C’ function “fork”. 

 

The program used for this purpose 

was called Pulsar and its source 

code is shown in figure 4.1. Pulsar 

consists of five iterations of a loop 

body, which has three distinct 

phases of execution. Firstly, thirty-

two processes are forked off one 

after another (hence, thirty-two calls 

to sys_fork are made). Then, Pulsar 

“sleeps” for five seconds. Finally, it 

collects up all the completed 

processes and begins a new 

iteration. These shall henceforth be 

respectively referred to as the 

working, sleeping and collection 

phases.  

 

 

 

4.1.4 Examining the Results 

 

The results from the experiment (described above) are illustrated in figure 4.2. They consist of two sets of samples. 

Each sample is a timestamp for an entry event of sys_fork and a sequence number. The sequence number identifies 

the exact execution of the fork statement (in pulsar) that caused the entry event to sys_fork. Pulsar will generate 160 

entry events as there are 160 executions of its fork() statement. Therefore, the sequence numbers range from 0 to 

159 with 0 being the first execution and 159 being the last execution of fork. The sequence number can be related to 

the loop in Pulsar through the formula sequence number = (j*32) + i, where j is the outer loop variable and i is the 

loop variable for the first inner loop. 

 

In other words, each execution of the fork statement in Pulsar results in sys_fork being invoked. This, in turn, causes 

the instrumentation tool to generate a timestamp, which is then combined with the fork statement’s sequence number 

to produce the final sample. Both sample sets have been plotted on the graph, so that they can be compared. Hence, 

by examining figure 4.2, it should be clear that, although the two sample sets are very similar, there exists a slight 

discrepancy between them.  

                                                           
3 Sys_fork is actually called by the shell during system initialisation and also by various system daemons such as 

cron. However, the daemons can be prevented from disrupting the experiment and the measurement period always 

takes place after the system has been initialised. This means that these variables can be safely ignored. 

#include <stdio.h> 

#include <unistd.h> 

 

int main(int argc, char *argv[]) 

{ 

 int pidarray[32],i,j,status; 

 

 for(j = 0; j < 5; j++)  

 { 

    for(i = 0; i < 32; i++) { 

   if((pidarray[i] = fork()) == 0) 

       exit(0);     

  } 

 

 sleep(5);  

 

 for(i = 0; i < 32; i++) { 

   waitpid(pidarray[i],&status,0);  

  } 

 } 

exit(0); 

}  

Figure 4.1 - Showing the ‘C’ code for the Pulsar program. The  

three phases of the inner loop are marked on the right hand side. 

Working 

Phase 

Sleep 

Phase 

Collection 

Phase 
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Figure 4.2 - Showing the two (complete) sample sets, generated by IKD and GILK during their respective

measurement periods, superimposed onto each other. For each curve the five main vertical lines

represent the five working phases of Pulsar. The four main horizontal lines represent the first four sleep 

phases of Pulsar. The region enclosed by the dashed line is displayed in figure 4.3.
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Figure 4.3 highlights this discrepancy by showing the samples from both sets that correspond to the first working 

phase of Pulsar. What this tells us is that GILK has observed something different from that observed by IKD. The 

question is: why? Two hypotheses were developed as possible answers to this question. Firstly, the instrumentation 

method employed by GILK could be introducing these differences. The focal point of this hypothesis revolves 

around the sample logging mechanism, as this accounts for the majority of the overhead caused by GILK’s 

instrumentation method. 

 

The alternative hypothesis came from noticing that in figure 4.3, IKD actually has a similar, albeit less dramatic, 

curve to that of GILK. This leads to the conclusion that the effect causing the discrepancy is also measured by IKD. 

However, the size of the effect is much greater when GILK is being used for measuring. The suggestion is, 

therefore, that the effect being measured is that of process scheduling. In other words, Pulsar is scheduled off the 

processor before it can complete the work phase. However, to account for the discrepancy there would need to be a 

process present whilst measuring with GILK, but not with IKD, that was consuming a lot of processor time. If this 

were the case, the time between Pulsar being scheduled off and on the processor would be larger under GILK than 

IKD. 
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Figure 4.3 - Showing a close up of the first thirty-two samples from each of the two sample sets presented in figure 4.2.

This graph highlights one of the discrepancies observed in figure 4.2. 
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This second theory, being the preferred one, was further investigated by configuring GILK to record the times when 

process scheduling takes place, as well as the entry events of sys_fork. It would have been ideal to perform this 

second experiment with IKD, as well. However, IKD is in no way suitable for such a sensitive measurement of the 

Linux kernel. The results of this investigation are illustrated in figure 4.4. This graph, more or less, verifies the 

second hypothesis. Firstly, examination of the graph reveals that scheduling is taking place during the first working 

phase of Pulsar. Secondly, there are large periods of time when no scheduling occurs and Pulsar does not hold the 

processor4.  

The significance is that these periods represent processor time allocated to other processes and because the intervals 

are large, it can be concluded that these processes are intensively using the processor. 

 

A little bit of detective work soon uncovered the source of the problem. The GILK tool was forking of a child 

process to collect the generated results. A small piece of inter-process communication was occurring between GILK 

and its child to signal the end of measurement. This communication was using, for various reasons, non-blocking 

I/O which resulted in a busy-wait loop in both GILK and its child. A minor revision to GILK was made to remove 

these loops and the original experiment was performed again to confirm that this was the source of the original 

discrepancy. The new results are presented in figure 4.5. It should now be clear that there exists a correlation 

between the results produced between IKD and those from the modified version of GILK. 

                                                           
4 The time intervals that Pulsar holds the processor are those within which samples are clustered. So, from figure 4.4 

it can be deduced that Pulsar holds the processor for three separate time intervals during its first working phase 

because there are three sample clusters. 
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Figure 4.4 - showing the sample set generated by GILK for the second experiment performed. 

 As for Figure 4.3 the curve shows only the samples that correspond to the first working phase of Pulsar. 

The lines plotted above the graph indicate the times at which process scheduling took place These are plotted

 with respect to the X-axis but have no meaningful Y value.
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Figure 4.5 - showing that the measurements taken from the modified version of GILK

match almost exactly with those taken by IKD
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4.2 Measuring the overhead of Instrumentation with GILK 
 

For an instrumentation tool, the act of taking measurements will have an impact upon system performance. If this is 

very large, the results generated by the tool are likely to be skewed. Therefore, it is desirable to have an idea of the 

magnitude of overhead imposed by the instrumentation tool. To this end, the experiments outlined in this section 

attempt to measure this overhead. In fact, the following experiments only measure the effect of inserting an 

instrumentation into the kernel. They do not attempt to account for the overhead caused by the data collection part of 

GILK and this would need to be done separately. 

 

4.2.1 Design of the Experiment 

 

The idea behind this experiment was to measure the time taken to execute a section of code with and without an 

instrumentation applied to it. The section of code chosen to be timed was (again) sys_fork. The reason for this 

choice was that a low variance in the execution time of this function had already been observed whilst undertaking 

the previous experiments.  
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Figure 4.6 - showing the results from run three of both the control and active phases. 

The Y axis marks execution times for the function sys_fork
 

 

The experiment consisted of the control and active phases. In the control phase, GILK was used to record the 

execution time of sys_fork and no other instrumentation was applied. In the active phase, GILK was again used to 

record the execution time of sys_fork. However, in this phase a simple instrument was also added to every basic 

block of the function “do_fork”, which is the main worker function of sys_fork. In both phases, sys_fork was 

executed a number of times by running Pulsar. Each phase consisted of booting into a clean system and then 

measuring the execution time for six consecutive runs of Pulsar. The purpose of using Pulsar was merely to ensure 

that sys_fork was executed a sufficient number of times. 

 

4.2.2 Examining the Results 

 

The results from run three of each phase are plotted onto the graph in figure 4.6. The purpose of this is to highlight 

that a definite increase in the execution time of sys_fork was observed during the active phase. However, there are 
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many (random) peaks present in the graph, which are likely to be caused by various effects such as caching. Hence, 

it was decided that the overhead of instrumenting do_fork was represented in the graph by the difference between 

the baselines of both curves. This is not unreasonable as the magnitude of the peaks is the same in both curves  

 

meaning that they are not attributable to the instrumentation. Moreover, they introduce a random element to the 

execution time of sys_fork and it is desirable to ignore them in order to reduce the variance of the execution times 

being compared.  

 

Therefore, the minimal value recorded for both phases was determined and the difference between them attributed to 

the cost of instrumentation. These results are present in figure 4.7. It should be pointed out that the active phase 

added ninety-four instruments to the do_fork function. This is an unusually large number of instruments, which 

accounts for the large overhead. An estimate of the cost for an individual instrument was determined by dividing the 

measured difference by ninety-four. This gives the value of cost, per instrument added to do_fork, as 0.76%. 

 

Results

Measured Difference (in cycles) 27808

Overal Percentage Increase 71.82560182

Overhead per instrument (in cycles) 295.8297872

Percentage increase per instrument 0.764102147

Figure 4.7 - Showing the measured overhead for the instrumentation of do_fork.

There were 94 basic blocks of do_fork that were instrumented. Hence the 

overhead per instrument is obtained by dividing measured difference by 94.
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5 Reflection and Future Work 
 

This section will examine the strengths and weaknesses of the GILK instrumentation tool. Also, any future work that 

could be undertaken on this tool and its instrumentation technique will be discussed. This will include the suggested 

improvements on GILK that have arisen as a result of creating and using it. 

 

5.1 The strong points 
 

The potential uses of GILK have only been touched upon in this document. For example, most of the experiments 

previously discussed only use one type of instrument, which records timestamps. The type of instrument is not 

limited to this, and can cover logging of function parameters, cache miss rates5, T.L.B1 miss rates, memory usage, 

stack usage, disk usage, processor usage and much more. In short, just about every aspect of the kernel can be 

monitored through clever use of this tool. No other tool has been encountered that can provide this range of 

performance monitoring solutions for the Linux kernel. In fact, the instrumentation methods actually used by the 

kernel developers are primitive by comparison. 

 

There are two main features that make up the backbone of GILK. These are the dynamic code generation component 

and the specialised disassembler.  

 

5.1.1 The specialised disassembler 

 

The specialised disassembler provides the platform that makes the runtime code splicing method possible. It is used 

extensively to analyse the machine instructions that make up the Linux kernel and provides invaluable information, 

which could not be obtained from a standard disassembler.  

 

5.1.2 Dynamic code generation 

 

The method used by GILK to dynamically generate code is particularly interesting. By making good use of the GNU 

assembler ‘as’ and the GNU BFD object file manipulation library, it is capable of relocating any of the machine 

instructions that make up the kernel, with minimal effort. Additionally, instrumentation code accepted as a string of 

assembly language can be inserted at any point within a relocated chunk of instructions. This functionality is 

essential for the implementation of the runtime code splicing technique. 

 

5.2 Improvements to GILK 
 

The experience gained from using GILK to perform instrumentations has provided many ideas for suggested 

improvements. The main areas for improvement are sample generation and collection, co-ordination between 

instruments and presentation of results.  

 

5.2.1 Sample generation and collection 

 

The sample generation method has many problems and limitations, the major fault being the inability to cope 

gracefully with instruments that produce a large amount of data. This problem is twofold. Firstly, GILK doesn’t 

support the types of sampling that can produce less data. For example, the periodic sampling technique, discussed in 

section X.Y, is used in Paradyn[8][9] to reduce the amount of data without affecting the accuracy of the samples. 

This, and other sampling strategies, should be incorporated into GILK to provide a more rounded instrumentation 

tool. 

 

The second aspect of this fault is the poor strategy for collecting samples. At the moment, a process is forked off to 

continuously read the sample data. When the sample generation rate is high, this process will be consuming a large 

amount of processor time and its effect, already observed in the correlation experiment, will again be prominent. 

There are many different ways for dealing with this problem. However, none of the solutions will be ideal for all 

situations. Instead, it would be wise for GILK to provide the user with the ability to select the sample collection 

                                                           
5 Through use of hardware performance registers specific to the Intel x86 processor line 
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strategy. This would mean that the optimal strategy could always be chosen. An additional benefit would be that the 

user could vary the collection strategy in an effort to decide whether or not it was responsible for an observed 

behaviour. 

 

5.2.2 Instrument co-ordination 

 

Another important fault with GILK is the complete lack of co-ordination between instruments. For example, 

suppose it was desired to measure the execution time of a function A, but only when it had been called by a function 

B. This could be achieved by instrumenting both functions and providing a shared (boolean) variable between them. 

The instruments in function B would then be configured to set the shared variable on entry to B and to reset it upon 

exit from B. Then, when the instruments in A were executed, they would check to see if that variable was set. If it 

was, they would record the time taken for A. If it wasn’t they would simply do nothing. There are a few extra 

complications with this example, but it still serves to highlight the problem. Under GILK, this type of (very useful) 

instrument co-ordination is not possible.  

 

5.2.3 Presentation of Results 

 

This is a major flaw with GILK as it does not provide any capability of presenting the results. However, it is not 

really the inability of GILK to draw graphs that is the problem. This feature is probably best left to specific drawing 

packages. The real problem lies in the fact that GILK attributes no meaning to the data it produces. 

Different types of instrument produce different types of data. For example, certain types of instrument produce 

timestamps whilst others produce counts or variable contents. The meaning of the data produced is not currently 

reflected in the results file produced. This leaves the job of first deciphering the meaning of the data and then 

choosing the best way of displaying it up to the user. If the user has a great deal of knowledge on the workings of 

GILK this won’t be a problem, although it still takes considerable time. However, if the user doesn’t have this 

knowledge then the task becomes very difficult. 

 

Some instrumentation tools get around this problem by fixing the types of instrumentation that can be performed. A 

special filter is then provided for each type, which typically draws the data in an appropriate way on the display. The 

disadvantage with this is that a limitation has been imposed upon what the tool can actually be used for. Another 

approach would be to include “metadata” with the results produced. However, the ideal solution remains unclear and 

it is therefore, labelled “future work”. 

 

5.2.4 The Disassembler 

 

The disassembler provides information about machine instructions that cannot otherwise be obtained. One of its uses 

in GILK is to disassemble machine instructions that are to be relocated. The assembly language output from it is 

eventually fed back into an assembler and turned back into machine instructions. This is the source of subtle bugs. If 

the disassembler produces the wrong assembly language string for a machine instruction, but the string is still valid 

assembly language, then the assembler will compile this without warning and the original error will go undetected. 

This wouldn’t be a problem if the diassembler was perfect. However, this is quite difficult to achieve. 

 

A simple solution to this problem presents itself. Under Linux there already exists a well tested disassembler. 

However, it cannot produce the extended information that is required by GILK. So, the output of GILK’s internal 

disassembler should be compared with that of the standard disassembler to identify error cases. 

 

5.3 Future Work 
 

There are several aspects of the instrumentation method employed by GILK that could be extended upon. The main 

areas are: 

 

 Complete function relocation – The idea is to completely relocate a function, instead of only parts of it. This 

would offer much more freedom as the function could then be completely rewritten to insert the 

instrumentation. However, there remains a large question regarding the possible problems and side effects of 

doing this. For example, instrumentation of a large number of functions would result in a lot of (unpageable) 
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kernel memory being allocated. Additionally, the space originally occupied by each function would, 

presumably, be wasted. Hence, work could be done to investigate the practicality of this idea. 

 Sample Collection – As previously suggested, the sample collection strategy which has the smallest amount of 

system overhead remains undetermined. An investigation into the set of possible sample collection techniques 

could be performed, with an aim to identifying the best ones. This would provide GILK with a set of optimal 

strategies that could be chosen from for a given situation, and hence the overhead of instrumentation could be 

reduced. 

 Extension to user space – Currently, GILK is limited to instrumenting the Linux kernel. However, many of the 

techniques it employs could be applied to user space processes. However, there remains some complexity 

regarding safe instrumentation and threaded applications. Both of these problems are currently solved by GILK 

with the aid of the methodology of the Linux kernel. In order for this extension to work, solutions to these 

problems need to be found. 

 Bounce Allocation Strategy – As previously mentioned, the bounce allocation strategy employed by GILK is 

not as thorough as it could be. Work could be done to improve this. For example, bounces are not placed 

optimally and, as a result of this, the situation can arise in GILK where an instrument cannot be performed even 

though it is physically possible. Much of the framework for this already exists in GILK and it would not be a 

massive undertaking. 

 Indirect Branches – Currently, GILK cannot instrument functions that contain indirect branches. Much work 

has been done on the problem of indirect branches and there remains scope for implementing these solutions 

into GILK. However, the number of kernel functions that actually contain indirect branches is very small and 

the advantage gained may be negligible. 
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6 Conclusion 
 

This project has developed a sophisticated instrumentation tool for the Linux kernel called GILK, which is capable 

of inserting arbitrary instrumentation code before and after almost every basic block. Further, GILK has been shown 

to produce results that correlate with those of another instrumentation tool, IKD. GILK has however proved to be a 

dramatic improvement upon this tool. 

 

The full potential of GILK has yet to be realised. Much time could now be spent using the tool to investigate the 

Linux kernel and uncovering any performance bottlenecks. Furthermore, there are a number of small tweaks that, if 

implemented, would make the tool a well-rounded performance monitoring system. 
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7 Appendix A 

 
7.1 Ktrace 
The ktrace functionality of IKD provides call tracing of all kernel functions, except those that relate to scheduling. 

For each function call made, ktrace records the program counter, a timestamp and (optionally) a process identifier. 

The accuracy of the timestamp depends upon the host architecture. On an Intel x86 system, the RDTSC instruction 

is used and this provides timestamps measured in cycles. 

 

Ktrace is implemented through a direct augmentation to the kernel and makes good use of GCC’s “-pg” switch. 

Recall from section 2.1.2 that this compiler switch automatically inserts a call to “mcount” at the beginning of each 

function. The body of mcount is normally obtained by linking with the standard C Libraries. However, the Linux 

kernel is not linked with these libraries. Instead, IKD provides an implementation of this function, which records the 

required data into a cyclic buffer. The size of this buffer is determined at compile time and overflow results in the 

oldest samples being overwritten. 

 

The buffer is read through a special file, “/proc/trace”.  A small utility is provided that reads the current state of the 

buffer and formats it for output to a terminal.  

 

7.2 Adapting ktrace for accurate measurement 
The instrumentation technique used by IKD has some implications upon the granularity of functions which can be 

instrumented. Out-of-the-box, IKD is configured to instrument every function of the Linux kernel. This generates a 

tremendous amount of data and places a significant overhead on the kernel. More importantly, the internal buffer 

overflows very regularly, which means that a significant number of results are lost. A statistical sampling method 

could be employed here to cope with the arbitrary loss of results. However, GILK does not use a statistical sampling 

method, hence, a direct comparison would require a lossless data set from IKD. To achieve this, it was necessary to 

reduce the number of functions being instrumented by IKD to only those required. 

 

The set of kernel functions instrumented by IKD is mostly determined by which source files are actually compiled 

with the ‘-pg’ switch. Additionally, there is a small number of kernel functions which have had the calls to mcount 

manually applied. This, along with the fact that a single source file typically contains several functions, makes 

instrumenting a single function quite difficult. The solution employed was to disable instrumentation on all 

functions, including the exceptional cases. Then, the required instruments were inserted by manually adding the 

calls to mcount. Now, assuming the instrumented functions do not have a high call frequency, the buffer doesn’t 

overflow regularly. This allowed a complete sequence of the (relevant) function calls, along with their timestamps, 

to be recorded by IKD.  

 

 

 


