Language Design meets Verifying

Compilers

David J. Pearce

ConsenSys

@WhileyDave
whileydave.com

@WhileyDave
whileydave.com

class sprlib {

public:
sprlib(char *,int = 0);
~sprlib();
void setscreenptr (word) ;
void drawspr(int,int,int);
void xchgspr(int,int,int,int);

(Circa 1995)

History

Friday, 24th, June

Checking a large routine. by Dr. A. Turing.

How can one check a routine in the sense of making sure that it

is right?

In order that the man who checks may not have too difficult
a task the programmer should make a number of definite
assertions which can be checked individually, and from which
the correctness of the whole program easily follows.

—Alan Turing, 1949

March 1979

Stanford Verification Group
Edition 1

Report No.11

Computer Science Department
Report No. STAN-CS-79-73 1

STANFORD PASCAL VERIFIER
USER MANUAL

“it was the Stanford Pascal Verifier project that produced the first verification
system to target a real programming language” —Ireland’'04

The Verifying Compiler: A Grand Challenge for Computing Research

Abstract. This contribution proposes a set of criteria that distinguish a grand challenge
in science or engineering from the many other kinds of short-term or long-term research
problems that engage the interest of scientists and engineers. As an example drawn
from Computer Science, it revives an old challenge: the construction and application
of a verifying compiler that guarantees correctness of a program before running it.

—Hoare'03

deposit(...)
{
while C1 {
if C2 { return; }

}
// As the loop should always end prematurely with the ‘return’

// statement, this code should be unreachable. We assert ‘false’

// just to be safe.
assert (false);

—Cassez, et al., FM'21

(contract currently holds around 9million ETH)

bytecode.dFy - evm-dafny - Visual Studio Code B ® @

File Edit Selection View Go Run Terminal Help

EXPLORER = bytecode.dfy X m
~ EVM-DAFNY src > dafny > = bytecode.dfy
/ yiauie .
0 S 40
resources
h " 41 /**
» i 42 * Unsigned integer addition with modulo arithmetic.
g‘ v src = 43 * @param st A state.
> .gradle e 44 * @returns The state after executing an "ADD’ or an
ﬁf> ~ dafny 45 Y
v core ©® 46 func'_cion method Add(st: State): (st': State)
B:? = bl 47 requires st.IsExecuting()
_ 48 ensures st'.0K? <==> st.Operands() >= 2
= context.dfy 49 {
|=—|® = memory.dfy 50 if st.Operands() >= 2
= precompiled.dfy 51 then
= stack.dfy 52 var lhs st.Peek(0) as int;
= storage.dfy 53 var rhs st.Peek(1l) as int;
= substate.dfy 54 v:rpres :: (lh5P+ :.'hs) % TWOEEZG;N .
£ worldstate.dfy 55 st.Pop().Pop().Push(res as u) .Next ()
56 else
v evms 57 State.INVALID(STACK UNDERFLOW)
= berlin.dfy 58 }
> OUTLINE 59
{g} > TIMELINE 60 e

> JAVA PROJECTS 61 * Unsigned integer multiplication with modulo arithmetic

function abs(x:int) : (r:int)
ensures r >= 0
ensures (x ==r1) || (-x == 1) {

if x >= 0 then x else —x

}

function abs(int x) -> (int r)
ensures r >= 0
ensures (r == x) || (r == —x):
if x >= 0:
return x
else:
return -x

(Verifying) Compilers

“In computing, a compiler is a computer program that translates computer code
written in one programming language (the source language) into another language
(the target language).”

iy Advanced
ENG'N:E"’NG COMPILER DESIGN
COMPILER _IMPLEMENTATION
Keith D, Cooper & Linda Torceon S b

l

Alired V.Aho g
Ravi Sethi
Jeffrey D. Ullman

Parsing

—

Type
Checking

—

Other
Analysis

Gen
Code

Parsing

— IS N Gen
> Verification >

Parsing

—

Type

CheckingA)‘>

Other
Analysis

—

Verification |—

Gen
Code

datatype Option = Some(val:int) | None

method unboxer(x:int, p:0Option) returns (r:int)
requires x >= 0 ==> p.Some? {
if x >= 0 {
return p.val;
} else {
return x;
}
}

Whiley

type Some is {int val}
type Option is Some | null

function unboxer(int x, Option p) -> (int r)
requires (x >= 0) ==> (p is Some):
if x >= 0:
// Error!
return p.val
GllEES
return x

Whiley

type Some is {int val}
type Option is Some | null

function unboxer(int x, Option p) -> (int r)
requires (x >= 0) ==> (p is Some):
if x >= 0:
assert p is Some
return p.val
elliseh
return x

method maxer(x:int, y:int) returns (r:int)
requires x !=y
ensures (r == x) || (r == y) {
ifX>y{
return x;
} else if x < y {
return y;
}
}

Whiley

function maxer(int x, int y) -> (int r)
requires x != y:
if x > y:
return 1
else if x < y:
return O
GIlEGS
fail

Flow Typing

“In programming language theory, flow-sensitive typing (also called flow typing
or occurrence typing) is a type system where the type of an expression depends
on its position in the control flow.”

—Wikipedia

method iof(xs:seq<int>, x:nat) returns (r:0Option)
// If valid index returned, element matches item

ensures r.Some? ==> (r.val<|xs| && xs[r.val] == x)

method iof (int[] xs, int x) -> (Option r)
// If valid index returned, element matches item
ensures (r is Some) ==> (xs[r.val] == x)

Functional Purity

“To be functionally pure, a method must satisfy two critical properties: First, it
must have no side effects. ... The second property is functional determinism.”
—Finifter et al., 2008

function max(x:int, y:int) : (r:int)
ensures (r == x) || (r == y)
ensures (r >= x) & (r >= y) {

}

function max(int x, int y) -> (int r)
ensures (r == x) || (r == y)
ensures (r >= x) && (r >= y):

“Unlike pure functional programming, however, mutable value semantics al-
lows part-wise in-place mutation, thereby eliminating the memory traffic usually
associated with functional updates of immutable data”

—Racordon et al., 2022

function fill(xs:seq<int>, n:nat, x:int) : seq<int>
requires n <= |xs|
{

if n == 0 then xs

else [x] + fill(xs[1..],n-1,x)

}

function fill(int[] xs, uint n, int x) -> (int[] rs)
requires n <= |xs]:
for i in O..n:
xs[i] = x
return xs

(Un)interpreted Functions

“Normally function bodies are transparent and available for constructing proofs
of assertions that use those functions. However, sometimes it is helpful to mark
a function {:opaquel} and treat it as an uninterpreted function, whose prop-

erties are just its specifications.”
—Dafny Reference Manual

“In mathematical logic, an uninterpreted function or function symbol is one
that has no other property than its name and n-ary form."
—Wikipedia

function zero_f(xs:seq<int>, n:nat) : (r:seq<int>)
requires n <= |xs| { ... }

method zero_m(xs:seq<int>,n:nat) returns(r:seq<int>)
requires n <= |xs| { ... }

assert zero_f([1,2,3],2) == [0,0,3];

var r := zero_m([1,2,3],2);
assert r == [0,0,3];

Whiley

property zero_p(int[] xs, uint n) -> (int[] rs)
requires n <= |xs|:

function zero_f(int[] xs, uint n) -> (int[] rs)
requires n <= |xs|:

method zero_m(int[] xs, uint n) -> (int[] rs)
requires n <= |xs|:

assert zero_p([1,2,3],2) == [0,0,3]
assert zero_ f([1,2,3],2) == [0,0,3]
int[] rs = zero_m([1,2,3],2)

assert rs == [0,0,3]

Inference

function contains(xs:seq<int>, x:int) : bool {
exists k:nat | k < |xs| :: xs[k] == x

}

method find(xs:seq<int>, x:int) returns (r:nat)
requires contains(xs,x)

ensures xs[r] == x
{
for i := 0 to |xs]|
invariant contains(xs[i..],x) {
if xs[i] == x { return i; }
}

assert false;

function contains(xs:seq<int>, x:int) : bool {
exists k:nat | k < |xs| :: xs[k] == x

}

method find(xs:seq<int>, x:int) returns (r:nat)
requires contains(xs,x)

ensures RORGEPEIMETd xs[r] == x

{
for i := 0 to |xs|
invariant contains(xs[i..],x) {
if xs[i] == x { return i; }
}

assert false;

method indexOf (xs:

ensures r <= |xs|

ensures (r < |xs|) ==> (xs[r] == x) {
var i : int := O;

seg<int>, x:int) returns (r:nat)

while i < [xs|
invariant i <= |xs| {

if xs[i] == x { break; }
i =1+ 1;

}

return i;

Whiley

function indexOf(int[] xs, int x) -> (int r)
ensures (r != |xs|) ==> (xs[r] == x):
int i = 0

while i < |xs|

where i <= |xs]:

if xs[i] == x:
break
i=1i+1

return i

; ShriramKrishnamurthi
@ShriramKMurthi

10/ The next generation of computing
problems will not be about writing 80s
style b-line for-loops. It'll be about
properties, specification, reasoning,
verification, prompt eng, synthesis,
etc. How will we get there?

And no, | will not be taking questions.

(-:

® Checking a Large Routine, Turing. In Report of a Conference on High Speed
Automatic Calculating Machines, 1949.

#® A Practical Perspective on the Verifying Compiler Proposal, Ireland,
GCCRC, 2004.

» Verifiable functional purity in Java, Finifter et al., CCS, 2008.

® Implementation Strategies for Mutable Value Semantics, Racordon et al,
JOT, 2022. .

http://whiley.org

@WhileyDave
http://github.com/Whiley

http://whiley.org
@WhileyDave
http://github.com/Whiley

Language Features?

Whiley

function copy(int[] xs, uint n) -> (int[] ys)
ensures |ys| ==

// Create array of given size

ys = [0; nl

// Copy over what we can

for i in O..min(n, |xs|)

where n == |ys]|:
ys[i]l = xs[i]
// Done

return ys

Whiley

type Box<T> is &T

method destroy(Box<T> p):

//
delete p

Whiley

type Box<T> is &T

method destroy(Box<T> p)

oquizes #p - 1]
//

delete p

method destroy(Box<T> p):

//
delete p

