
Language Design meets Verifying
Compilers

David J. Pearce
ConsenSys

@WhileyDave
whileydave.com

@WhileyDave
whileydave.com

Background

class sprlib {
public:

sprlib(char *,int = 0);
~sprlib();
void setscreenptr(word);
void drawspr(int,int,int);
void xchgspr(int,int,int,int);
...

};

(Circa 1995)

History

Assertions

Friday, 24th, June

Checking a large routine. by Dr. A. Turing.

How can one check a routine in the sense of making sure that it
is right?

In order that the man who checks may not have too difficult
a task the programmer should make a number of definite
assertions which can be checked individually, and from which
the correctness of the whole program easily follows.

–Alan Turing, 1949

Verification

“it was the Stanford Pascal Verifier project that produced the first verification
system to target a real programming language” –Ireland’04

The Verifying Compiler: A Grand Challenge for Computing Research

Abstract. This contribution proposes a set of criteria that distinguish a grand challenge
in science or engineering from the many other kinds of short-term or long-term research
problems that engage the interest of scientists and engineers. As an example drawn
from Computer Science, it revives an old challenge: the construction and application
of a verifying compiler that guarantees correctness of a program before running it.

–Hoare’03

Example: Deposit Contract

deposit(...)
{

while C1 {
if C2 { return; }
...

}
// As the loop should always end prematurely with the ‘return‘
// statement, this code should be unreachable. We assert ‘false‘
// just to be safe.
assert (false);

}

–Cassez, et al., FM’21

(contract currently holds around 9million ETH)

Verifying Compilers: Dafny & Whiley

Dafny

function abs(x:int) : (r:int)
ensures r >= 0
ensures (x == r) || (-x == r) {

if x >= 0 then x else -x
}

Whiley

function abs(int x) -> (int r)
ensures r >= 0
ensures (r == x) || (r == -x):

if x >= 0:
return x

else:
return -x

(Verifying) Compilers

“In computing, a compiler is a computer program that translates computer code
written in one programming language (the source language) into another language
(the target language).”

—Wikipedia

Checking

Type

Analysis

Other

Code

GenParsing

Code

GenParsing Verification

Checking

Type

Analysis

Other
Verification

Code

Gen
Parsing

Design Choices: Typing versus Verification

Dafny

datatype Option = Some(val:int) | None

method unboxer(x:int, p:Option) returns (r:int)
requires x >= 0 ==> p.Some? {

if x >= 0 {
return p.val;

} else {
return x;

}
}

Design Choices: Typing versus Verification

Whiley

type Some is {int val}
type Option is Some | null

function unboxer(int x, Option p) -> (int r)
requires (x >= 0) ==> (p is Some):

if x >= 0:
// Error!
return p.val

else:
return x

Design Choices: Typing versus Verification

Whiley

type Some is {int val}
type Option is Some | null

function unboxer(int x, Option p) -> (int r)
requires (x >= 0) ==> (p is Some):

if x >= 0:
assert p is Some
return p.val

else:
return x

Design Choices: Typing versus Verification

Dafny

method maxer(x:int, y:int) returns (r:int)
requires x != y
ensures (r == x) || (r == y) {

if x > y {
return x;

} else if x < y {
return y;

}
}

Design Choices: Typing versus Verification

Whiley

function maxer(int x, int y) -> (int r)
requires x != y:

if x > y:
return 1

else if x < y:
return 0

else:
fail

Flow Typing

“In programming language theory, flow-sensitive typing (also called flow typing
or occurrence typing) is a type system where the type of an expression depends
on its position in the control flow.”

—Wikipedia

Design Choices: Flow Typing

Dafny

method iof(xs:seq<int>, x:nat) returns (r:Option)
// If valid index returned, element matches item
ensures r.Some? ==> (r.val<|xs| && xs[r.val] == x)

Whiley

method iof(int[] xs, int x) -> (Option r)
// If valid index returned, element matches item
ensures (r is Some) ==> (xs[r.val] == x)

Functional Purity

“To be functionally pure, a method must satisfy two critical properties: First, it
must have no side effects. ... The second property is functional determinism.”

—Finifter et al., 2008

Design Choices: Functions vs Methods

Dafny

function max(x:int, y:int) : (r:int)
ensures (r == x) || (r == y)
ensures (r >= x) && (r >= y) {

...
}

Whiley

function max(int x, int y) -> (int r)
ensures (r == x) || (r == y)
ensures (r >= x) && (r >= y):

...

“Unlike pure functional programming, however, mutable value semantics al-
lows part-wise in-place mutation, thereby eliminating the memory traffic usually
associated with functional updates of immutable data”

—Racordon et al., 2022

Design Choices: Mutable Value Semantics

Dafny

function fill(xs:seq<int>, n:nat, x:int) : seq<int>
requires n <= |xs|
{

if n == 0 then xs
else [x] + fill(xs[1..],n-1,x)

}

Whiley

function fill(int[] xs, uint n, int x) -> (int[] rs)
requires n <= |xs|:

for i in 0..n:
xs[i] = x

return xs

(Un)interpreted Functions

“Normally function bodies are transparent and available for constructing proofs
of assertions that use those functions. However, sometimes it is helpful to mark
a function {:opaque} and treat it as an uninterpreted function, whose prop-
erties are just its specifications.”

—Dafny Reference Manual

“In mathematical logic, an uninterpreted function or function symbol is one
that has no other property than its name and n-ary form.”

—Wikipedia

Design Choices: Interpreted vs Uninterpreted

Dafny

function zero_f(xs:seq<int>, n:nat) : (r:seq<int>)
requires n <= |xs| { ... }

method zero_m(xs:seq<int>,n:nat) returns(r:seq<int>)
requires n <= |xs| { ... }

assert zero_f([1,2,3],2) == [0,0,3];

var r := zero_m([1,2,3],2);
assert r == [0,0,3];

Design Choices: Interpreted vs Uninterpreted

Whiley

property zero_p(int[] xs, uint n) -> (int[] rs)
requires n <= |xs|:

...

function zero_f(int[] xs, uint n) -> (int[] rs)
requires n <= |xs|:

...

method zero_m(int[] xs, uint n) -> (int[] rs)
requires n <= |xs|:

...

assert zero_p([1,2,3],2) == [0,0,3]
assert zero_f([1,2,3],2) == [0,0,3]
int[] rs = zero_m([1,2,3],2)
assert rs == [0,0,3]

Inference

Design Choices: Window Inference

Dafny

function contains(xs:seq<int>, x:int) : bool {
exists k:nat | k < |xs| :: xs[k] == x

}

method find(xs:seq<int>, x:int) returns (r:nat)
requires contains(xs,x)
ensures xs[r] == x
{

for i := 0 to |xs|
invariant contains(xs[i..],x) {

if xs[i] == x { return i; }
}
assert false;

}

Design Choices: Window Inference

Dafny

function contains(xs:seq<int>, x:int) : bool {
exists k:nat | k < |xs| :: xs[k] == x

}

method find(xs:seq<int>, x:int) returns (r:nat)
requires contains(xs,x)
ensures r < |xs| && xs[r] == x
{

for i := 0 to |xs|
invariant contains(xs[i..],x) {

if xs[i] == x { return i; }
}
assert false;

}

Design Choices: Loop Invariant Inference

Dafny

method indexOf(xs: seq<int>, x:int) returns (r:nat)
ensures r <= |xs|
ensures (r < |xs|) ==> (xs[r] == x) {

var i : int := 0;

while i < |xs|
invariant i <= |xs| {

if xs[i] == x { break; }
i := i + 1;

}
return i;

}

Design Choices: Loop Invariant Inference

Whiley

function indexOf(int[] xs, int x) -> (int r)
ensures (r != |xs|) ==> (xs[r] == x):

int i = 0

while i < |xs|
where i >= 0 && i <= |xs|:

if xs[i] == x:
break

i = i + 1
return i

Verifying Compilers: Are we there yet?

Checking a Large Routine, Turing. In Report of a Conference on High Speed
Automatic Calculating Machines, 1949.

A Practical Perspective on the Verifying Compiler Proposal, Ireland,
GCCRC, 2004.

Verifiable functional purity in Java, Finifter et al., CCS, 2008.

Implementation Strategies for Mutable Value Semantics, Racordon et al,
JOT, 2022. .

http://whiley.org

@WhileyDave
http://github.com/Whiley

http://whiley.org
@WhileyDave
http://github.com/Whiley

Language Features?

Array Initialisers

Whiley

function copy(int[] xs, uint n) -> (int[] ys)
ensures |ys| == n:

// Create array of given size
ys = [0; n]
// Copy over what we can
for i in 0..min(n,|xs|)
where n == |ys|:

ys[i] = xs[i]
// Done
return ys

Memory Deallocation

Whiley

type Box<T> is &T

method destroy(Box<T> p):
//
delete p

Memory Deallocation

Whiley

type Box<T> is &T

method destroy(Box<T> p)
requires #p == 1 :

//
delete p

Memory Deallocation

Whiley

type Box<T> is &T where #p == 1

method destroy(Box<T> p):
//
delete p

