
Array Programming in Whiley

David J. Pearce
School of Engineering and Computer Science, Victoria University of Wellington, New Zealand

djp@ecs.vuw.ac.nz

Abstract
Arrays are a fundamental mechanism for developing and reasoning
about programs. Using them, one can easily encode a range of im-
portant algorithms from various domains, such as for sorting, graph
traversal, heap manipulation and more. However, the encoding of
such problems in traditional languages is relatively opaque. That is,
such programming languages do not allow those properties impor-
tant for the given problem to be encoded within the language itself
and, instead, rely up on programmer-supplied comments.

This paper explores how array-based programming is enhanced
by programming languages which support specifications and in-
variants over arrays. Examples of such systems include Dafny,
Why3, Whiley, Spec# and more. For this paper, we choose Whiley
as this language provides good support for array-based program-
ming. Whiley is a programming language designed for verification
and employs a verifying compiler to ensure that programs meet
their specifications. A number of features make Whiley particu-
larly suitable for array-based programming, such as type invariants
and abstract properties. We explore this through a series of worked
examples.

CCS Concepts •Theory of computation → Program reason-
ing; •Software and its engineering → Imperative languages;
Data types and structures

Keywords Array Programming, Software Verification, Loop In-
variants

1. Introduction
Arrays provide a powerful and oft-overlooked primitive for use in
programming. Arrays can be used to describe fundamental algo-
rithms from a wide range of areas and disciplines. Sorting algo-
rithms are, of course, one such example. With multi-dimensional
arrays and integer types we can easily encode more complex data
structures, such as sets, trees and graphs, etc. Even linked struc-
tures, typically implemented with references, can be implemented
using arrays (i.e. where array indices replace references, etc). Un-
fortunately, modern languages make array-based programming feel
very “low level” and, instead, promote the use of linked structures
by making struct and/or class constructs feel more “sophis-
ticated”. The essential argument of this paper is that, with proper
programming language support, array-based programming can be
made to feel just as sophisticated.

Numerous programming languages have been developed with
first-class support for specification in the form of pre- and post-
conditions and which typically emphasise the use of automated
theorem provers, such as Simplify [1] or Z3 [2], for static check-
ing. Good examples include ESC/Java [3], Spec# [4], Dafny [5],
Why3 [6], VeriFast [7], SPARK/Ada [8], and Whiley [9–11]. The
development of such tools has proved something of a boon for
array-based programming. This is because the specification lan-
guages they employ, as well as the underlying automated theorem
provers, typically have limited support for dealing with linked data
structures [12]. To work-around this, tool developers and practition-
ers have placed great emphasis on the use of arrays for encoding
problems of interest.

Contribution. This paper explores how array-based program-
ming is enhanced by programming languages which support spec-
ifications and invariants over arrays. This is achieved through a
series of worked examples in the Whiley programming language.

2. Background
In this section, we introduce the Whiley language in the context of
software verification through a series of examples. We do not pro-
vide an exhaustive examination of the language and the interested
reader may find more detailed introductions elsewhere [11].

2.1 Overview
The Whiley programming language has been developed from the
ground up to enable compile-time verification of programs [11].
The Whiley Compiler (WyC) attempts to ensure that every function
in a program meets its specification. When it succeeds in this en-
deavour, we know that: 1) all function post-conditions are met (as-
suming their pre-conditions held on entry); 2) all invocations meet
their respective function’s pre-condition; 3) runtime errors such
as divide-by-zero, out-of-bounds accesses and null-pointer derefer-
ences are impossible. Note, however, such programs may still loop
indefinitely and/or exhaust available resources (e.g. RAM).

2.2 Example 1 — Preconditions and Postconditions
Whiley allows explicit pre- and post-conditions to be given for
functions. For example, the following function accepts a positive
integer and returns a natural number:

function decrement(int x) -> (int y)
// Parameter x must be greater than zero
requires x > 0
// Return must be greater or equal to zero
ensures y >= 0:

//
return x - 1

Here, decrement() includes requires and ensures
clauses which correspond (respectively) to its precondition and

postcondition. In this context, y represents the return value and
may be used only within the ensures clause. The Whiley com-
piler statically verifies this function meets its specification (note,
integers are unbounded and cannot underflow).

The Whiley compiler reasons about functions by exploring their
control-flow paths. As it learns more about the variables encoun-
tered, it takes this into account. For example:

function max(int x, int y) -> (int z)
// Must return either x or y
ensures x == z || y == z
// Return must be as large as x and y
ensures x <= z && y <= z:

//
if x > y:

return x
else:

return y

Here, multiple ensures clauses are given which are conjoined
to form the function’s postcondition. We find that allowing multi-
ple ensures clauses helps readability, and note that JML [13],
Spec# [4] and Dafny [5] also permit this. Furthermore, multiple
requires clauses are permitted in the same manner.

As an aside, we note that the body of the max() above is almost
completely determined by its specification. However, in general,
this it not usually the case and typically there is scope for significant
variation between implementations.

2.3 Example 2 — Data Type Invariants
Type invariants over data can also be explicitly defined:

// A natural number is an integer greater-than-or-equal-to zero
type nat is (int n) where n >= 0
// A positive number is an integer greater-than zero
type pos is (int p) where p > 0

Here, the type declaration includes a where clause constrain-
ing the permitted values. The declared variable (e. g., n or p) repre-
sents an arbitrary value of the given type. Thus, nat defines the
type of natural numbers. Likewise, pos gives the type of posi-
tive integers. Constrained types are helpful for ensuring specifica-
tions remain as readable as possible. For example, we can update
decrement() as follows:

function decrement(pos x) -> (nat n):
//
return x - 1

Types in Whiley are more fluid than in typical languages as
variables can move seamlessly between them. If two types T1 and
T2 have the same underlying type, then T1 is a subtype of T2 iff the
constraint on T1 implies that of T2. For example, pos above is a
subtype of nat as the constraint on pos implies that of nat. As
another interesting example, consider the following:

type anat is (int x) where x >= 0
type bnat is (int x) where 2*x >= x

function f(anat x) -> bnat:
return x

In this case, we have two alternate (and completely equivalent)
definitions for a natural number (we can see that bnat is equivalent
to anat by subtracting x from both sides).

2.4 Example 3 — Loop Invariants
Whiley supports loop invariants which are necessary for proving
properties about loops. The following illustrates:

function sum(int[] xs) -> (int r)
// Every item in xs is greater or equal to zero
requires all { i in 0..|xs| | xs[i] >= 0 }
// Return must be greater or equal to zero
ensures r >= 0:

//
int s = 0
int i = 0
while i < |xs| where s >= 0 && i >= 0:

s = s + xs[i]
i = i + 1

return s

Here, a bounded quantifier enforces that sum() accepts an ar-
ray of natural numbers (which could equally have been expressed
as type nat[]). A key constraint is that summing an array of natu-
ral numbers yields a natural number (recall arithmetic is unbounded
and does not overflow). The Whiley compiler statically verifies that
sum() does meets its specification. The loop invariant is necessary
to help the compiler generate a sufficiently powerful verification
condition to prove the function meets the post condition.

2.5 Example 4 — Properties
Properties are provided as a convenient mechanism for expressing
common parts of a specification/invariant:

property contains(int[] xs, int x, int n)
where some { k in 0..n | xs[k] == x }

Here, the property contains captures the notion that an item
is contained in an array. Properties provide a mechanism for defin-
ing the “language” in which a function’s specification is written.1

3. Case Studies
We now examine array programming in the context of a language
supporting specification and invariants. Whilst our presentation
does focus on the use of Whiley, it should be noted that it applies
equally to other similar languages (e.g. Dafny [5], Spec# [4], etc).

3.1 Maximum Element
Our first example is the well-known problem of finding the maxi-
mum element of an array. This is an oft-used example in the context
of verification [14, 15]. The problem definition is simple:

“Given an array, return the largest value contained therein.”

To begin the process, we must first state this more precisely as
a specification. To do this, we define the concept of “largest” as
follows:

property largest(int[] xs, int x, int n)
where all { k in 0..n | xs[k] <= x }

This states that no element in the array from zero upto (but not
including) n is larger than x (the reason for including the upper
bound n will be apparent shortly). This is not itself sufficient to

1 One may wonder why properties are needed at all. However, properties
have special treatment within the verifier, compared with functions which
are “uninterpreted”.

specify our problem but, using contains() from above, we can
now do so:

function max(int[] items) -> (int r)
// Input array must have at least one item
requires |items| > 0
// Item returned must be largest of any in array
ensures largest(items,r,|items|)
// Item returned must be contained in array
ensures contains(items,r,|items|):

We can immediately see how the language facilitates a more
expressive description of the function, compared with mainstream
languages. In particular, the use of properties and quantification
over arrays is critical here.

At this point, it remains to implement max() and we simply
take the “most obvious” approach. Key to this is a loop invariant
which, at each point, maintains the largest value seen. This can be
viewed diagrammatically as follows:

This represents our implementation operating on a given array
which, at any given point, has determined the maximum element
(as determined by our specification) for all elements upto (but not
including) i.

Our implementation of the max() function is as follows (where
the specification is omitted as it matches above):

function max(int[] items) -> (int r)
...

nat i = 1
int m = items[0]
//
while i < |items|
where i <= |items|
where largest(items,m,i)
where contains(items,m,i):

if items[i] > m:
m = items[i]

i = i + 1
//
return m

The reason that both contains() and largest() were
defined with an upper bound n is now apparent. Doing so allows us
to reuse them for both specification and loop invariant. The latter
is necessary for the Whiley compiler to statically verify that this
function meets its specification.

3.2 Resize
Our next example is a simple function for resizing an array. If the
array size is reduced, all items up to that point are unchanged. If
the array size increases, the new portion of the array is filled with a
default. The following illustrates:

To give the specification for resize(), we define the notion
of “unchanged“ as follows:

property unchanged(int[] xs,int n,int[] ys)
// All elements upto n unchanged
where all { j in 0..|xs| |

j < n ==> xs[j] == ys[j]
}

This states that everything up to a given size n is the same
between xs and ys. Using this, we can specify resize():

function resize(int[] xs, nat n, int v)
-> (int[] ys)

// Returned array is of specified size n
ensures |ys| == n
// All elements retained from old array (up to new n)
ensures unchanged(xs,n,ys)
// All new elements match default value
ensures all {i in |xs|..n | ys[i] == v}:

The specification restricts the possible implementations con-
siderably but still leaves open, for example, the order of itera-
tion through the arrays. As before, our implementation takes the
straightforward approach:

function resize(int[] xs, nat n, int v)
...

int[] rs = [v; n]
nat i = 0
while i < n && i < |xs|
// Ensure array size remains unchanged
where |rs| == n
// All elements up to i match as before
where unchanged(xs,i,rs)
// All elements about n match element
where all {j in |xs|..n | rs[j] == v}:

//
rs[i] = xs[i]
i = i + 1

//
return rs

One curious aspect of our implementation is the loop invariant
clause “|rs| == n”. This clause seems unnecessary as no state-
ment in the loop affects the size of rs. The need for it is an artefact
of the verification system (which is based on Hoare logic). Specifi-
cally, within the body of a loop all knowledge about variables mod-
ified in that loop is lost, except that given in the loop invariant and
condition.

3.3 Cyclic Buffer
A cyclic buffer consists of a fixed-sized array with read and write
pointers that “wrap around”. The key is that we should be able to
write when the buffer is not full, and read when it is not empty. The
following gives a diagrammatic view:

Here, we see a buffer holding five items (marked in gray) where
write has wrapped around and is below read. We can also
see that write identifies the first unused space, whilst read

identifies the first used space (if one exists). The buffer is empty
when “read == write” and full when there is exactly one
unused space (i.e. roughly when “write+1 == read”). We can
encode the general concept of a cyclic buffer as follows:

type Buffer is {
int[] data,
nat read, // read pointer
nat write // write pointer

}
// Read / write pointers within bounds
where read < |data| && write < |data|

Our definition above is not very restrictive and simply requires
both pointers are within bounds. We can now easily define the
notion of an empty buffer:

type EmptyBuffer is (Buffer b)
where b.read == b.write

The type EmptyBuffer further constrains Buffer to the
case where both pointers are the same. Using this we can give a
suitable constructor for Buffer:

function Buffer(int n) -> EmptyBuffer
// Cannot create buffer with zero size!
requires n > 0:

//
return {data: [0;n], read: 0, write: 0}

Here, “[v;n]” generates an array of size n with each element
initialised to v. We see a precondition is necessary on the construc-
tor to ensure “n > 0” as, otherwise, one cannot construct a valid
buffer (i.e. since this requires e.g. “0 <= read < n”). We now
proceed to define the concept of a “non-full” buffer as follows:

type NonFull is (Buffer b)
// Write cannot be immediately behind read
where ((b.write+1) % |b.data|) != b.read

This simply states that write cannot be one space behind
read (accounting for wrap around). Using this definition, we can
give the function for writing into the buffer:

function write(NonFull b,int v)->(Buffer r)
// All items unchanged except at (old) write position
ensures unchanged(b.data, b.write, r.data)
// Item v now at old write pos
ensures r.data[b.write] == v
// Read pointer is unchanged
ensures b.read == r.read
// Write pointer has advanced one position
ensures (b.write+1) % |b.data| == r.write:

//
b.data[b.write] = v
b.write = (b.write + 1) % |b.data|
return b

The post-condition here is perhaps surprisingly involved and,
indeed, is longer than the implementation itself! In fact, it provides
a fairly exact description of what the function does (though, in
general, we find that specifications leave some “wriggle” room for
the implementation). The property unchanged() simply states

that everything in the array is unchanged, except for the item being
written:

property unchanged(int[] xs,int i,int[] ys)
// Size of arrays remains unchanged
where |xs| == |ys|
// All elements except i are unchanged
where all {
j in 0..|xs| | (j != i) ==> (xs[j]==ys[j])

}

At this point, we leave the remainder of the implementation to
the reader’s imagination and simply remark that it follows from the
above as expected.

3.4 Binary Heap
The binary heap is a common data-structure for implementing a
priority queue. From the perspective of array programming, it is
convenient as it implemented using an array with relative ease.
Diagramatically, we can view it as thus:

The key is that, for a given node at index i, the position of its
children is calculated as “(2*i)+1” and “(2*i)+2”. Further-
more, the value of each element is larger (i.e. has higher priority)
than either of its children. We can formalise this quite nicely as
follows:

property valid(int[] H, int n, int i,int c)
// For valid child, value is less than parent
where (2*i)+c < n ==> H[(2*i)+c] < H[i]

property validChildren(int[] H, int n)
// Items on left branch are below their parent’s item
where all{ i in 0..n | valid(H,n,i,1)}
// Items on right branch are below their parent’s item
where all{ i in 0..n | valid(H,n,i,2)}

Property validChildren() gives the invariant which holds
for any valid heap where n represents the number of items cur-
rently in the heap (and for which we will additionally require
n <= |H|). Using this property we can define a suitable data type
for representing heaps:

type Heap is {int[] data, nat length}
// All children within the heap are valid
where validChildren(data,length)
// Never more allocated items than space
where length <= |data|

Thus, a Heap defines a region of data within which all items
are stored and which limits the heap’s maximum possible size. At
any given moment some, all or none of the items in that region
maybe contained in the heap proper (as determined by length).

For completness, we now consider one operation for manipulat-
ing heaps. Figure 1 gives the insert() function. This puts the
item v being inserted into the next available slot, which may break
the heap invariant (i.e. because v is larger than its parent). To re-
store the invariant, the function proceeds to swap v up the tree until
it find the correct spot.

function insert(Heap h, int v) -> (Heap r)
// Heap cannot be full
requires h.length < |h.data|
// Item v is added to heap
ensures contains(r.data,v,r.length)
// All items in heap remain in heap
ensures containsAll(r.data,h.data)
// All items now in heap were in heap (except perhaps v)
ensures containsEx(h.data,r.data,v):

//
nat i = h.length
// Add v to end of heap
h.data[i] = v
// Create (ghost) copy of heap
Heap oh = h
//
int parent = (i-1)/2
// Swap v up to restore invariant
while parent > 0 && h.data[parent] < v
where parent < h.length
where contains(h.data,v,|h.data|)
where containsAll(h.data,oh.data)
where containsEx(oh.data,h.data,v):

// perform a swap
h.data[i] = h.data[parent]
h.data[parent] = v
// update indices
i = parent
parent = (i-1)/2

//
return h

property containsAll(int[] a, int[] b)
// Every item in b is in a
where all { i in 0..|b| |

contains(a,b[i],|b|)
}
property containsEx(int[] a,int[] b,int v)
// Every item in b is in a, except perhaps v
where all { i in 0..|b| |

b[i] == v || contains(a,b[i],|b|)
}

Figure 1. The function for inserting an item into a heap

One interesting aspect of insert() is the use of variable
“oh”. This is commonly referred to as a ghost variable, since
its only purpose is to aid verification [3, 16, 17]. Using this the
loop invariant can refer to h as it was before the loop. Finally,
insert() also employs two properties which extend the property
contains() from before.

4. Discussion
The above case studies highlight how the use of specifications gives
life to simple array-based implementations. That is, the ability to
express invariants explicitly can offset the “low-level” nature of
the array implementation. Such invariants are typically otherwise
hidden (though one can optimistically hope they are at least men-
tioned in the docs). We now provide some further commentary aris-
ing from this.

Properties and Type Invariants. Our case studies make extensive
use of properties to ensure specifications are as readable as possi-
ble. Typically, we also use them as the language for defining the
problem. We can observe some reuse of properties between exam-
ples. For example, contains() is used in the max() and binary
heap examples. Likewise, a similar notion of unchanged() is
used in resize() and the cyclic buffer. We imagine common
properties will be combined into libraries for describing related
problems. And, most likely, that a core set of properties will emerge
as a primary language for describing array problems (which, ide-
ally, would be incorporated into the standard library).

Type invariants are another mechanism we employ to help char-
acterise our problems. In the cyclic buffer problem, defining dif-
ferent states of the buffer (e.g. EmptyBuffer, NonFull, etc)
proved useful. We expect type invariants to be reused less than
properties as, by their nature, they are somehow more “concrete”
(i.e. they range over fixed types).

Other Tools. Whilst this paper focuses primarily on Whiley, the
argument put forward (i.e. that specifications/invariants enhance
array programming) extends to other similar tools. We now con-
sider one such tool, namely Dafny, which is quite comparable to
Whiley [5, 16]. Dafny is an imperative language with support for
objects and classes without inheritance. Like Whiley, Dafny em-
ploys unbound arithmetic, pure functions and provides immutable
collection types with value semantics. Dafny also employs dynamic
frames [18] as a simple mechanism for reasoning about pointer-
based programs. Finally, Dafny has been used successfully in many
verification challenges [15, 19–22] and for reasoning about pointer-
based programs such as the Schorr-Waite algorithm for marking
reachable nodes in an object graph [5]

Figure 2 provides a Dafny implementation of the max() func-
tion from §3.1. Generally speaking, this is largely similar to the
Whiley implementation. However, there are some differences be-
tween the two. For example, Dafny treats arrays as references
which can be null and, hence, requires it be established they are
not. Likewise, reads clauses are required to declare any reference
variables that may be accessed within a method. Finally, predicate
methods (analogous to properties in Whiley) must declare precon-
ditions to ensure, for example, arrays are not null and array accesses
are within bounds.

Loop Invariants. The need for loop invariants remains some-
thing of a barrier-to-adoption for tools like Whiley and Dafny.
Flanagan and Qadeer commented that “While method specifica-
tions also function as useful documentation and may be helpful for
code maintenance, loop invariants do not provide comparable ben-
efits” [23]. Their experiences using ESC/Java lead them believe that
“the burden of specifying loop invariants is substantial”. Likewise,
Beckert et al. note that, in general, “loop invariants are polluted by
formulas stating what the loop does not do.” [24].

Numerous techniques exist for automatically inferring loop in-
variants and we hope such work will ease the burden [25–30].
Abstract interpretation over some mathematical domain (e.g. lin-
ear inequalities [31], polynomials [32] or convex polyhedra [33])
is one common approach and, for example, Dafny employs some
techniques here already. This is particularly effective at identifying
arithmetic relationships between variables, but not so much for gen-
erating quantified invariants (i.e. as needed for array-manipulating
programs [28]). Predicate abstraction is another well-studied tech-
nique from model checking which has been adopted for inferring
loop invariants by several researchers [23, 34–36]. Predicate ab-
straction works by exploring all permutations of a predefined set
of predicates to (hopefully) identify one or more true invariants.
The limitation here is the need for a predefined set of predicates, as
this restricts what invariants can be inferred. Another common ap-

predicate method
largest(xs: array<int>, x: int, n: int)
requires xs != null && n <= xs.Length;
reads xs;{
(forall k :: 0 <= k < n ==> xs[k] <= x)
}
predicate method
contains(xs: array<int>, x: int, n: int)
requires xs != null && n <= xs.Length;
reads xs;{
(exists k :: 0 <= k < n && xs[k] == x)
}

method max(items:array<int>) returns(r:int)
// Input array must have at least one item
requires items != null && items.Length > 0;
// Item returned must be largest of any in array
ensures largest(items,r,items.Length);
// Item returned must be contained in array
ensures contains(items,r,items.Length);
{
r := items[0];
var i := 1;

while i < items.Length
invariant i <= items.Length;
invariant largest(items,r,i);
invariant contains(items,r,i);
{

if items[i] > r { r := items[i]; }
i := i + 1;

}
}

Figure 2. Dafny implementation of the max() function from §3.1.

proach is to exploit the connection between a loop’s invariant and
its postcondition (assuming this is known) [37]. The strategy here
is to progressively weaken a loop’s postcondition yielding one or
more candidate invariants. For example, Furia and Meyer do this
by exhaustively examining all mutations of the postcondition [28].

5. Related Work
Verification. Small array-oriented programs have long been used
in the context of verification. Dijkstra’s Dutch National Flag prob-
lem, although somewhat contrived, is perhaps one of the most
widely used for introducing loop invariants [38]. The essential
problem is to sort an array of three colours (i.e. those making up
the Dutch National Flag) into the correct order. The solution re-
quires only a single loop with a rather nice loop invariant. The
introductory books of Broda et al. [39], Kourie and Watson [14]
and Backhouse [40] all provide worked solutions to this problem
to illustrate loop invariants, whilst Gries leaves it as an exercise
for the reader [37]. Numerous verified solutions have also been
given [22, 41, 42].

The Correctness-by-Construction (CbC) approach pioneered by
Dijkstra, Hoare and others promotes the development of programs
by progressive refinement from specifications [43, 44]. Kourie and
Watson applied this to a range of simple array-based programs,
such as finding the maximum element of an array, performing a
linear search through an array, finding the longest matching array
segment, etc [14]. Dony and Le Charlier developed a tool for

teaching students the CbC method [45]. Their stated ambition was
to restrict themselves to “a very simple programming language
with simple types (limited to finite domains) and arrays, and to
address (relatively) small examples such as searching and sorting
algorithms”. This, they claimed, allowed problems to be specified
clearly and formally.

In works on verification, especially those related to teaching,
the presentation of loop invariants almost always coincides with
the use of array-based examples (which is perhaps not entirely
surprising). Back emphasises the value of “drawing good figures
to illustrate the way the algorithm is intended to work” where
his examples primarily correspond with array diagrams similar to
those seen in this (and many other) papers [46]. He goes on to
claim clear benefit from focusing on “well understood application
domains (mostly array manipulation programs)” when teaching.
In a similar vein, Astrachan argues that “invariants are especially
useful in introductory courses” but are often avoided because of
the mathematical notation involved [47]. Instead, a preference in
this context is for the use of invariant diagrams which, again, are
typically (though not exclusively) over arrays.

Finally, we observe that a large portion of the problems set in
verification challenges are array problems of the kind illustrated
here. For example, in VSCOMP’10 three out of five were array
problems (with the remainder on linked lists) [20]. Likewise, in
COST’11 two out of three were array problems (with the others on
trees) [15]. However, in VerifyThis’16 only one out of three was an
array problem [22].

Languages. Fortran, for a long time, has been the undeniable
king of high-performance computing in part, at least, because of
its strong emphasis on arrays. Early success with vectorising com-
pilers for Fortran77 lead to numerous efforts to support parallelisa-
tion across different architectures, such as the High-Performance
Fortran (HPF) standard [48], Vienna Fortran [49] and Co-Array
Fortran [50]. Fortran arrays are declared via the DIMENSION at-
tribute which allows one to specify the rank (number of dimen-
sions), shape (size of each dimension) and extent (ranges for each
dimension).

Pascal, despite the lack of dynamic arrays (described as a “de-
fect” by Wirth [51]), also has surprisingly expressive support for
static arrays. Since array types include the exact range of permitted
indices, interesting subtype relationships can be enforced. For ex-
ample, a value of type “ARRAY[1..100] of T” is not permit-
ted to flow into a location of type “ARRAY[0..99] of T”. In-
deed, any ordinal type can be used to restrict the range of permitted
indices. For example, a variable of type “ARRAY[byte] of T”
has an index for every possible byte value.

The Ada programming language provides a similar mechanism
to Pascal for defining and accessing bounded arrays, though ad-
ditionally supports explicit subtypes [52]. The SPARK/Ada sub-
set [8] also provides syntax for expressing specifications and in-
variants (and support for static checking), some of which migrated
into Ada 2012 [53].

The X10 language from IBM was designed from the begin-
ning with an aim to “include a rich array sub-language that sup-
ports dense and sparse distributed multi-dimensional arrays” for
the purposes of high performance computing [54]. However, the
language designers struggled to achieve “acceptable levels of per-
formance for a single unified array sub-language” [55]. To resolve
this, they instead identified a set of core mechanisms which allowed
powerful array primitives to be provided via libraries. X10 also pro-
vided, like Whiley, support for constrained types [56]. This meant
their libraries, for example, could “use constrained types to en-
force that the number of dimensions used in indexing operations ...
matches the rank” [55].

The Java-based language Lime, also from IBM, bears some sim-
ilarity to X10, though it focused on exploiting GPU and FPGAs as
accelerators [57]. Key differences over Java include the introduc-
tion of deeply immutable arrays and also bounded (i.e. fixed-sized)
arrays. The latter plays an important role in Lime for expressing in-
puts and outputs for stream operators. Furthermore, bounded arrays
are always accessed by index expressions which are statically guar-
anteed to be within bounds which, like Pascal, is achieved through
ordinal ranges.

Trojahner and Grelck argued that array programming “imposes
non-trivial structural constraints on ranks, shapes, and element
values of arrays” [58]. They employed dependent types on Single
Assignment C (SAC) (a compiled functional array language) pro-
grams to ensure such constraints are enforced. For example, that ar-
ray accesses are within bounds, and that arguments for function in-
vocations have appropriate shape [59]. In doing this, they acknowl-
edge that the system may sometimes be unable to decide correct-
ness and, in such cases, generate runtime checks instead. Finally,
we note that it would be interesting to consider the use of other de-
pendently typed languages (e.g. Agda [60], Idris [61], F∗ [62], etc)
for array programming.

6. Conclusion
Through a series of short case studies, we have explored how spec-
ifications and invariants enhance array programming. We believe
much is gained from expressing specifications and invariants as
these are typically otherwise hidden. This is especially true for
array programs which often involve subtle and complex invari-
ants. We also find the specification languages used in systems like
Whiley and Dafny are ideally suited for describing array problems.
Of course, their real power comes from statically verifying pro-
grams meet their specifications, and we hope further advances will
see them used more widely.

Acknowledgments
The author would like to thank the anonymous reviewers for their
helpful feedback on this paper.

References
[1] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem prover for

program checking. Journal of the ACM, 52(3):365–473, 2005.
[2] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In

Proceedings of the conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), pages 337–340, 2008.

[3] C. Flanagan, K. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and
R. Stata. Extended static checking for Java. In Proceedings of the ACM
conference on Programming Language Design and Implementation
(PLDI), pages 234–245, 2002.

[4] M. Barnett, M. Fähndrich, K. R. M. Leino, P. Müller, W. Schulte,
and H. Venter. Specification and verification: the Spec# experience.
Communications of the ACM, 54(6):81–91, 2011.

[5] K. Rustan M. Leino. Dafny: An automatic program verifier for
functional correctness. In Proceedings of the Conference on Logic for
Programming, Artificial Intelligence, and Reasoning (LPAR), volume
6355 of LNCS, pages 348–370. Springer-Verlag, 2010.

[6] J. Filliâtre and A. Paskevich. Why3 — where programs meet provers.
In Proceedings of the European Symposium on Programming (ESOP),
pages 125–128, 2013.

[7] B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and
F. Piessens. Verifast: A powerful, sound, predictable, fast verifier for
C and Java. In Proceedings of the NASA Formal Methods Symposium,
pages 41–55. Springer-Verlag, 2011.

[8] J. Barnes. High Integrity Ada: The SPARK Approach. Addison Wesley
Longman, Inc., Reading, 1997.

[9] The Whiley Programming Language, http://whiley.org.

[10] D. J. Pearce and L. Groves. Whiley: a platform for research in software
verification. In Proceedings of the Conference on Software Language
Engineering (SLE), pages 238–248, 2013.

[11] D. J. Pearce and L. Groves. Designing a verifying compiler: Lessons
learned from developing Whiley. Science of Computer Programming,
pages 191–220, 2015.

[12] P. Müller, M. Schwerhoff, and A. J. Summers. Viper: A verification
infrastructure for permission-based reasoning. In Proceedings
of the Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI), pages 41–62, 2016.

[13] D. R. Cok and J. Kiniry. ESC/Java2: Uniting ESC/Java and JML. In
Proceedings of the Conference on Construction and Analysis of Safe,
Secure, and Interoperable Smart Devices (CASSIS), pages 108–128,
2005.

[14] D. G. Kourie and B. W. Watson. The Correctness-by-Construction
Approach to Programming. Springer, 2012.

[15] T. Bormer, M. Brockschmidt, D. Distefano, G. Ernst, J. Filliâtre,
R. Grigore, M. Huisman, V. Klebanov, C. Marché, R. Monahan,
W. Mostowski, N. Polikarpova, C. Scheben, G. Schellhorn, B. Tofan,
J. Tschannen, and M. Ulbrich. The COST IC0701 verification
competition 2011. In Proc. FoVeOOS, pages 3–21, 2011.

[16] K. R. M. Leino. Developing verified programs with Dafny. In
Proceedings of the Conference on Verified Software: Theories, Tools,
Experiments (VSTTE), pages 82–82, 2012.

[17] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal,
T. Santen, W. Schulte, and S. Tobies. VCC: A practical system for
verifying concurrent C. In Proceedings of the Conference on Theorem
Proving in Higher Order Logics (TPHOL), pages 23–42, 2009.

[18] I. Kassios. Dynamic frames: Support for framing, dependencies and
sharing without restrictions. In Proceedings of the Symposium on
Formal Methods (FM), pages 268–283, 2006.

[19] K.R.M. Leino and R Monahan. Dafny meets the verification
benchmarks challenge. In Proceedings of the Conference on Verified
Software: Theories, Tools, Experiments (VSTTE), pages 112–126,
2010.

[20] V. Klebanov, P. Müller, N. Shankar, G. T. Leavens, V. Wüstholz,
E. Alkassar, R. Arthan, D. Bronish, R. Chapman, E. Cohen,
M. Hillebrand, B. Jacobs, K.R.M. Leino, R. Monahan, F. Piessens,
N. Polikarpova, T. Ridge, J. Smans, S. Tobies, T. Tuerk, M. Ulbrich,
and B. Weiß. The 1st verified software competition: Experience report
(VSComp). In Proceedings of the Symposium on Formal Methods
(FM), 2011.

[21] M. Huisman, V. Klebanov, and R. Monahan. Verifythis verification
competition 2012 - organizer’s report, 2013.

[22] M. Huisman, R. Monahan, P. Müller, and E. Poll. Verifythis 2016 — a
program verification competition. International Journal on Software
Tools for Technology Transfer (STTT), 2016.

[23] C. Flanagan and S. Qadeer. Predicate abstraction for software
verification. In Proceedings of the ACM symposium on the Principles
Of Programming Languages (POPL), pages 191–202, 2002.

[24] B. Beckert, S. Schlager, and P. Schmitt. An improved rule for
while loops in deductive program verification. In Proceedings of the
International Conference on Formal Engineering Methods (ICFEM),
pages 315–329, 2005.

[25] R. Chadha and D. A. Plaisted. On the mechanical derivation of loop
invariants. Journal of Symbolic Computation, 15(5 & 6):705–744,
1993.

[26] A. Ireland, B. Ellis, and T. Ingulfsen. Invariant patterns for program
reasoning. In Proceedings of the Mexican International Conference
on Artificial Intelligence (MICAI), pages 190–201, 2004.

[27] K. R. M. Leino and F. Logozzo. Loop invariants on demand. In
Proceedings of the Asian Symposium on Programming Languages
and Systems (APLAS), pages 119–134, 2005.

[28] C. A. Furia and Bertrand Meyer. Inferring loop invariants using
postconditions. CoRR, abs/0909.0884, 2009.

[29] M. Aponte, P. Courtieu, Y. Moy, and M. Sango. Maximal and
compositional pattern-based loop invariants. In Proceedings of the
Symposium on Formal Methods (FM), pages 37–51, 2012.

[30] D. Cachera, T. P. Jensen, A. Jobin, and F. Kirchner. Inference of
polynomial invariants for imperative programs: A farewell to Gröbner
bases. In Proceedings of the Static Analysis Symposium (SAS), pages
58–74, 2012.

[31] M. Colón, S. Sankaranarayanan, and H. Sipma. Linear invariant
generation using non-linear constraint solving. In Proceedings of
Conference on Computer Aided Verification (CAV), volume 2725 of
LNCS, pages 420–432. Springer-Verlag, 2003.

[32] S. Sankaranarayan, H. B. Sipma, and Z. Manna. Non-linear loop
invariant generation using Grobner bases. In Proceedings of the ACM
symposium on the Principles Of Programming Languages (POPL),
pages 318–329. ACM Press, 2004.

[33] R. Bagnara, E. Rodrı́guez-Carbonell, and E. Zaffanella. Generation
of basic semi-algebraic invariants using convex polyhedra. In
Proceedings of the Static Analysis Symposium (SAS), volume 3672 of
LNCS, pages 19–34. Springer-Verlag, 2005.

[34] S. Lahiri and R. Bryant. Constructing quantified invariants via pred-
icate abstraction. In Proceedings of the Conference on Verification,
Model Checking, and Abstract Interpretation (VMCAI), volume 2937
of LNCS, pages 267–281. Springer-Verlag, 2004.

[35] S. Lahiri, T. Ball, and B. Cook. Predicate abstraction via symbolic
decision procedures. In Proceedings of Conference on Computer
Aided Verification (CAV), volume 3576 of LNCS, pages 24–38.
Springer-Verlag, 2005.

[36] S. Srivastava and S. Gulwani. Program verification using templates
over predicate abstraction. In Proceedings of the ACM conference on
Programming Language Design and Implementation (PLDI), pages
223–234. ACM Press, 2009.

[37] D. Gries. The science of programming. Springer-Verlag, 1981.
[38] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
[39] K. Broda, S. Eisenbach, H. Khoshnevisan, and Steven Vickers.

Reasoned Programming. Prentice Hall, 1994.
[40] R. Backhouse. Program Construction. Wiley, 2003.
[41] C. Marche, C. Paulin Mohring, and X. Urbain. The KRAKATOA tool

for certification of JAVA/JAVACARD programs annotated in JML.
JLAP, 58(1–2):89–106, 2004.

[42] C. Hunter, P. Robinson, and P. Strooper. Agent-based distributed
software verification. In Proceedings of the Australasian conference
on Computer Science (ACSC), pages 159–164, 2005.

[43] E. W. Dijkstra. A constructive approach to the problem of program
correctness. BIT, 8:174–186, 1968.

[44] C. A. R. Hoare. Proof of a program: FIND. Communications of the
ACM, 14:39–45, 1971.

[45] I. Dony and B. Le Charlier. A tool for helping teach a programming
method. In Proceedings of the Conference on Innovation and
technology in Computer Science Education (ITICSE), pages 212–
216, 2006.

[46] R. Back. Invariant based programming: basic approach and teaching
experiences. Formal Aspects of Computing, 21(3):227–244, 2009.

[47] O. Astrachan. Pictures as invariants. In Proceedings of the Technical
Symposium on Computer Science Education (SIGCSE), pages 112–
118. ACM, 1991.

[48] K. Kennedy, C. Koelbel, and H. Zima. The rise and fall of high
performance fortran. Communications of the ACM, 54(11):74–82,
2011.

[49] B. Chapman, P. Mehrotra, and H. Zima. Programming in vienna
fortran. Science of Computer Programming, 1(1):31–50, 1992.

[50] R. Numrich and J. Reid. Co-array fortran for parallel programming.
ACM Fortran Forum, 17(2):1–31, 1998.

[51] N. Wirth. Recollections about the development of pascal. In
Proceedings of the Conference on History of Programming Languages
(HOPL), pages 333–342. ACM Press, 1993.

[52] J. Barnes. Programming in Ada 2012. Addison Wesley, 2014.

[53] R. Dewar. Ada2012: Ada with contracts. Dr. Dobbs’s Journal, 2013.

[54] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. Praun, and V. Sarkar. X10: an object-oriented
approach to non-uniform cluster computing. In Proceedings of
the ACM conference on Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), pages 519–538, 2005.

[55] D. Grove, J. Milthorpe, and O. Tardieu. Supporting array program-
ming in X10. In Proceedings of the Workshop on Libraries, Languages
and Compilers for Array Programming (ARRAY), pages 38–43, 2014.

[56] N. Nystrom, V. Saraswat, J. Palsberg, and C. Grothoff. Constrained
types for object-oriented languages. In Proceedings of the ACM
conference on Object-Oriented Programming, Systems, Languages
and Applications (OOPSLA), pages 457–474, 2008.

[57] J. Auerbach, D. Bacon, P. Cheng, and R. Rabbah. Lime: a
Java-compatible and synthesizable language for heterogeneous
architectures. In Proceedings of the ACM conference on Object-
Oriented Programming, Systems, Languages and Applications
(OOPSLA), pages 89–108, 2010.

[58] K. Trojahner and C. Grelck. Dependently typed array programs don’t
go wrong. Journal of Logic and Algebraic Programming, 78(7):643,
2009.

[59] C. Grelck and F. Tang. Towards hybrid array types in SAC. In
Proceedings of the Software Engineering Workshop, pages 129–145,
2014.

[60] A. Bove, P. Dybjer, and U. Norell. A brief overview of agda - A
functional language with dependent types. In Proceedings of the
Conference on Theorem Proving in Higher Order Logics (TPHOL),
volume 5674 of LNCS, pages 73–78, 2009.

[61] E. Brady. Idris, a general-purpose dependently typed programming
language: Design and implementation. Journal of Functional
Programming, 23(5):552–593, 2013.

[62] N. Swamy, C. Hritcu, C. Keller, A. Rastogi, A. Delignat-Lavaud,
S. Forest, K. Bhargavan, C. Fournet, P. Strub, M. Kohlweiss, J.
Zinzindohoue, and S. Béguelin. Dependent types and multi-monadic
effects in F. In Proceedings of the ACM symposium on the Principles
Of Programming Languages (POPL), pages 256–270, 2016.

