
A Space-Efficient Algorithm for Finding Strongly Connected Components

David J. Pearce

School of Engineering and Computer Science
Victoria University, New Zealand

david.pearce@ecs.vuw.ac.nz

Abstract

Tarjan’s algorihm for finding the strongly connected components of a directed graph is widely used and acclaimed.

His original algorithm required at most v(2 + 5w) bits of storage, where w is the machine’s word size, whilst

Nuutila and Soisalon-Soininen reduced this to v(1 + 4w). Many real world applications routinely operate on very

large graphs where the storage requirements of such algorithms is a concern. We present a novel improvement on

Tarjan’s algorithm which reduces the space requirements to v(1 + 3w) bits in the worst case. Furthermore, our

algorithm has been independently integrated into the widely-used SciPy library for scientific computing.

Keywords: Graph Algorithms, Strongly Connected Components, Depth-First Search.

1. Introduction

For a directed graph D = (V,E), a Strongly Connected Component (SCC) is a maximal induced subgraph

S = (VS , ES) where, for every x, y∈VS , there is a path from x to y (and vice-versa). Tarjan presented a now well-

established algorithm for computing the strongly connected components of a digraph in time Θ(v+e) [14]. In the

worst case, this needs v(2+5w) bits of storage, where w is the machine’s word size. Nuutila and Soisalon-Soininen

reduced this to v(1+4w) [10]. In this paper, we present for the first time an algorithm requiring only v(1+3w) bits

in the worst case. Furthermore, this algorithm has been independently integrated into the widely-used SciPy library

for scientific computing specifically because of its ability to handle larger graphs in practice [13].

Tarjan’s algorithm has found numerous uses in the literature, often as a subcomponent of larger algorithms,

such as those for transitive closure [9], compiler optimisation [5], program analysis [1, 11] and for bisimulation

equivalence [2] to name but a few. Of particular relevance is its use in model checking [7, 12], where the algorithm’s

storage requirements are a critical factor limiting the number of states which can be explored [8, 4].

2. Depth-First Search

Algorithm 1 presents a well-known procedure for traversing digraphs, known as Depth First Search (DFS). We

say that an edge v→w is traversed if visit(w) is called from visit(v) and that the value of index on entry to visit(v)

is the visitation index of v. Furthermore, when visit(w) returns we say the algorithm is backtracking from w to v.

The algorithm works by traversing along some branch until a leaf or a previously visited vertex is reached; then, it

backtracks to the most recently visited vertex with an unexplored edge and proceeds along this; when there is no

such vertex, one is chosen from the set of unvisited vertices and this continues until the whole digraph has been

Preprint submitted to Information Processing Letters July 24, 2018

Algorithm 1 DFS(V,E)

1: index = 0
2: for all v ∈ V do visited[v] = false
3: for all v ∈ V do
4: if ¬visited[v] then visit(v)

procedure visit(v)

5: visited[v] = true ; index = index + 1
6: for all v→w ∈ E do
7: if ¬visited[w] then visit(w)

7

F5

G6

7

H8

I

A4

D2 E3

B0

C1

F5

G6

7

H8

I

A0

D3 E4

B1

C2

F1

G2

0

H3

I

A8

D5 E4

B6

C

Figure 1: Illustrating three possible traversal forests for the same graph. The key is as follows: vertices are subscripted with their visitation index;
dotted lines separate traversal trees; dashed edges indicate those edges not traversed; finally, bold vertices are tree roots.

explored. Such a traversal always corresponds to a series of disjoint trees, called traversal trees, which span the

digraph. Taken together, these are referred to as a traversal forest. Figure 1 provides some example traversal forests.

Formally, F =(I, T0, . . . , Tn) denotes a traversal forest over a digraph D = (V,E). Here, I maps every vertex

to its visitation index and each Ti is a traversal tree given by (r, VTi ⊆V,ETi ⊆E), where r is its root. It is easy to

see that, if visit(x) is called from the outer loop, then x is the root of a traversal tree. For a traversal forest F , those

edges making up its traversal trees are tree-edges, whilst the remainder are non-tree edges. Non-tree edges can be

further subdivided into forward-, back- and cross-edges:

Definition 1. For a directed graph, D=(V,E), a node x reaches a node y, written x
D
;y, if x = y or ∃z.[x→z∈

E ∧ z
D
;y]. The D is often omitted from D

;, when it is clear from the context.

Definition 2. For a digraph D = (V,E), an edge x→ y ∈ E is a forward-edge, with respect to some tree T =

(r, VT , ET), if x→y /∈ ET ∧ x 6= y ∧ x
T
;y.

Definition 3. For a digraph D = (V,E), an edge x → y ∈ E is a back-edge, with respect to some tree T =

(r, VT , ET), if x→y /∈ ET ∧ y
T
;x.

Cross-edges constitute those which are neither forward- nor back-edges. A few simple observations can be made

about these edge types: firstly, if x→ y is a forward-edge, then I(x) < I(y); secondly, cross-edges may be intra-

tree (i.e. connecting vertices in the same tree) or inter-tree; thirdly, for a back-edge x→y (note, Tarjan called these

fronds), it holds that I(x) ≥ I(y) and all vertices on a path from y to x are part of the same strongly connected

component. In fact, it can also be shown that I(x) > I(y) always holds for a cross-edge x→y (see Lemma 1, page

10).

2

Two fundamental concepts behind efficient algorithms for this problem are the local root (note, Tarjan called

these LOWLINK values) and component root: the local root of v is the vertex with the lowest visitation index of

any in the same component reachable by a path from v involving at most one back-edge; the root of a component is

the member with lowest visitation index. The significance of local roots is that they can be computed efficiently and

that, if r is the local root of v, then r=v iff v is the root of a component (see Lemma 3, page 10). Thus, local roots

can be used to identify component roots.

Another important topic, at least from the point of view of this paper, is the additional storage requirements

of Algorithm 1 over that of the underlying graph data structure. Certainly, v bits are needed for visited[·], where

v = |V |. Furthermore, each activation record for visit(·) holds the value of v, as well as the current position in

v’s out-edge set. The latter is needed to ensure each edge is iterated at most once. Since no vertex can be visited

twice, the call-stack can be at most v vertices deep and, hence, consumes at most 2vw bits of storage, where w

is the machine’s word size. Note, while each activation record may hold more items in practice (e.g. the return

address), these can be avoided by using a non-recursive implementation (see §4). Thus, Algorithm 1 requires at

most v(1 + 2w) bits of storage. Note, we have ignored index here, since we are concerned only with storage

proportional to |V |.

3. Improved Algorithm for Finding Strongly Connected Components

Tarjan’s algorithm and its variants are based upon Algorithm 1 and the ideas laid out in the previous section.

Given a directed graph D = (V,E), the objective is to compute an array mapping vertices to component identifiers,

such that v and w map to the same identifier iff they are members of the same component. Tarjan was the first to

show this could be done in Θ(v + e) time, where v = |V | and e = |E|. Tarjan’s algorithm uses the backtracking

phase of Depth-First Search to explicitly compute the local root of each vertex. An array of size |V |, mapping each

vertex to its local root, stores this information. Another array of size |V | is needed to map vertices to their visitation

index. Thus, these two arrays consume 2vw bits of storage between them.

The key insight behind our improvement is that these arrays can, in fact, be combined into one. This array,

rindex[·], maps each vertex to the visitation index of its local root. The outline of our new algorithm, PEA FIND SCC1,

is as follows: on entry to visit(v), rindex[v] is assigned the visitation index of v; then, after each successor w is vis-

ited, rindex[v] = min(rindex[v], rindex[w]). Figure 2 illustrates this. The algorithm determines which vertices are

in the same component (e.g. B,C,D,E,G in Figure 2) in the following way: if, upon completion of visit(v), the

local root of v is not v, then push v onto a stack; otherwise, v is the root of a component and its members are popped

off the stack and assigned its unique component identifier. In Tarjan’s original algorithm, the local root of a vertex

was maintained explicitly and, hence, it was straightforward to determine whether a vertex was the root of some

component or not. In our improved algorithm, this information is not available and, hence, we need another way of

determining this. In fact, it is easy enough to see that the local root of a vertex v is v iff rindex[v] has not changed

after visiting any successor.

Pseudo-code for the entire procedure is given in Algorithm 2 and there are several points to make: firstly, root is

used (as discussed above) to detect whether rindex[v] has changed whilst visiting v (hence, whether v is a component

3

?

2

G6

5F
2

0

1

2

5

1
?

3

G?

?F
?2

0

1

2

A0

B1

2C

3D

4E

?
2

G

5F
2

0

1

2

5

4E

3D

2C

B1

A0 A0

B1

2C

3D

4E

Figure 2: Illustrating the rindex computation. As before, vertices are subscripted with visitation index and dashed edges are those not traversed.

The left diagram illustrates rindex[·] after the path A ; E has been traversed. On entry to visit(E), rindex[E] = 4 held, but was changed

to min(4, rindex[C]) = 2 because of the edge E→C. In the middle diagram, visit(E) and visit(F) have completed (hence, the algorithm is

backtracking) and rindex[D] is min(3, rindex[E], rindex[F])=2. Likewise, rindex[G]=min(6, rindex[B])=1 in the right diagram because of

G→B. At this point, the algorithm will backtrack to A before terminating, setting rindex[C]=1, rindex[B]=1 and rindex[A]=0 as it goes.

6

A?

?

F?

G?

?

H?

?

? ?

?

D2 E3

32

F5

G

7

H8

I

5

5

B0

C1

D2 E3

32

1

0

A4

4

5

5

B0

0

I

F5

G6

7

H?

I

6 ?

5

B0

C1

D2 E3

32

1

0

A4

4

5

C1

1

Figure 3: Illustrating why the inComponent[·] array is needed. As before, vertices are subscripted with their visitation index; dashed edges

indicate those not traversed; finally, inComponent[v] = true is indicated by a dashed border. In the leftmost diagram, we see that the traversal

started from B and that D has already been assigned to its own component (hence, inComponent[D] = true). In the middle diagram, the

algorithm is now exploring vertices reachable from A, having assigned B, C, D and E to their own components. A subtle point is that, on

entry to visit(A), rindex[B]< rindex[A] held (since A→B is a cross-edge). Thus, if inComponent[·] information was not used on Line 11 to

ignore successors already assigned to a component, the algorithm would have incorrectly concluded rindex[A]=min(rindex[A], rindex[B])=0.

In the final diagram, inComponent[I]= false on entry to visit(H) because a vertex is not assigned to a component until its component root has

completed.

4

Algorithm 2 PEA FIND SCC1(V,E)

1: for all v ∈ V do visited[v] = false
2: S = ∅ ; index = 0 ; c = 0
3: for all v ∈ V do
4: if ¬visited[v] then visit(v)
5: return rindex

procedure visit(v)

6: root = true ; visited[v] = true // root is local variable
7: rindex[v] = index ; index = index + 1
8: inComponent[v] = false

9: for all v→w ∈ E do
10: if ¬visited[w] then visit(w)
11: if ¬inComponent[w] ∧ rindex[w] < rindex[v] then
12: rindex[v] = rindex[w] ; root = false

13: if root then
14: inComponent[v] = true
15: while S 6= ∅ ∧ rindex[v] ≤ rindex[top(S)] do
16: w = pop(S) // w in SCC with v
17: rindex[w] = c
18: inComponent[w] = true
19: rindex[v] = c
20: c = c + 1
21: else
22: push(S, v)

root); secondly, c is used to give members of a component the same component identifier; finally, the inComponent[·]

array is needed for dealing with cross-edges. Figure 3 aims to clarify this latter point.

At first glance, Algorithm 2 appears to require v(3+4w) bits of storage in the worst-case. This breaks down in

the following way: v bits for visited; vw bits for rindex; vw bits for S (since a component may contain all of V);

2vw bits for the call-stack (as before); finally, v bits for inComponent and v bits for root (since this represents a

boolean stack holding at most |V | elements).

However, a closer examination reveals the following observation: let T represent the stack of vertices currently

being visited (thus, T is a slice of the call stack); now, if v∈T then v /∈S holds and vice-versa (note, we can ignore

the brief moment a vertex is on both, since it is at most one at any time). Thus, T and S can share the same vw

bits of storage to give a total requirement of v(3+3w) for Algorithm 2 (although this does require a non-recursive

implementation as before — see §4).

Theorem 1. Let D = (V,E) be a directed graph. if Algorithm 2 is applied to D then, upon termination, rindex[v] =

rindex[w] iff vertices v and w are in the same strongly connected component.

Proof. Following Tarjan, we prove by induction the computation is correct. Let the induction hypothesis be that, for

every vertex v where visit(v) has completed, rindex[v] and inComponent[v] are correct. That is, if inComponent[v]=

true then rindex[v]=rindex[w], for every w in v’s component; otherwise, inComponent[v]= false and rindex[v] holds

the visitation index of v’s local root. Thus, k is the number of completions of visit(·). For k = 1, visit(x) has only

completed for some vertex x. If x has no successors, rindex[x] was assigned a unique component identifier and

inComponent[x] = true; otherwise rindex[x] = min{I(y) | x→ y ∈ E} and inComponent[x] = false. Both are

5

correct because: a vertex with no successors is its own component; and any x→y is a back-edge since visit(y) has

not completed.

For k = n, we have that visit(·) has completed n times. Let x be the vertex where visit(x) will complete next.

Assume that, when Line 13 is reached, rindex[x] holds the visitation index of x’s local root. Then, the algorithm

correctly determines whether x is a component root or not (following Lemma 3, which implies rindex[x]= I(x) iff

x is a component root). If not, inComponent[x]= false and rindex[x] is unchanged when visit(x) completes. If x is

a component root, then the other members of its component are stored consecutively at the top of the stack. This is

because otherwise some member u was incorrectly identified as a component root, or some non-member u was not

identified as a component root (either implies rindex[u] was incorrect during visit(u) at Line 13). Since the other

members are immediately removed from the stack and (including x) assigned to the same unique component, the

induction hypothesis holds.

Now, it remains to show that, on Line 13, rindex[x] does hold the visitation index of x’s local root. Certainly,

if x has no successors then rindex[x] = I(x) at this point. For the case that x has one or more successors then

rindex[x] = min{rindex[y] | x→ y ∈ E ∧ inComponent[y] = false} at this point. To see why this is correct,

consider the two cases for a successor y:

(i) inComponent[y]= true. Let z be y’s component root. It follows that visit(z) has completed and was assigned

to the same component as y (otherwise some u, where visit(u) has completed, was identified as y’s component

root, implying rindex[u] is incorrect). Now, x cannot be in the same component as y, as this implies z T
; x

(by Lemma 2) and, hence, that visit(z) had not completed. Thus, the local root of y cannot be the local root

of x and, hence, x→y should be ignored when computing rindex[x].

(ii) inComponent[y] = false. Let z be y’s component root. By a similar argument to above, visit(z) has not

completed and, hence, z T
;x. Therefore, x is in the same component as y since y; z and, hence, rindex[y]

should be considered when computing rindex[x].

4. Further Improvements

In this section, we present three improvements to Algorithm 2 which reduce its storage requirements to v(1 +

3w) by eliminating inComponent[·] and visited[·]. To eliminate the inComponent[·] array we use a variation on a

technique briefly outlined by Nuutila and Soisalon-Soininen [10]. For visited[·], a simpler technique is possible.

The inComponent[·] array distinguishes vertices which have been assigned to a component and those which have

not. This is used on Line 11 in Algorithm 2 to prevent rindex[w] being assigned to rindex[v] in the case that w has

already been assigned to a component. Thus, if we could ensure that rindex[v] ≤ rindex[w] always held in this

situation, the check against inComponent[w] (hence, the whole array) could be safely removed. When a vertex v is

assigned to a component, rindex[v] is assigned a component identifier. Thus, if component identifiers were always

greater than other rindex[·] values, the required invariant would hold. This amounts to ensuring that index < c

always holds (since rindex[·] is initialised from index). Therefore, we make several specific changes: firstly, c is

6

Algorithm 3 PEA FIND SCC2(V,E)

1: for all v ∈ V do rindex[v] = 0
2: S = ∅ ; index = 1 ; c = |V | − 1
3: for all v ∈ V do
4: if rindex[v] = 0 then visit(v)
5: return rindex

procedure visit(v)

6: root = true // root is local variable
7: rindex[v] = index ; index = index + 1

8: for all v→w ∈ E do
9: if rindex[w] = 0 then visit(w)

10: if rindex[w] < rindex[v] then rindex[v] = rindex[w] ; root = false

11: if root then
12: index = index− 1
13: while S 6= ∅ ∧ rindex[v] ≤ rindex[top(S)] do
14: w = pop(S) // w in SCC with v
15: rindex[w] = c
16: index = index− 1
17: rindex[v] = c
18: c = c− 1
19: else
20: push(S, v)

initialised to |V |−1 (rather than 0) and decremented by one (rather than incremented) whenever a vertex is assigned

to a component; secondly, index is now decremented by one whenever a vertex is assigned to a component. Thus,

the invariant index < c holds because c ≥ |V |−x and index < |V |−x, where x is the number of vertices assigned

to a component.

Pseudo-code for the recursive version of our algorithm is shown in Algorithm 3. To eliminate the visited[·]

array we have used rindex[v] = 0 to indicate a vertex v is unvisited. In practice, this can cause a minor problem

in the special case of a graph with |V | = 2w vertices and a traversal tree of the same depth ending in a self loop.

This happens because the algorithm attempts to assign the last vertex an index of 2w, which on most machines will

wrap-around to zero. This can be overcome by simply restricting |V | < 2w, which seems reasonable given that it’s

providing a potentially large saving in storage.

Finally, we present a non-recursive implementation of Algorithm 3 as, strictly speaking, this is required to

obtain our reduced memory requirements in practice. Algorithm 4 gives pseudo-code for the imperative version of

Algorithm 3 and a reference implementation in Java is also provided [6]. Unfortunately, Algorithm 4 is somewhat

harder to understand than its recursive counterpart. The key is that vS and iS replace the call-stack from the

recursive version and, intuitively, can be considered to hold “continuations”. Here, the current vertex being visited

is on the top of the vS stack, whilst the index of its next out-edge to be traversed is on the top of the iS stack.

The procedure visitLoop() is responsible for progressively traversing all out-edges of a given vertex. To avoid the

recursive call used in Algorithm 3, the next vertex to visit is placed onto the vS/iS stack in beginEdge() before

visitLoop() returns. On subsequent calls to visitLoop(), the vertex being visited is loaded off the vS/iS stack so as

to continue where it left off. The edge index, i, identifies both the next vertex to visit and also the vertex which was

last visited (if one exists). This allows the necessary processing to be performed once an edge has been traversed,

7

and is done in finishedEdge().

5. Related Work

Tarjan’s original algorithm needed v(2 + 5w) bits of storage in the worst case. This differs from our result

primarily because (as discussed) separate arrays were needed to store the visitation index and local root of each

vertex. In addition, Tarjan’s algorithm could place unnecessary vertices onto the stack S. Nuutila and Soisalon-

Soininen addressed this latter issue [10]. However, they did not observe that their improvement reduced the storage

requirements to v(2+4w) (this corresponds to combining stacks S and T , as discussed in Section 3). They also

briefly suggested that the inComponent[·] array could be eliminated, although did not provide details. Finally, Gabow

devised an algorithm similar to Tarjan’s which (essentially) stored local roots using a stack rather than an array [3].

As such, its worst-case storage requirement is still v(2 + 5w).

Acknowledgements. Thanks to K. Siaulys for some useful corrections on Algorithm 4.

[1] M. Burke. An interval-based approach to exhaustive and incremental interprocedural data-flow analysis. ACM Transactions

on Programming Language Systems (TOPLAS), 12(3):341–395, 1990.

[2] Agostino Dovier, Carla Piazza, and Alberto Policriti. An efficient algorithm for computing bisimulation equivalence.

Theoretical Computer Science, 311(1-3):221–256, 2004.

[3] H. N. Gabow. Path-based depth-first search for strong and biconnected components. Information Processing Letters,

74(3–4):107–114, May 2000.

[4] Jaco Geldenhuys and Antti Valmari. Tarjan’s algorithm makes on-the-fly LTL verification more efficient. In Proceedings of

the Confernece on Tools and Algorithms for the Construction and Analysis of Systems (TACAS), pages 205–219. Springer,

2004.

[5] L. Georgiadis and R. E. Tarjan. Finding dominators revisited. In Proceedings of the ACM-SIAM symposium on Discrete

algorithms (SODA), pages 869–878. Society for Industrial and Applied Mathematics, 2004.

[6] http://github.com/DavePearce/StronglyConnectedComponents/.

[7] Serge Haddad, Jean-Michel Ilié, and Kais Klai. Design and evaluation of a symbolic and abstraction-based model checker.

In Proceedings of the conference on Automated Technology for Verification and Analysis, pages 196–210. Springer, 2004.

[8] G. J. Holzmann. The Spin model checker. IEEE Transactions on Software Engineering, 23(5):279–95, 1997.

[9] Y. Ioannidis, R. Ramakrishnan, and L. Winger. Transitive closure algorithms based on graph traversal. ACM Transactions

on Database Systems, 18(3):512–576, 1993.

[10] E. Nuutila and E. Soisalon-Soininen. On finding the strongly connected components in a directed graph. Information

Processing Letters, 49(1):9–14, January 1994.

[11] D. J. Pearce, P. H. J. Kelly, and C. Hankin. Efficient Field-Sensitive Pointer Analysis for C. In Proceedings of the ACM

workshop on Program Analysis for Software Tools and Engineering, pages 37–42, 2004.

8

Algorithm 4 PEA FIND SCC3(V,E)

1: for all v ∈ V do rindex[v] = 0
2: vS = ∅ ; iS = ∅ index = 1 ; c = |V | − 1
3: for all v ∈ V do
4: if rindex[v] = 0 then visit(v)
5: return rindex

procedure visit(v)

6: beginVisiting(v)
7: while vS 6= ∅ do
8: visitLoop()

procedure visitLoop()

9: v = top(vS) ; i = top(iS)
10: while i ≤ |E(v)| do
11: if i > 0 then finishEdge(v, i− 1)
12: if i < |E(v)| ∧ beginEdge(v, i) then return
13: i = i + 1
14: finishVisiting(v)

procedure beginVisiting(v)

15: push(vS, v) ; push(iS, 0)
16: root[v] = true ; rindex[v] = index ; index = index + 1

procedure finishVisiting(v)

17: pop(vS) ; pop(iS)
18: if root[v] then
19: index = index− 1
20: while vS 6= ∅ ∧ rindex[v] ≤ rindex[top(vS)] do
21: w = pop(vS)
22: rindex[w] = c
23: index = index− 1
24: rindex[v] = c
25: c = c− 1
26: else
27: push(vS, v)

procedure beginEdge(v, k)

28: w = E(v)[k]
29: if rindex[w] == 0 then
30: pop(iS) ; push(iS, k + 1)
31: beginVisiting(w)
32: return true
33: else
34: return false

procedure finishEdge(v, k)

35: w = E(v)[k]
36: if rindex[w] < rindex[v] then rindex[v] = rindex[w] ; root[v] = false

9

[12] Etienne Renault, Alexandre Duret-Lutz, Fabrice Kordon, and Denis Poitrenaud. Three SCC-based emptiness checks for

generalized Büchi automata. In Proceedings of the confernece on Logic for Programming, Artificial Intelligence, and

Reasoning, pages 668–682. Springer, 2013.

[13] http://www.scipy.org/.

[14] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing, 1(2):146–160, 1972.

Appendix A. Appendix

For completeness, we provide in this Section proofs of several key points first shown by Tarjan [14]:

Lemma 1. Let D = (V,E) be a digraph and F = (I, T0, . . . , Tn) a traversal forest over D. If x→ y is a cross-edge then

I(x) > I(y).

Proof. Suppose this were not the case. Then, I(x) < I(y) (note, x 6= y as self-loops are back-edges) and, hence, x was

visited before y (recall visitation index is defined in terms of index in Algorithm 1, where it is increased on every visit and never

decreased). Thus, when visit(x) was invoked, visited[y] = false. This gives a contradiction because either visit(x) invoked

visit(y) (hence x→y is a tree-edge) or ∃z.[x Ti
;z] and visit(z) invoked visit(y) (hence, x→y is a forward-edge).

Lemma 2. Let D = (V,E) be a digraph and F =(I, T0, . . . , Tn) a traversal forest over D. If S = (VS ⊆ V,ES ⊆ E) is a

strongly connected component with root r, then ∃Ti∈F.
[
∀v∈Vs.[r

Ti
;v]

]
.

Proof. Suppose not. Then there exists an edge v→w /∈ETi where v, w∈Vs∧r
Ti
;v∧r 6Ti

;w (otherwise, w is not reachable from

r and, hence, cannot be in the same component). It follows that I(w) < I(v), because otherwise visit(v) would have invoked

visit(w) (which would imply v→w ∈ETi). Since v ∈ Ti, we know that r
Ti
; u, for any vertex u where I(r) ≤ I(u) ≤ I(v)

(since all vertices traversed from r are allocated consecutive indices). Thus, I(w) < I(r) (otherwise r
Ti
; w) which gives a

contradiction since it implies r is not the root of S.

Lemma 3. Let D = (V,E) be a digraph, S = (VS ⊆ V,ES ⊆ E) a strongly connected component contained and rv the local

root of a vertex v ∈ VS . Then, r = v iff v is the root of S.

Proof. Let rS be the root of S. Now, there are two cases to consider:

i) If v = rS then rv=v. This must hold as rv 6=v implies I(rv)<I(v) and, hence, that v 6=rS .

ii) If rv=v then v=rS . Suppose not. Then, I(rS) < I(rv) and, as S is an SCC, rv;rS must hold. Therefore, there must

be some back-edge w→ rS ∈ E, where rv ;w ∧ I(rS) < I(rv) ≤ I(w) (otherwise, rv could not reach rS). This is a

contradiction as it implies rS (not rv) is the local root of v.

10

