Integer Range Analysis for Whiley
on Embedded Systems

David J. Pearce

School of Engineering and Computer Science
Victoria University of Wellington

http://whiley.org

http://whiley.org

Veritying Compilers

@ Tony Hoare proposed the development of a verifying compiler as
grand challenge for Computer Science (2003)

“A verifying compiler uses automated mathematical and
logical reasoning methods to check the correctness of
the programs that it compiles”

@ Some impressive attempts at this:

SPARK/Ada (1983)
ESC/Modula3 (1998)
ESC/Java (2002)

Why / Krakatoa (2002)
Spec# (2004)

Dafny (2011)

@ But, still a long way from realising Hoare’s dream ...

Whiley

Overview: What is Whiley?

function max(int x, int y) => (int z)
// result must be one of the arguments
ensures x == |y ==

// result must be greater-or-equal than arguments
ensures x <= z && y <= z:

@ A language designed specifically to simplify verifying software

@ Several trade offs e.g. performance for verifiability
- Unbounded Arithmetic, value semantics, etc

@ Goal: to statically verify functions meet their specifications

History of Whiley

Zoom

200k
October 2013
Code: BOB93
Comments: 24137
Blanks: 10418

100k

2011 2012 2013

@ 2009 — Initial version of Whiley released (GPL Licence)

@ 2010 — GitHub repository and http://whiley.org go live
@ 2010 — Version 0.3.0 released (BSD Licence)

@ 2013 — Latest version 0.3.20 (approx 81KLOC)

@ 2014 — Version 0.4.0 released?

http://whiley.org

Architecture of the Whiley Compiler

.whiley wWyll Wylil .class

- N i Py ~ &

Whiley Compiler Whlle\‘_{
(WyC) Intermediate
Language (WyIL)
Whiley Constraint Whiley-2-C
Solver (WyCS) Compiler (WyCC)

Whiley-2-Java
Compiler (WyIJC)

.

<

a4
EENE S

.

Verification

Verification: Example 1

@ Consider following example:

function abs(int x) —-> (int r)
ensures r >= 0:
if x >= 0:
return X

else:
return —x

@ Above code is valid and will verify

@ Verifying compiler reasons precisely about information flow

Verification: Example 2

function contains([int] xs, int x) -> (bool r)

// if return is true, then some i where xs[i] == x
ensures r ==> some { 1 in O |xs| | xs[1] == xX }
// if return is false, then no i where xs[i] == x
ensures !r ==> no { 1 in O |xs| | xs[1] == x }:
/4
int 1 = 0
/4
while 1 < |xs| where 1 >= O0:
if xs[i1i] == x:

return true
i =31 4+ 1
//

return false

Embedded Systems

Embedded Systems: Example

@ Consider the following example:

function append(int item, [int] i1items) —-> [int]:
return [i1tem] ++ 1tems

@ What are the problems for embedded systems?

@ Arithmetic in Whiley is unbounded

e Lists are resizable and passed-by-value

Embedded Systems: Example Revised

@ Consider a revised version of our example:

type u8 is (int x) where 0 <= x && x <= 255
function append(u8 item, [u8] items) -> ([int] r)
requires |items| < 65535

ensures |r| == |i1tems| + 1:

return [item] ++ items

@ This is more suitable for an embedded system
@ Memory usage can be constrained

@ In principle, no need for dynamic memory allocation either

Embedded Systems: Integer Range Analysis

@ Invariants in Whiley can be arbitrarily complex:

type u’/7 1s (int x) where 0 <= x && x <= 127

type 1h8 1is (18 x) where x < -1 || 1 > 0
type p8 is { bool f, nat y }

where (f ==> y < 32) || ('f ==> y < 128)

@ Integer range analysis determines lower and upper bound for
each variable and upper bounds on list length

Embedded Systems: Integer Ranges

Integer Range

Let int[/, u] denote a range of integer values where / and u are either
integer constants or oo and intl//,ul ={x | x e ZN I < x A\ x < u}.

@ Arithmetic Operations:
@ int[—oo, 2| + int[0, 2] — int[—o0, 4]
@ int[—2,3] x int[—1,2] — int[—4, 6]
e int[1,5]/int[0,2] — int[1, 3]

@ Binary Comparisons:
@ int[0, 2] == int[—1, 3] — int[0, 2], int[0, 2] (true branch)
@ int[0,255]<=int[8,31] — int[0, 31], int[8, 31] (true branch)

Embedded Systems: Example

___________________ 0 1
v ~128..127
[const %1 = 127]
___________________ 0 1
y —128..127] 127..127
. true
[ifne %0, %1
0 1
false g-——-----—=~ 127127 | 127127

[t | L 0 1
-128 ..-12§ 127 .. 127

[const %1 =1]&—
- 0 1

y e —128..126] 1..1

___________________ 0 1
¢ =127 .. 127 1..1

'—’[return %0]

@ Forwards propagation algorithm in style of dataflow analysis

Embedded Systems: Loops

@ Consider the following example:

function £ (u8 n) -> (u8 r):
int 1 = 0
while 1 < n where 1 >= 0:
i =14+ 1

return 1
@ Traditional dataflow analysis handles loops with fix-point
iteration
@ Fix-point iteration may not terminate for integer range analysis

@ This is not necessary here because of type and loop invariants

Embedded Systems: Loop Example

¢ _____________________ 0 1 2
~128 .. 127
const %1 =0
_____________________ 0 1 2
4 ~128..127| 0.0
loop:
T 0 1 2
. . ~128..127| 0..127
ifge %1, %0
0 1 2
Heel o Tl 1.127 | 0..126
const %2 =1
0 1 2
4 """""""" o 1.127 | 0..126 1..1
add %1 = %1, %2
0 1 2
"""""""" Tl 1..127 1..127 1.1
0 1 2
i """"""""""" ~128..127| 0..127

return %1

@ Forwards propagation algorithm in style of dataflow analysis

Embedded Systems: Register Allocation Problem

function h(i8 x) —> (ulo6 r):
int vy
if x > 0:

Yy = 2%X
else:

return x

@ Variable y can be allocated to 8bit register ... but should it?

http://whiley.org

http://whiley.org

References

@ Reflections on Verifying Software with Whiley. David J. Pearce
and Lindsay Groves. In Proc of FTSCS, (to appear), 2013.

@ Whiley: a Platform for Research in Software Verification.
David J. Pearce and Lindsay Groves. In Proc. SLE, pages
238—248, 2013.

@ A Calculus for Constraint-Based Flow Typing. David J. Pearce.
In Proc. FTfJP, Article 7, 2013.

@ Sound and Complete Flow Typing with Unions, Intersections
and Negations, David J. Pearce. In Proc. VMCAI, pages
335-354, 20138.

@ Implementing a Language with Flow-Sensitive and Structural
Typing on the JVM. David J. Pearce and James Noble. In Proc.
BYTECODE, 2011.

Verification: Binary Tree Example

type Tree is null | Node

type Node 1is {
int data,
Tree rhs,
Tree lhs
} where (lhs != null ==> lhs.data < data) &&
(rhs !'= null ==> rhs.data > data)

