Integer Range Analysis for Whiley
on Embedded Systems

David J. Pearce

School of Engineering and Computer Science
Victoria University of Wellington

http://whiley.org


http://whiley.org

Veritying Compilers

@ Tony Hoare proposed the development of a verifying compiler as
grand challenge for Computer Science (2003)

“A verifying compiler uses automated mathematical and
logical reasoning methods to check the correctness of
the programs that it compiles”

@ Some impressive attempts at this:

SPARK/Ada (1983)
ESC/Modula3 (1998)
ESC/Java (2002)

Why / Krakatoa (2002)
Spec# (2004)

Dafny (2011)

@ But, still a long way from realising Hoare’s dream ...



Whiley



Overview: What is Whiley?

function max(int x, int y) => (int z)
// result must be one of the arguments
ensures x == |y ==

// result must be greater-or-equal than arguments
ensures x <= z && y <= z:

@ A language designed specifically to simplify verifying software

@ Several trade offs e.g. performance for verifiability
- Unbounded Arithmetic, value semantics, etc

@ Goal: to statically verify functions meet their specifications



History of Whiley
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@ 2009 — Initial version of Whiley released (GPL Licence)

@ 2010 — GitHub repository and http://whiley.org go live
@ 2010 — Version 0.3.0 released (BSD Licence)

@ 2013 — Latest version 0.3.20 (approx 81KLOC)

@ 2014 — Version 0.4.0 released?
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Architecture of the Whiley Compiler
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Verification



Verification: Example 1

@ Consider following example:

function abs(int x) —-> (int r)
ensures r >= 0:
if x >= 0:
return X

else:
return —x

@ Above code is valid and will verify

@ Verifying compiler reasons precisely about information flow



Verification: Example 2

function contains([int] xs, int x) -> (bool r)

// if return is true, then some i where xs[i] == x
ensures r ==> some { 1 in O |xs| | xs[1] == xX }
// if return is false, then no i where xs[i] == x
ensures !r ==> no { 1 in O |xs| | xs[1] == x }:
/4
int 1 = 0
/4
while 1 < |xs| where 1 >= O0:
if xs[i1i] == x:

return true
i =31 4+ 1
//

return false



Embedded Systems



Embedded Systems: Example

@ Consider the following example:

function append(int item, [int] i1items) —-> [int]:
return [i1tem] ++ 1tems

@ What are the problems for embedded systems?

@ Arithmetic in Whiley is unbounded

e Lists are resizable and passed-by-value



Embedded Systems: Example Revised

@ Consider a revised version of our example:

type u8 is (int x) where 0 <= x && x <= 255
function append(u8 item, [u8] items) -> ([int] r)
requires |items| < 65535

ensures |r| == |i1tems| + 1:

return [item] ++ items

@ This is more suitable for an embedded system
@ Memory usage can be constrained

@ In principle, no need for dynamic memory allocation either



Embedded Systems: Integer Range Analysis

@ Invariants in Whiley can be arbitrarily complex:

type u’/7 1s (int x) where 0 <= x && x <= 127

type 1h8 1is (18 x) where x < -1 || 1 > 0
type p8 is { bool f, nat y }

where (f ==> y < 32) || ('f ==> y < 128)

@ Integer range analysis determines lower and upper bound for
each variable and upper bounds on list length



Embedded Systems: Integer Ranges

Integer Range

Let int[/, u] denote a range of integer values where / and u are either
integer constants or oo and intl//,ul ={x | x e ZN I < x A\ x < u}.

@ Arithmetic Operations:
@ int[—oo, 2| + int[0, 2] — int[—o0, 4]
@ int[—2,3] x int[—1,2] — int[—4, 6]
e int[1,5]/int[0,2] — int[1, 3]

@ Binary Comparisons:
@ int[0, 2] == int[—1, 3] — int[0, 2], int[0, 2] (true branch)
@ int[0,255]<=int[8,31] — int[0, 31], int[8, 31] (true branch)



Embedded Systems: Example
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@ Forwards propagation algorithm in style of dataflow analysis



Embedded Systems: Loops

@ Consider the following example:

function £ (u8 n) -> (u8 r):
int 1 = 0
while 1 < n where 1 >= 0:
i =14+ 1

return 1
@ Traditional dataflow analysis handles loops with fix-point
iteration
@ Fix-point iteration may not terminate for integer range analysis

@ This is not necessary here because of type and loop invariants



Embedded Systems: Loop Example
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const %1 =0
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loop:
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const %2 =1
0 1 2
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return %1

@ Forwards propagation algorithm in style of dataflow analysis



Embedded Systems: Register Allocation Problem

function h(i8 x) —> (ulo6 r):
int vy
if x > 0:

Yy = 2%X
else:

return x

@ Variable y can be allocated to 8bit register ... but should it?
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Verification: Binary Tree Example

type Tree is null | Node

type Node 1is {
int data,
Tree rhs,
Tree lhs
} where (lhs != null ==> lhs.data < data) &&
(rhs !'= null ==> rhs.data > data)



