
1

Integer Range Analysis for Whiley on Embedded Systems
David J. Pearce

School of Engineering and Computer Science
Victoria University of Wellington, New Zealand

Email: djp@ecs.vuw.ac.nz

Abstract—Programs written in the Whiley programming language are
verified at compile-time to ensure all function specifications are met. The
purpose of doing this is to eliminate as many software bugs as possible
and, thus, Whiley is ideally suited for use in safety-critical systems. The
language was designed from scratch to simplify verification as much as
possible. To that end, arithmetic types in Whiley consist of unbounded
integers and rationals and this poses a problem for use in memory
constrained embedded devices. However, function specifications in Whiley
provide a rich source of information from which finite bounds for integer
variables can be determined. In this paper, we present a technique for
range analysis of integer variables in Whiley. Previous work is typically
based on dataflow analysis which requires a fixed-point computation
and necessitates the use of imprecise widenings to ensure termination.
However, the presence of loop and data type invariants in Whiley means
that loops can be handled quickly and precisely.

Keywords-Integer range analysis; embedded systems; compilers

I. INTRODUCTION

The Whiley programming language has been developed from the
ground up to enable compile-time verification of its programs [1],
[2], [3], [4]. The Whiley Compiler (WyC) attempts to ensure that all
functions in a program meet their specifications. When it succeeds in
this endeavour, we know that: 1) all function post-conditions are met
(assuming their pre-conditions held on entry); 2) all invocations meet
their respective function’s pre-condition; 3) runtime errors such as
divide-by-zero, out-of-bounds accesses and null-pointer dereferences
are impossible. Note, however, that such programs may still loop
indefinitely and/or exhaust available resources (e.g. RAM).

Whiley’s verification system makes it ideally suited for use with
safety-critical systems. However, there remain several hurdles related
to the compilation of Whiley programs for memory-constrained
embedded environments. This paper addresses one of these problems,
namely that of identifying finite bounds for all integer variables.
This problem arises because of the decision to make all arithmetic
in Whiley unbounded. From a verification perspective this decision
makes sense as, for example, specifying programs in the presence
of arithmetic which may overflow is surprisingly difficult. Indeed,
when using VeriFast it is repeatedly recommended to disable overflow
checking [5], whilst systems like ESC/Java and Spec# assume (un-
soundly) that numeric types do not overflow or suffer rounding [6],
[7]. In contrast, Dafny — a comparable tool to Whiley — makes
the same decision to support unbounded arithmetic, although appears
unconcerned with efficient execution.

The presence of unbound arithmetic in Whiley presents a chal-
lenge, namely: how to determine finite ranges for all variables in a
program? If this can be done then, in principle at least, one can
safely compile the program for a memory-constrained embedded
system. In this paper, we focus only on integer variables and, hence,
this is the well-known problem of integer range analysis [8]. The
majority of existing work on this problem has focused on determining
finite ranges for programs written in traditional languages, such as
C or Java [9], [10], [11], [12], [13]. As such, the problem is quite
different from that studied here. In particular, such approaches assume
no information is available regarding the ranges of variables and,
hence, everything must be computed from scratch which requires

an interprocedural data-flow analysis. This is both costly and suffers
from the inherent problem of ensuring termination in the presence
of the (essentially infinite) lattice of integer ranges [8]. Typically, for
example, a widening operator is triggered after a certain number of
iterations to ensure a coarse over-approximation is achieved.

Whiley programs offer several advantages when performing
integer range analysis, compared with traditional languages. The
presence of function specifications eliminates the need for a costly
interprocedural analysis. Furthermore, the presence of loop and data
type invariants eliminates the need for a fixed-point computation
and the associated termination problem. Nevertheless, there remain
challenges to overcome. In particular, specifications in Whiley may
be arbitrarily complex and do not necessarily correspond to finite
ranges. Instead, we must conservatively extract finite ranges from
specifications for all variables. In such case that this is impossible,
then the program cannot be successfully compiled for a memory
constrained embedded system. This can happen, for example, if the
programmer forgets to ensure that one or more variables are finitely
bounded. However, this can always be resolved by updating the
relevant specifications to ensure this is so.

The contributions of this paper are:
1) We present an algorithm for computing ranges for variables of

integer type, including list bounds. This exploits information
of function specifications and type invariants available in the
Whiley programming language.

2) We have developed a prototype implementation as a module
for the Whiley compiler. This is released under an open
source license (BSD) and is available to download from
http://github.com/Whiley/Whiley2EmbeddedC.

Finally, all examples in this paper have been tested against the
latest release at the time of writing (v0.3.32). Furthermore, they can
be verified and executed in the browser at http://whiley.org/play/.

II. OVERVIEW

In this section, we progressively introduce the problem of deter-
mining finite ranges for integer variables in Whiley. In doing this, we
also provide some introduction to the language itself, however this
is necessarily brief and the interested reader may find more detailed
introductions elsewhere [14].

A. Type Invariants

The simplest form of specification in Whiley is provided through
support for data type invariants. These allow the user to define data
types which are further constrained in some way. The following
illustrates two examples:

// The type of natural numbers
type nat is (int x) where x >= 0

// The type of 16bit unsigned integers
type u16 is (int x) where x >= 0 && x <= 65535

Here, the type declaration includes a where clause constraining
the permissible values for the type. The declared variable (i.e. x) is
used to represent an arbitrary value of the given type.

The purpose of an integer range analysis is to conservatively
determine the possible range of values for integer variables. For
our examples above, it should be clear that the range of values for
nat is [0,∞] and, for u16, it is [0, 65535]. The latter is of most
interest to us in this paper as it represents a finite range which can
be encoded within a 16bit word. We introduce the following notation
for describing integer ranges:

Definition 1 (Integer Range). Let int[l, u] denote a range of integer
values where l and u are either integer constants or ±∞, and where
int[l, u] = {x | x ∈ Z ∧ l ≤ x ∧ x ≤ u}.

Although it is easy enough to see the connection between the
Whiley data types defined above and their integer ranges, this is
not always the case. In particular, Whiley data types may have finite
bounds of arbitrary granularity as the following illustrates:

// The type of even numbers
type even is (int x) where x % 2 == 0

// A type consisting of the split finite ranges [-20,-10] and [10,20]
type split is (int x) where (x >= 10 && x <= 20)

|| (x >= -20 && x <= -10)

The smallest integer range which includes the type even is
int[−∞,∞], whilst for split it is int[−20, 20]. Both of these ranges
are conservative (i.e. sound) as they include all values of the types in
question, but they are necessarily imprecise. From the perspective of
this paper, this loss of precision is not particularly of concern as the
goal is simply to determine whether a variable can be implemented
in a finite number of bits (and, if so, how many bits are required).

B. Preconditions and Postconditions

Whiley allows explicit pre- and post-conditions to be given for
functions. For example, the following function determines the maxi-
mum of two 16bit unsigned integers:

function max(int x, int y) -> (u16 r)
// restrict ranges of parameters
requires 0 <= x && x <= 65535
requires 0 <= y && y <= 65535
// ensure specification is met
ensures r == x || r == y
ensures r >= x && r >= y:

//
if x >= y:

return x
else:

return y

Here, the function max() includes requires and ensures
clauses which correspond (respectively) to its precondition and
postcondition. In this case, multiple requires (resp. ensures)
clauses are given which are conjoined together to form the function’s
precondition (resp. postcondition). Furthermore, r represents the
return value and may be used only within the ensures clause(s).
The Whiley compiler verifies at compile-time that this function meets
its specification.

In practice, we would have normally declared parameters x and
y to have type u16 above. However, by not doing so, we illustrate
the connection between type invariants and function specifications —
namely, that the former can be encoded directly in the latter. Thus,

for completeness, we cannot just generate ranges by analysing type
invariants; rather, we must analyse pre- and post-conditions as well.

C. Arrays

Arrays of data are represented in Whiley using arbitrary length
lists. The following illustrates a simple example:

// The type of extended 16bit unsigned integers
type u16e is (int x) where x >= -1 && x <= 65535

function indexOf([u16] xs, u16 x) -> u16e
// Restrict size of input array
requires |xs| <= 65535:

//
u16 i = 0
//
while i < |xs|:

if xs[i] == x:
return i

i = i + 1
//
return -1 // not found

The Whiley compiler determines at compile time that this function
meets its specification. Furthermore, the example illustrates a number
of interesting points about Whiley:

• Bounds Checking. Aside from ensuring that the above function
meets its specification, the Whiley compiler also ensures the
access xs[i] is within the bounds of list xs.

• Extended Types. The type u16e has been used for the return
value to allow every valid list index to be returned, along with
an additional value (-1) to signal no element was found. This
type requires a minimum of 17bits to encode. Furthermore,
code which invokes this function is forced to handle the error
case as, for example, assigning the return value to a variable of
type u16 generates a compile-time error.

• Finite Lists. The xs list is declared to contain elements of type
u16. We have further constrained it to ensure that the list itself
is finite as, without this, we could not constrain the range for
the return type.

Reasoning about the size of a Whiley list requires considering both
the size of its elements, and the maximum length of the list itself.
Therefore, we introduce the following notation for this purpose:

Definition 2 (List Range). Let list〈T 〉[n] denote a list type where
T is a range type and n a non-negative integer constant or ∞, and
where list〈T 〉[n] = { x0 × ...× xm | ∀k.(xk ∈ T) ∧m < n}.

As an aside, we should comment that compound data types in
Whiley (e.g. lists) have value semantics. This means they are passed
and returned by-value (as in Pascal, MATLAB or most functional
languages). Whiley also supports reference types and, as in C/C++,
these must be explicitly demarcated. For example, &[int] is a
reference to a list of integers. However, for the purposes of this paper
these types, along with a plethora of other interesting types in Whiley
(e.g. tuples, records and unions), are ignored.

D. Loop Invariants

Whiley supports explicit loop invariants which are necessary to prove
many useful properties about programs with loops. As with function
specifications, these can contain information relevant to the ranges of
variables within a function. Consider again our example from above,
but this time with an alternate declaration for variable i:

2

function indexOf([u16] xs, u16 x) -> u16e
// Restrict size of input array
requires |xs| <= 65535:

//
int i = 0
//
while i < |xs| where i >= 0:

if xs[i] == x:
return i

i = i + 1
//
return -1 // not found

Here, the loop invariant is required to aid the Whiley compiler in
reasoning about variable i within the loop. However, it also serves a
double purpose, from the perspective of this paper, in that it encodes
information about the variable’s range. Specifically, by combining the
knowledge that i < |xs| and i >= 0 we can determine a range
of int[0, 65535] for i within the loop body.

III. FORMALISATION OF RANGE TYPES

In this section, we provide a formalisation of range types and
operations upon them. We consider here only a small subset of types
available in Whiley, although extensions to the remainder are mostly
straightforward. Furthermore, our presentation of integer ranges is
mostly straightforward and similar to previous work (e.g. [9], [15],
[16], [17]). However, some differences do exist. Firstly, we can
assume that the programs being analysed have already been verified
and, hence, that division-by-zero and out-of-bounds accesses are
impossible. Secondly, we additionally consider the representation of
lists and their length bounds.

A. Range Types

The language of range types under consideration in this paper is
as follows:

T ::= int[c−, c+] | list〈T 〉[c+]
c+ ::= +∞ | 0 | 1 | 2 | 3 | . . .
c− ::= −∞ | −1 | −2 | −3 | . . .

Recall the integer and list ranges defined previously in Defini-
tions 1 + 2.

B. Range Arithmetic

We now consider the basic arithmetic operators over integer ranges.
The starting point for our endeavour is to extend the primitive
operators to handle infinity in the expected fashion. Figure 1 provides
a case analysis for the three main operators, with subtraction omitted
for brevity. Note, the fact that c± ÷̂ 0 is undefined is not a specific
concern as we will ensure below that this case is not encountered.

The arithmetic operators for addition, subtraction and multiplica-
tion on integer ranges can then be defined in the usual manner as
follows:

int[l1, u2] + int[l2, u2]
.
= int[l1+̂l2, u1+̂u2]

int[l1, u2] − int[l2, u2]
.
= int[l1−̂u2, u1−̂l2]

int[l1, u2] × int[l2, u2]
.
= int[min(xs),max(xs)]

where xs = {l1 ×̂ l2, l1 ×̂ u2, u1 ×̂ l2, u1 ×̂ u2}
In addition to the above operators, we can also define division on

integer ranges for all cases. This is an unusual feature of our system
as, normally, division of intervals is limited to those cases where
the divisor’s range does not include zero. However, as highlighted
already, we can exploit the fact that the Whiley compiler has already

+̂ c+2 c−2 ∞ −∞
c+1 c1 + c2 c1 − c2 ∞ −∞
c−1 c2 − c1 −(c1 + c2) ∞ −∞
∞ ∞ ∞ ∞ ±∞
−∞ −∞ −∞ ±∞ −∞

×̂ c+2 c−2 ∞ −∞
c+1 c1 × c2 −(c1 × c2) ∞ −∞
c−1 −(c1 × c2) c1 × c2 −∞ ∞
∞ ∞ −∞ ∞ −∞
−∞ −∞ ∞ −∞ ∞

÷̂ c+2 c−2 ∞ −∞
c+1 c1 ÷ c2 −(c1 ÷ c2) 0 0

c−1 −(c1 ÷ c2) c1 ÷ c2 0 0

∞ ∞ −∞ ∞ −∞
−∞ −∞ ∞ −∞ ∞

Fig. 1. Case analysis for extension of arithmetic operators to ±∞. The
subtraction operator is omitted for brevity, as it is similar to addition. Also,
c± ÷ 0 is undefined and, hence, c± ÷̂ 0 is undefined. Finally, the resulting
sign for e.g. −∞ +̂ ∞ is determined by position in the constructed integer
range (e.g. if in lowerbound position then negative sign, etc)

verified division-by-zero to be impossible. To do this, it uses of an
automated theorem prover which can reason about numeric values
much more precisely than we can here with our relatively coarse
integer ranges.

Division of integer ranges is defined as follows where the underly-
ing operator, ÷, corresponds to integer division which rounds towards
zero (i.e. as commonly found in programming languages such as Java
and Whiley):

int[l1, u1] ÷ int[l2, u2]
.
= int[min(xs),max(xs)]

where xs = {l1 ÷̂ l3, l1 ÷̂ u3, u1 ÷̂ l3, u1 ÷̂ u3}

l3 =

{
l2 if l2 6= 0

1 if l2 = 0
u3 =

{
u2 if l2 6= 0

−1 if u2 = 0

The key here is that in the special case that either the lower or
upper bound of the divisor’s range is zero, then we can pick the next
available value in the range. For the lower bound this is 1, whilst for
the upper bound this is −1.

C. Range Lattice

In order to manipulate ranges within our algorithm, we need the
ability to union ranges at control-flow meet points and intersect them
at control-flow branch points. To do this, we define the least-upper
bound (t) and greatest-lower bound (u). For integer ranges, this is
straightforward:

int[l1, u1] t int[l2, u2]
.
= int[min(l1, l2),max(u1, u2)]

int[l1, u1] u int[l2, u2]
.
= int[max(l1, l2),min(u1, u2)]

For the purposes of integer ranges, we can think of t and u as set
union and set intersection. Thus, int[0, 255] t int[−128, 127] gives
int[−128, 255], etc. For list ranges, things are slightly more involved:

list〈T1〉[n1] t list〈T2〉[n2]
.
= list〈T1 t T2〉[max(n1, n2)]

list〈T1〉[n1] u list〈T2〉[n2]
.
= list〈T1 u T2〉[min(n1, n2)]

3

Here, we recursively use t (resp. u) to determine the
ranges of all elements. For example, list〈int[0, 255]〉[64] t
list〈int[−128, 127]〉[32] gives list〈int[−128, 255]〉[64], etc.

Finally, we also provide unique top (>) and bottom (⊥) elements to
ensure a complete lattice. Thus, for example, list〈T 〉[n]t int[l, u] =
>, int[l, u] t ⊥ = int[l, u], etc.

D. Range Comparators

In addition to the operators discussed thus far, we will also need
some for comparing ranges. These are needed to properly account
for the effect that conditional branches have. For example, suppose
variable x has type u16 and, hence, its base range is int[0, 65535].
Then, on the true branch of a conditional if(x <= 255) we can
further refine this to int[0, 255], whilst on the false branch it becomes
int[256, 65535].

Range comparators can affect the known ranges of all variables
involved. For example, suppose variable x has range int[−128, 127]
and variable y has range int[0, 255]. Then, on the true branch of the
conditional if(x==y) we can refine both ranges by computing their
intersection int[−128, 127] u int[0, 255] = int[0, 127]. In this case,
however, on the false branch we cannot refine either variable’s range.

As will become more apparent in the following section, we can
limit our range comparators to those acting on two variables as this
follows the form of our intermediate language. Thus, each range
comparator accepts two ranges and produces two ranges which are
used to update the variables in question. To begin with, we define
the following comparators for general range types:

T1 = T2
.
=

(
T1 u T2, T1 u T2

)
T1 6= T2

.
=

(
T1 − T2, T2 − T1

)
To handle the latter case (6=) we have used the difference operator

which can be thought of as set difference, and is defined as follows:

int[l1, u1]− int[l2, u2]
.
=


int[l1 + 1, u1], if l1 = l2 = u2

int[l1, u1 − 1], if u1 = l2 = u2

int[l1, u1], otherwise

list〈T1〉[n1]− list〈T2〉[n2]
.
= list〈T1〉[n1]

For calculating differences of integer types, we can only extract
information when the right-hand side is a constant and, furthermore,
when it matches either the lower or upper bound of the left-hand side
(i.e. as we cannot precisely represent the range without that element).
Unfortunately, for calculating differences of list types, there is no
additional information that can be extracted. For integer ranges, we
also define the following inequality comparators:

int[l1, u1] ≤ int[l2, u2]
.
=

(
int[l1,min(u1, u2)],

int[max(l1, l2), u2]
)

int[l1, u1] < int[l2, u2]
.
=

(
int[l1,min(u1, u2 − 1)],

int[max(l1 + 1, l2), u2]
)

The definitions of these two comparators may seem a little odd,
but they are designed to extract the maximum information possible.
For example, consider a conditional if(x <= y) where variable x
has range int[0, 255] and variable y has range int[−128, 127]. For
the true branch, we know that no value for x can be greater than

the largest value for y. Hence, for example, variable x cannot hold
255 on the true branch. Likewise, we know that no value for y can
be below the smallest value for x. Hence, for example, variable y
cannot hold -128 on the true branch, etc.

E. Widening

Finally, we briefly discuss the notion of widening as this is used
in the description of our algorithm. Essentially, this refers to the
process of determining the largest possible range for a given variable
based on its declared type. Thus, widening a variable of declared
type u16 means assigning it the range int[0, 65535]. In contrast,
widening a variable of declared type int means assigning it the range
int[−∞,∞]. Widening extends to list types as well in the obvious
manner. For example, a variable of declared type [u16] is widened
to the range list〈int[0, 65535]〉[∞].

Widening is a common concept found in the literature on program
analysis [8]. In the context of range analysis, it would generally
be taken to represent the process of finding a range for a given
variable (typically, a loop induction variable) which ensures the
fixed-point computation terminates. This does not necessarily mean
the worst-case scenario of int[−∞,∞] is the best option, but it
typically is. Compared with this, we have an advantage as data
type invariants mean we can widen variables more precisely without
needing complicated search heuristics to find appropriate widenings.

IV. RANGE ANALYSIS

We now examine how our algorithm for range analysis of Whiley
programs works. A prototype implementation is also available from
http://github.com/Whiley/Whiley2EmbeddedC.

A. Forward Propagation

Our range analysis does not operate directly on Whiley source
code. Instead, it operates on the Whiley Intermediate Language
(WyIL). This is a register-based intermediate language which
resembles JVM Bytecode or Microsoft CIL. The following illustrates
a Whiley function (left) and the corresponding WyIL bytecode (right):

// Define signed bytes
type i8 is (int x)
where -128<=x && x<=127

// Increment with wrap-round
function f(i8 x)->i8:

//
if x == 127:

x = -128
else:

x = x + 1
//
return x

function f(i8)->i8:
body:

const %1 = 127
ifne %0, %1 goto l2
const %0 = -128
goto l3

.l2
const %1 = 1
add %0 = %0, %1

.l3
return %0

Here, the function’s body is represented as a bytecode block which
has access to an unlimited register set (as needed). Registers are
prefixed with % above (e. g., %1). As for JVM bytecode, the set of
registers used in any given block is statically known and, furthermore,
registers hold parameter values on entry (i. e., %0 holds parameter
x on entry). In the above example, the const bytecode loads an
integer constant into register %1. The add bytecode adds its operands
and assigns to a given target register. Finally, the return bytecode
returns its operand.

The core of our range analysis is a forward propagation algorithm
which determines the possible range for each register at each
program point. Figure 2 illustrates the general idea for our example

4

ifne %0, %1

const %1 = 127

const %0 = −128

const %1 = 1

add %0 = %0, %1

return %0

−128 .. 127

0 1

−128 .. 127

0

 127 .. 127

1

 127 .. 127

0 1

 127 .. 127

0 1

 127 .. 127−128 ..−128

−128 .. 126

0 1

 1 .. 1

0 1

−127 .. 127 1 .. 1

true

false

Fig. 2. Illustrating the ranges generated by forward propagation through the
body of the function f(). The computed ranges for each transition are shown
on the right. For example, after the first bytecode is executed register %1 has
range int[1, 1]. Note, no range is given for register %1 before this bytecode
as it was undefined at that point.

function f() from before. In the figure, we can see that the range of
register %0 is updated by the conditional bytecode on both the true
and false branches. On the false branch, this is done by intersecting
(u) the ranges of the two operand registers. On the true branch, this
is done by taking the difference of the left operand from the right
operand.

Loops. Conditional and unconditional branching instructions are
restricted to forward branching only. This means they cannot be
used to form loops. Instead, loops are implemented in WyIL using
special loop bytecodes. The primary reason for this design decision
was the desire for a compact bytecode which supports a wide range
of source-level statements but which also simplifies verification. This
decision turns out to be useful here, as it eliminates the need to
identify loops in the control-flow graph. The following illustrates:

// 7bit unsigned integers
type u7 is (int x)
where 0<=x && x<=127

// Count upto n
function g(i8 n) -> u7:
u7 i = 0
//
while i < n:

i = i + 1
//
return i

function g(i8)->u7:
body:
const %1 = 0
loop modifies %1:

ifge %1,%0 goto l0
const %2 = 1
add %1 = %1, %2

.l0
return %1

Here, the loop bytecode denotes a loop block containing one or
more bytecodes. By itself, the loop bytecode says nothing about how
the loop is exited. In this example, a conditional branch is placed
at the beginning of the loop body to simulate the while loop.
Equally, the condition could be placed at the end of the loop body
to implement a do-while loop.

The loop bytecode always includes a modifies clause which indi-
cates those registers which may be modified by the loop (in this case,
register %1 maybe modified). It is an error for any variable declared
outside of the loop body to be modified within the loop without being
present in this clause. Note that only loop-carried registers need be
included in the modifies clause and, hence, register %2 is omitted
even though it is technically modified in the loop. Again, the purpose
of the modifies clause was to aid verification. However, it turns out
to have a double use here, as we can exploit the modifies clause in

const %1 = 0

−128 .. 127

0 1 2

−128 .. 127

1

−128 .. 127

0 1 2

2

 0 .. 0

loop:

ifge %1, %0

const %2 = 1

1 .. 127

0 1 2

 1 .. 1

1 .. 127

0 1 2

return %1

−128 .. 127

0 1

1

1 .. 1

2

2
add %1 = %1, %2

0 .. 126

0 .. 126

1 .. 127

0 .. 127

0 .. 127

1 .. 127

0

true

false

0

Fig. 3. Illustrating the ranges generated by forward propagation through
the body of the function g(). The loop bytecode is included to clarify the
process of widening variables on entry. Specifically, on entry to the loop, the
range for register %1 is immediately widened to its declared maximum.

determining which variables to widen (more on this shortly).
Previous systems for range analysis often require a fixed-point

computation and fall back on an imprecise widening operator to
ensure termination in the presence of loops (e.g. [9], [17], [18]). Our
algorithm does not require a fixed-point computation and, hence,
termination is trivially guaranteed. This is because we can exploit
information given in loop and data type invariants to (effectively)
generate a precise widening immediately. Figure 3 illustrates the
solution generated for function g() above. Observe that the range
of register %1 is int[0, 0] going into the loop bytecode, but is
immediately widened to int[0, 127] at the start of the loop body.
This widening exploits the declared type of the variable it represents.
Furthermore, all registers which are modified within a loop are
widened on entry based on their respective declared type.

Invariants. Type and loop invariants are also encoded into WyIL
bytecodes. For example, the type i8 used in function f() is
represented as follows:

type i8 : int
invariant:
const %1 = -128
ifgt %1, %0 goto lab0
const %1 = 127
ifgt %0, %1 goto lab0
return

.lab0
fail

Here, the invariant block implements the invariant logic using
conditional branches, where register %0 represents an arbitrary value
of type i8. Execution paths which reach a fail bytecode represent
paths which the Whiley compiler must ensure are unrealisable.

To determine the range for variables of type i8, we reuse our
forward propagation algorithm. In this case, we are only interested
in the possible range of values for register %0 at the return
statement. This is because invariant blocks, such as above, are
never actually implemented on the target machine — they are merely
abstract encodings used for verification.

Finally, loop invariants are handled in much the same way to
restrict the ranges of modified registers within a loop. They are
applied before processing the loop body after all such variables

5

are widened. Thus, for example, variables which are widened to
int[−∞,∞] (i.e. because they have no declared type invariant) can
still be narrowed through the loop invariant.

B. Register Allocation

Having computed ranges for all variables using the forward prop-
agation algorithm, the next question is how to efficiently allocate
variables to machine registers. A simple approach is to allocate
each variable based on the maximum number of bits it requires at
any point. Unfortunately, this approach is far from optimal for two
reasons: firstly, it is not space efficient as a variable may be allocated
to a larger register than necessary for portions of its life; secondly,
it is not time efficient as it can result in unnecessary coercions. To
understand the latter, consider the following example:

function h(i8 x) -> (u16 r):
//
int y
if x > 0:

y = 2*x // x: 1..127, y: 1..254
else:

y = -x // x: -128..0, y: 0..128
// x: -128..0, y: 0..128

x = x + y //
// x: 0..381, y: 0..254

return x

Now, the question is: what size machine registers do we allocate for
variables x and y? Let us imagine a target architecture that supports
both 8bit and 16bit machine registers and that we allocate registers
using the simple approach above. Therefore, variable x is allocated
to a 16bit register and variable y to an 8bit register. The expression
x + y now presents a problem as our machine instructions (as is
common) require operands of the same width. Therefore, we must
now coerce the contents of variable y into a temporary 16bit register.
However, had we allocated variable y to a 16bit register in the first
place, this coercion would have been unnecessary.

At this juncture we will not discuss the register allocation problem
any further, other than to note that our prototype implementation
adopts the simple approach outlined above. Therefore, it remains as
interesting future work to address this problem in more detail.

V. DISCUSSION

In this section, we discuss several salient aspects of our system
which warrant further attention.

A. Motivation

An interesting question is why a forward analysis is needed at
all for our system. That is, why is it not enough to simply extract
ranges from declared types and allocate machine registers based on
that? There are various different ways of looking at this question.
Certainly, in order to extract ranges from type invariants we require
a forward analysis as invariants are themselves encoded using WyIL
bytecodes. However, whilst this motivates the need for such an
algorithm, it does not explain the need to run it on anything other than
type invariants. One of the problems we face is that WyIL registers
don’t necessarily correspond to program variables. For example, they
can be synthetic and introduced as part of the compilation process.
Such registers will not have declared type invariants (i.e. as the
compiler would not know what invariant to choose). Therefore, we
need to propagate information from registers representing declared
variables to those which do not. Finally, we also wish to support

as many Whiley programs as possible and, as discussed earlier, it
is perfectly acceptable in Whiley to bound variables using only pre-
/post-conditions and loop invariants.

B. Symbolic Analysis

Our algorithm does not employ any form of symbolic analysis and
this can limit its precision in places. Consider the following:

function f(int x, int y) -> int
requires 0 <= x && x <= y && y <= 255:

...

Intuitively, it is clear that both variables x and y can be safely
allocated to 8bit machine registers. However, the bytecode for this
precondition is as follows:

requires:
const %2 = 0 : int
ifgt %2, %0 goto lab_0
// x: 0..inf, y: -inf..inf
ifgt %0, %1 goto lab_0
// x: 0..inf, y: 0..inf
const %3 = 255 : int
ifgt %1, %3 goto lab_0
// x: 0..inf, y: 0..255
return

.lab_0
fail

The problem here is that the propagation algorithm has not
correctly identified that variable x has range int[0, 255]. This has
happened because of the specific ordering of the conditional branches
in the bytecode. To overcome this problem, one needs to use a
symbolic analysis which retains the relationship between variables
in order to ensure effects on one are propagated to another (i.e. in
the above, since x <= y, then variable x is updated when y <= 255
is encountered).

We note that this limitation with our analysis is offset by the
fact that most precision comes from data type invariants which, by
construction, are only defined in terms of a single variable. As such,
when determining bounds for them, the above issue does not arise.

C. Theorem Prover

For the purposes of verification, the Whiley compiler employs
an automated theorem prover which is capable of reasoning about
numerical values far more precisely than can be done with ranges
alone. This raises the obvious question: why not use this to help to
determine bitwidth? Certainly, this is something we want to explore
in the future. However, such tools do not lend themselves naturally
to this problem. Specifically, automated theorem provers are good at
answering questions of the form: is something true? For example,
one can easily answer the question: is variable x greater than 0?
But, questions of the form “what is variable x greater than?” are
much less amenable for them. In contrast, our integer range analysis
handles exactly questions of this form quite well.

In order to utilise an automated theorem prover, one could develop
specific strategies. For example, supposing a machine with 8bit and
16bit registers. Then, one can ask direct questions of the form “is
variable x below 256?” to help determine which register to use.
However, if there are many register sizes or registers have arbitrary
width (e.g. on an FPGA) this may be prohibitively expensive.

6

VI. RELATED WORK

A. Bounds Checking

The problem of determining whether an array or pointer access is
within bounds has been long studied in the literature. Typically, the
goal is eliminate the need for runtime bounds checks where possible
and/or to identify potential security vulnerabilities. Furthermore, there
is usually an assumption that programs are analysed as-is (i.e. without
annotations) and, hence, many works employ costly interprocedural
analyses. For languages like C and Java, such analyses will also often
include some mechanism for tracking pointers and aliases.

The work of Yong and Horwitz is a good example which specifi-
cally targets the elimination of runtime bounds checks and identifica-
tion of potential vulnerabilities [9]. Their system performs static anal-
ysis of C programs in the presence of arbitrary pointer arithmetic and
type casting (so-called dusty deck programs). Of particular relevance
here is their use of integer ranges to bound integer variables, although
their presentation does not consider multiplication or division of
ranges. As with many algorithms of this nature, termination is an
issue as the lattice of ranges has infinite ascending chains and, hence,
a widening operator is required to ensure termination.

The earlier work of Wilson and Lam provides a similar example
to that of Yong and Horwitz [10]. The bulk of their algorithm is
concerned with interprocedural pointer analysis, and they make many
choices which favour precision over performance. In particular, their
algorithm is context- and flow-sensitive and makes use of function
summaries to reduce the cost of repeated calls to the same function.
Unfortunately, these choices mean that their algorithm suffers from an
exponential blow up which renders it impractical on all but relatively
small programs. However, of interest here is their representation of
integer ranges which, unlike our approach, also includes a notion of
stride. For example, all even integers between the lower and upper
bound can be precisely characterised.

The above examples follow the ideas of classical dataflow analysis
whereby ranges are propagated throughout the control-flow graph
of a function and the computation iterates until a fixed-point is
reached. A common and widely successful alternative is to generate
a constraint graph from the program and then solve that separately.
In the context of range analysis, such constraints are normally linear
inequalities in some form or another. The ABCD system of Bodik et
al. provides an excellent example of this approach [11]. Unlike most
of the other works discussed here, they are concerned with analysing
Java programs within the context of a virtual machine. They generate
constraints known as difference or potential constraints which have
the specific form x − y ≥ c, where x, y are variables and c is a
constant. The key is that such constraints lend themselves naturally
to a weighted, directed-graph representation which can be solved
using algorithms akin to transitive closure. Of course, such constraints
cannot encode all possible expressions encountered in practice and,
in such cases, coarse approximations are used. A key challenge is
that positive-weight cycles must be identified and broken to ensure
termination (this is roughly similar to the notion of widening used
in dataflow analysis). The experimental results generated with this
algorithm demonstrated it to remove 45% of all bounds checks over
five benchmarks from the SPECjvm98 benchmark suite.

A similar approach to that of ABCD was also used by Wagner et al.
to identify buffer overrun vulnerabilities in C programs [12]. They fo-
cused specifically on string manipulations, rather than general arrays
and/or pointer arithmetic. Despite this, their system identified several
previously unknown vulnerabilities in the widely-used sendmail
application, despite this having been previously audited by hand. In
their system, strings are modelled as pairs consisting of the number
of allocated bytes and the number of bytes used. This is in some

ways similar to the approach we have taken to modelling lists in
Whiley. Again, to ensure termination of their algorithm, cycles in the
constraint graph must be identified and broken.

Finally, another work following in this line is that of Rugina and
Rinard who are concerned with bounds analysis for pointers and
arrays in C [13]. A key difference from the earlier works of Bodik
et al. and Wagner et al. is that their algorithm is interprocedural
and precisely tracks pointer aliasing information. Furthermore, they
generate linear programs which are more precise and can be offloaded
to a special-purpose linear constraint solver. As such termination is
not a concern as the linear constraint solver handles this.

B. Bitwidth Analysis

Of direct relevance to this paper is the literature on bitwidth
analysis. As with this paper, the goal here is to determine the number
of bits required to represent program variables. This is useful in
the context of compiler optimisations, but also when compiling to
silicone or Field-Programmable Gate Arrays (FPGAs).

A good example here is the work of Budiu et al who claim that “on
average 14% of the computed bytes in programs from SpecINT95 and
Mediabench are useless” [19]. Their approach focuses on identifying
unused and constant bits in dusty-deck C programs to improve overall
efficiency, particularly on architectures that support non-standard or
arbitrary register widths (e.g. FPGAs). Their algorithm treats integers
simply as bit strings, which are sequences of known, unknown or
don’t care bits. Examples of the latter arise when bits are effectively
discarded, such as when when variables of larger width are cast to
those of smaller width, or when masks are applied through bitwise
operations, etc. Their general approach appears to be in the style of
classical dataflow analysis, although there is little attention given to
the issue of handling loops.

In a similar vein, Stephenson et al. are interested in optimising
bitwidths for the purpose of compiling to silicon or FPGAs [15]. They
perform a dataflow analysis using ranges which are comparable to that
presented here. Value ranges are propagated in both a forwards and
backwards direction, where the latter helps to further narrow ranges
for discoveries made downstream. For example, consider a variable
which is used to index into an array. If the range of the variable is
greater than the known bounds of the array, one can clip the variable’s
range to match the array bounds (i.e. by assuming that no actual
error exists). In such case, we want to propagate this discovery back
through the control-flow graph to further prune any variables flowing
into this. Loops are handled through pattern matching and, when this
fails, falling back to a standard iterative approach with widenings.

Another interesting example here is the work of Ergin et al which
is concerned with efficient packing of variables into registers [20].
More specifically, their aim is to pack multiple variables into a given
register where possible to alleviate pressure on register allocation.
Their work is also quite different from other works discussed here,
as it is not a form of static analysis. Rather, their approach is intended
to be implemented within a microprocessor itself and uses a concept
of bitwidth prediction, which is analogous to branch prediction. Their
claim is that 40% of all values can be represented in 16bits, with a
further 45% requiring only 32bits. Thus, in modern 64bit systems
there is ample opportunity to improve register utilisation.

Finally, it is interesting to note that the majority of previous work
on bitwidth analysis focuses on integer variables. In constrast, the
work of Gaffar et al focus on the bitwidth analysis of floating pointer
variables for compilation onto FPGAs [21]. Their approach is also
unusual in that it focuses on the sensitivity of output variables, and
correlates higher sensitivity with a need for increased bitwidth.

7

C. Abstract Domains

In this paper, we focused on representing the set of possible values
for a given variable using a simple interval. However, as we’ve
already seen with the work of Wilson and Lam, other representations
are possible which can characterise sets more precisely. The most
obvious extension to the classical interval is to include some notion
of stride, and this is commonly referred to as the modulo interval.
Here, the interval is represented as a tuple (l, u,m, n) which describe
the set {km + n | l ≤ k ≤ u}. Nakanishi et al. provide
a formal examination of modulo intervals and their mathematical
properties [16].

The very recent work of Gange et al. consider the domain of
intervals which correctly handle wrap-around as caused by overflow
and underflow [17]. Like others discussed earlier, their approach treats
all integers uniformly as bit strings. They also focus on supporting
the abstract machine instructions provided by LLVM. In particular,
this includes support for both signed and unsigned division, and
the corresponding remainder operators. In addition, they present a
complete range analysis in the style of a classical dataflow analysis
which employs widening to ensure termination.

Finally, we should note that there are other more complex numer-
ical domains which have been considered in the program analysis
literature. For example, the octagon domain generalises the notion
of difference inequality constraints discussed earlier [22]. Likewise,
the widely used polyhedra domain utilises much more expressive
linear inequalities but, compared with simple intervals, is far more
computationally expensive [23].

D. Other

Finally, we pick out some other works of note with respect to range
analysis. Healy et al are concerned with bounding loop iterations to
calculate Worst-Case Execution Time (WCET) [24]. They employ
integer ranges in an unusual fashion to bound the number of iterations
of each node in the control-flow graph. In contrast, Patterson employs
integer range analysis for static branch prediction [18]. His approach
is unusual as it computes weighted probability ranges, rather than ex-
act ranges as we do. Chin and Khoo focus on higher-order functional
programs and are concerned with ensuring termination of recursive
functions [25]. They adopt a technique based on linear inequalities
to bound the sizes of return values which can, for example, be used
to establish they decrease in size. Finally, Bultan et al employ model
checking to symbolically evaluate safety and liveness properties for
programs involving unbounded integer variables [26]. Their encoding
also exploits linear inequalities to succinctly describe integer sets and
employs a fixpoint algorithm whose convergence is guaranteed using
approximation techniques (i.e. widening).

VII. CONCLUSION

In this paper we have presented a range analysis for variables of
integer and list type in the Whiley programming language. Variables
of integer type are modelled with intervals, whilst those of list
type are modelled by their maximum length along with a range
summarising their elements. Our formalisation of integer ranges
exploits the knowledge that Whiley programs have been verified
as free of divide-by-zero errors. Our range analysis consists of
a forward propagation algorithm which, unlike many comparable
approaches, does not require the use of a fixed-point computation
that could iterate indefinitely. Instead, knowledge of declared variable
types and loop invariants is exploited to ensure only a single pass
through the control-flow graph is required and, hence, termination is
guaranteed. We have developed a prototype implementation which
uses a relatively simple approach to register allocation based on

the computed ranges. In the future, we hope to explore the register
allocation problem further.

REFERENCES

[1] “The Whiley Programming Language, http://whiley.org.”
[2] D. J. Pearce and J. Noble, “Implementing a language with flow-sensitive

and structural typing on the JVM,” ENTCS, vol. 279, no. 1, pp. 47–59,
2011.

[3] D. J. Pearce and L. Groves, “Whiley: a platform for research in software
verification,” in Proc. SLE, 2013, pp. 238–248.

[4] ——, “Reflections on verifying software with Whiley,” in Proc. FTSCS,
2013, pp. 142–159.

[5] B. Jacobs, J. Smans, and F. Piessens, “The verifast program verifier: A
tutorial,” Tech. Rep., 2014.

[6] C. Flanagan, K. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and
R. Stata, “Extended static checking for Java,” in Proc. PLDI, 2002, pp.
234–245.

[7] M. Barnett, M. Fähndrich, K. R. M. Leino, P. Müller, W. Schulte, and
H. Venter, “Specification and verification: the Spec# experience,” CACM,
vol. 54, no. 6, pp. 81–91, 2011.

[8] F. Nielson, H. R. Nielson, and C. L. Hankin, Principles of Program
Analysis. Springer-Verlag, 1999.

[9] S. H. Yong and S. Horwitz, “Pointer-range analysis,” in 2004, ser. LNCS,
vol. 3148. Springer-Verlag, 2004, pp. 133–148.

[10] R. P. Wilson and M. S. Lam, “Efficient context-sensitive pointer analysis
for C programs,” in Proc. PLDI, 1995, pp. 1–12.

[11] R. Bodik, R. Gupta, and V. Sarkar, “ABCD: eliminating array bounds
checks on demand,” in Proc. PLDI, 2000, pp. 321–333.

[12] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken, “A first step towards
automated detection of buffer overrun vulnerabilities,” in NDSS, 2000,
pp. 3–17.

[13] R. Rugina and M. C. Rinard, “Symbolic bounds analysis of pointers,
array indices, and accessed memory regions,” ACM TOPLAS, vol. 27,
no. 2, pp. 185–235, 2005.

[14] D. J. Pearce, “Getting started with Whiley,” Last updated, 2014.
[15] M. Stephenson, J. Babb, and S. Amarasinghe, “Bitwidth analysis with

application to silicon compilation,” in Proc. PLDI, 2000, pp. 108–120.
[16] T. Nakanishi, K. Joe, C. D. Polychronopoulos, and A. Fukuda, “The

modulo interval: A simple and practical representation for program
analysis,” in Proc. Pact. IEEE, 1999, pp. 91–96.

[17] G. Gange, J. A. Navas, P. Schachte, H. Søndergaard, and P. J. Stuckey,
“Interval analysis and machine arithmetic: Why signedness ignorance is
bliss,” ACM TOPLAS, vol. 37, no. 1, pp. 1:1–1:35, 2015.

[18] J. R. C. Patterson, “Accurate static branch prediction by value range
propagation,” in Proc. PLDI, 1995, pp. 67–78.

[19] M. Budiu, M. Sakr, K. Walker, and S. C. Goldstein, “Bitvalue inference:
Detecting and exploiting narrow bitwidth computations,” in Proc. Euro-
Par. Springer-Verlag, 2000, pp. 969–979.

[20] O. Ergin, D. Balkan, K. Ghose, and D. V. Ponomarev, “Register packing:
Exploiting narrow-width operands for reducing register file pressure,” in
MICRO. IEEE, 2004, pp. 304–315.

[21] A. A. Gaffar, O. Mencer, W. Luk, P. Y. K. Cheung, and N. Shirazi,
“Floating-point bitwidth analysis via automatic differentiation,” in FPT.
IEEE, 2002, pp. 158–165.

[22] A. Miné, “The octagon abstract domain,” Higher-Order and Symbolic
Computation, vol. 19, no. 1, pp. 31–100, 2006.

[23] P. Cousot and N. Halbwachs, “Discovery of linear restraints among
variables of a program,” in Proc. POPL, 1978, pp. 84–97.

[24] C. A. Healy, M. Sjödin, V. Rustagi, D. B. Whalley, and R. van Engelen,
“Supporting timing analysis by automatic bounding of loop iterations,”
Real-Time Systems, vol. 18, no. 2/3, pp. 129–156, 2000.

[25] W.-N. Chin and S.-C. Khoo, “Calculating sized types,” in Proc. PEPM.
ACM Press, 2000, pp. 62–72.

[26] T. Bultan, R. Gerber, and W. Pugh, “Model-checking concurrent systems
with unbounded integer variables: symbolic representations, approxima-
tions, and experimental results,” ACM TOPLAS, vol. 21, no. 4, pp. 747–
789, 1999.

8

