
Some Usability Hypotheses for Verification

David J. Pearce
School of Engineering and Computer Science, Victoria University of Wellington, New Zealand

djp@ecs.vuw.ac.nz

Abstract
The idea of specifying and verifying software to elimi-
nate errors has been studied extensively over the last three
decades or more. Recent advances in automated theorem
proving have given rise to a range of new verification tools
being developed. Despite this, very little is known about
the effect of using such tools on software development. In
this paper, we present several verification-related usability
hypotheses which we believe warrant further investigation.
These hypotheses are based on observations from the litera-
ture, as well as our own experiences in developing and using
the Whiley verification system.

Categories and Subject Descriptors D.2.4 [Software/Pro-
gram Verification]: Programming by contract; H.1.2 [User/-
Machine Systems]: Human factors

General Terms Languages, Verification, Human Factors

Keywords Software Verification, Usability

1. Introduction
The idea of specifying and verifying software goes back a
long way to the likes of Hoare [1], Dijkstra [2], Gries [3]
and others [4]. Whilst many theoretical works have been
developed, much less has been achieved in terms of practical
tooling. This is perhaps most evident by the number of
books written on the subject, of which almost none are based
around an actual tool (this is perhaps analogous to books on
programming which are based only on some ad-hoc pseudo-
code) [3, 5–9].

Disappointed by developments on the practical side,
Hoare created the Verifying Compiler Grand Challenge as
an attempt to spur new efforts [10]. According to Hoare’s
vision, a verifying compiler “uses automated mathematical
and logical reasoning to check the correctness of the pro-
grams that it compiles” [10]. The earliest systems that could
be reasonably considered as verifying compilers include that

of King [4], Deutsch [11], the Gypsy Verification Environ-
ment [12] and the Stanford Pascal Verifier [13]. Following
on from these was the Extended Static Checker for Modula-
3 [14]. Later, this became the Extended Static Checker for
Java (ESC/Java) — a widely acclaimed and influential work
in this area [15]. Building on this success was the Java Mod-
eling Language (and its associated tooling) which provided
a standard notation for specifying functions in Java [16].
Since Hoare issued his challenge, a variety of new tools have
blossomed in this space, including Spec# [17], Dafny [18],
Why3 [19], VeriFast [20] and Whiley [21, 22].

At this juncture, we now return to consider the goal of
this paper. Despite the large amount of theoretical work
on software verification and the availability of some usable
tooling, very little is really known about the effects of using
tools such as verifying compilers on software development.
The general assumption is that such systems will have an
overwhelmingly positive impact on software development.
For example, Bowen and Hinchey state [23]:

“It is clear to “Formal Methodists” like ourselves,
for some of whom formal methods can be something
of a “religion”, that introducing greater rigor into
software development will improve the software de-
velopment process, and result in software that is bet-
ter structured, more maintainable, and with fewer er-
rors”

Likewise, Meyer says something similar when talking
about the future of software [24]:

“It is clear to all the best minds in the field that a
more mathematical approach is needed for software
to progress much.”

Whilst the present author doesn’t necessarily disagree
with these views, there is certainly a lack of experimental
evidence to support them. Part of the problem here is sim-
ply that the use of such tools is far from widespread and,
indeed, very few people actually have experience with them.
Therefore, in this paper, we present a number of hypothe-
ses regarding the specification and verification of software.
We distinguish the act of specifying a program (e.g. anno-
tating it with pre-/post-conditions, etc) from verifying it us-
ing some kind of tool (e.g. a verifying compiler). These hy-
potheses stem from commonly found views in the literature,
as well as our own experiences in developing and using the

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

PLATEAU’15, October 26, 2015, Pittsburgh, PA, USA
c© 2015 ACM. 978-1-4503-3907-0/15/10...

http://dx.doi.org/10.1145/2846680.2846691

57

Whiley programming language and its accompanying veri-
fying compiler. We have also had the opportunity to observe
students using Whiley to verify simple programs as part of a
second-year paper on formal methods.

2. Hypotheses
We now present our verification-related hypotheses in two
parts. First, we consider those related primarily to the act of
specifying software and then we consider those related to the
act of verifying software.

2.1 Specification
Our first hypothesis related to specifying software is seem-
ingly straightforward:

HYPOTHESIS 1. Specifications are no different from other
aspects of programming.

By this we mean that writing specifications will itself ex-
hibit all the usual problems and issues found when writing
software. For example, specifications can themselves con-
tain bugs. Backhouse highlights this in his introduction [6]:

“Of course, the science guarantees correctness only if
it is used correctly, and people will continue to make
mistakes. So, testing is still wise”

Likewise, specifications can be written in ways which are
or are not more readable and will suffer from the general is-
sues of software maintenance. They will not always reflect
what the user wanted and will need to be developed along-
side the user to ensure the right things are specified. Speci-
fications will also need to be developed incrementally with
the rest of the program, as Gries acknowledged [3]:

“A program and its proof should be developed hand-
in-hand, with the proof usually leading the way.”

That is, as the program’s design inevitably changes, its
specifications will need to be updated accordingly. We note
this appears to contradict the view taken by proponents of
the “Correct by Construction” approach to development. For
example, Lamport states [9]:

“it’s a good idea to specify a program before imple-
menting it”

Similarly, Kourie and Watson state the essence of their book
is to derive code from specifications, more specifically [8]:

“Once a problem has been specified, a number of re-
finement laws can be deployed to refined incremen-
tally the specification”

However, we do not believe there really is a contradic-
tion here. For example, Lamport does not necessarily ad-
vocate developing complete specifications beforehand and,
in later work, says “formal specification is just one end of
a spectrum. An architect would not draw the same kind of

blueprint for a toolshed as for a bridge” [25]. Likewise,
Kourie and Watson explicitly acknowledge they do not ex-
pect “all and sundry” to specify programs before imple-
menting them; rather they are hoping to foster more rigorous
thought processes during development.

HYPOTHESIS 2. Specifications are rarely complete.

As highlighted above, one view found in the literature
is that aim is always to completely specify software. In
most cases, completeness is taken to mean “functional com-
pleteness” and ignores issues such as real-time constraints
or other resource constraints (e.g. memory). Nevertheless,
many acknowledge the additional burden of complete spec-
ification may not be cost effective [26–28]. On this point
Murphy-Hill and Grossman say [28]:

“First, formal specifications need not encompass all
requirements. We can prove browser security without
formalizing everything a web browser must do, which
is essential since even specifying how to render HTML
is surely intractable.”

Likewise, Bowen and Hinchey in their widely acclaimed
paper say [26]:

“Thou shalt formalize but not over formalize ... Apply-
ing formal methods to all aspects of a system would be
both unnecessary and costly.”

We speculate the effort required to specify a program
increases considerably with the level of completeness re-
quired. Polikarpova et al. experimentally assessed the benefit
of stronger versus weaker specifications [27]. As expected,
they found stronger specifications uncovered more software
faults. However, they also claimed anecdotally that the “ef-
fort required to write the strong specifications was moder-
ate”, based on their experiences in developing strong spec-
ifications for their experiment. However, our personal expe-
rience contradicts this view as we have found simple speci-
fications relatively easy to write, but more complete specifi-
cations considerably harder.

Our view is that we expect to see widely varying levels of
specification in practice (i.e. when such tools become more
common-place). This will be partly driven by the needs of
programmers. If the goal is simply to eliminate common
errors (e.g. array-out-of-bounds, division-by-zero, etc) then
incomplete specifications will likely be sufficient. Another
factor is that programmers themselves will sometimes be
unaware that they have not fully specified a program. Since
verification tools give no indication as to how complete a
specification is, it will be up to the programmer to decide
when to stop and varying levels of expertise will inevitably
lead to varying levels of specification.

HYPOTHESIS 3. Specification without verification provides
only modest benefit.

58

We believe that the act of specifying a program, regard-
less of whether or not it is verified, will lead to improved
software quality. This is perhaps not surprising, given the
general belief that even just documenting code improves
quality [29]. However, like documentation, we believe that
providing specifications which have not been verified in
some way will provide only modest benefits.

Our personal experiences in developing a tool for check-
ing non-null annotations supports this view [30]. In using
this tool to verify parts of the Java standard library we found
a large number of errors in the documentation. For example,
methods in the widely used class java.lang.String are
documented with respect to whether or not their parameters
may accept null. However, at the time, we identified 83
out of 1101 public methods were mis-documented. This is
particularly insidious because most being correctly specified
gives false confidence that all are.

2.2 Verification
HYPOTHESIS 4. Verification is challenging when it requires
a creative step.

Verifying a function meets it specification is, at times,
quite challenging and our experience suggests one reason
for this is the need for creative steps. The need for cre-
ative steps during verification is widely acknowledged [3, 8].
For example, it is well known that students find difficulty
in writing loop invariants for this reason [5]. That is, when
the required loop invariant does not match the loop’s post-
condition some creativity is needed to transform the post-
condition into the correct form. Figure 1 illustrates such
a function. However, in tools such as Dafny, Spec# and
Whiley, there are other (less well known) kinds of creative
step which can be required. For example, consider this sim-
ple function in Whiley:

function add([int] x,[int] y) -> ([int] z)
requires |x| == |y|
ensures |z| == |x|:

//
int i = 0
while i < |x| where i >= 0:

x[i] = x[i] + y[i]
i = i + 1

//
return x

This function will not verify in Whiley as is because the
loop invariant is not strong enough. The rules of Hoare logic
tell us that the loop invariant needs to establish |z| == |x|.
However, since x is returned, this corresponds to |x| == |x|

which is seemingly nonsense. In fact, we must consider that
x in the postcondition refers to its value on entry to the func-
tion, whilst x in the return statement refers to its value at
the end of the function. Thus, the post-condition we must es-
tablish is really |x’| == |x|, where x’ refers to its value

at the return statement. Nevertheless, this still does not
suggest a suitable loop invariant. In fact, a skilled opera-
tor will realise that |x| == |y| is sufficient since y is not
modified by the loop and its size does match x on entry.

HYPOTHESIS 5. Forwards reasoning is easier than back-
wards reasoning.

Hoare logic underpins verification tools such as Dafny,
Spec# and Whiley [1]. As such it is natural to connect
such systems with Hoare logic when teaching. Furthermore,
Hoare logic is indifferent to the direction of reasoning and
can be used to reason about programs in either a forwards
or backwards direction. Perhaps surprisingly, many advo-
cate for approaches based on backwards reasoning for two
reasons:

1. Reasoning in the forwards direction requires the use of
Floyd’s rule [31] which introduces existentials.1

2. One can often infer loop invariants by reasoning back-
wards from a function’s postcondtion.

Despite this, we believe that students struggle with rea-
soning in a backwards direction and there is perhaps some
evidence to support this from the debugging literature. For
example, Katz and Anderson observed that novices tend to
prefer debugging in a forwards direction, especially on code
which is unfamiliar to them [32]. Fitzgerald et al. later repli-
cated their studied (albeit in a slightly modified form) and
drew the same conclusion [33].

HYPOTHESIS 6. Verification is comparable with double
checking.

Verification provides a mechanism for checking our pro-
grams meet their specifications. We have no doubt that this
will improve software quality. However, we also suspect that
one of the main benefits from verification is simply that it
forces us to look carefully at our program. If we had an-
other mechanism which forced us to look carefully, we sus-
pect this might give comparable benefits to verification. Such
a mechanism might be to implement a given method twice
— perhaps once in an imperative style, and once in a func-
tional style. Doing this would seem to require careful think-
ing about what the function does and how it does it.

3. Conclusion
In this paper, we presented a number of usability hypotheses
related to specification and verification. Our hope is that, as
verification tools become more accessible, researchers will
begin to critically examine the trade-offs they offer. And, of
course, there are many more questions than we have had
space to consider here. For example, understanding how

1 We note that the need for existential quantifiers in Floyd’s rule can be
mitigated if students are taught an approach where existentials are immedi-
ately skolemised (i.e. so they never see them) and, for example, skolems are
named along the lines of Static Single Assignment form

59

function zeroOut([int] xs) -> ([int] rs)
ensures |rs| == |xs|
ensures all { i in 0..|rs| | rs[i] == 0 }:

//
int i = 0
[int] rs = xs
//
while i < |xs|
where i >= 0 && i <= |xs|
where |xs| == |rs|
where all { j in 0..i | rs[j] == 0 }:

rs[i] = 0
i = i + 1

//
return rs

Figure 1. Illustrating a simple loop whose loop invariant
requires a quantifier.

much overhead is imposed using a particular verification
system seems important.

References
[1] C. A. R. Hoare and N. Wirth. An axiomatic definition

of the programming language PASCAL. Acta Informatica,
2(4):335–355, 1973.

[2] E. W. Dijkstra. Guarded commands, nondeterminancy and
formal derivation of programs. CACM, 18:453–457, 1975.

[3] D. Gries. The science of programming. Springer-Verlag, 1981.

[4] S. King. A Program Verifier. PhD thesis, Carnegie-Mellon
University, 1969.

[5] K. Broda, S. Eisenbach, H. Khoshnevisan, and Steven Vick-
ers. Reasoned Programming. Prentice Hall, 1994.

[6] Roland Backhouse. Program Construction. Wiley, 2003.

[7] J.B. Almeida, M.J. Frade, J.S. Pinto, and S Melo de Sousa.
Rigorous Software Development, An Introduction to Program
Verification. Springer-Verlag, 2011.

[8] Derrick G. Kourie and Bruce W. Watson. The Correctness-by-
Construction Approach to Programming. Springer, 2012.

[9] L. Lamport. Specifying Systems, The TLA+ Language and
Tools for Hardware and Software Engineers. Addison-
Wesley, 2002.

[10] C.A.R. Hoare. The verifying compiler: A grand challenge for
computing research. JACM, 50(1):63–69, 2003.

[11] L. Peter Deutsch. An interactive program verifier. Ph.D.,
1973.

[12] D. I. Good. Mechanical proofs about computer programs. In
Mathematical logic and programming languages, pages 55–
75, 1985.

[13] D. Luckham, SM German, F. von Henke, R. Karp, P. Milne,
D. Oppen, W. Polak, and W. Scherlis. Stanford Pascal Veri-
fier user manual. Technical Report CS-TR-79-731, Stanford
University, Department of Computer Science, 1979.

[14] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and
James B. Saxe. Extended static checking. SRC Research
Report 159, Compaq Systems Research Center, 1998.

[15] C. Flanagan, K. Leino, M. Lillibridge, G. Nelson, J. B. Saxe,
and R. Stata. Extended static checking for Java. In Proc.
PLDI, pages 234–245, 2002.

[16] G. T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and D. R. Cok.
How the design of JML accommodates both runtime asser-
tion checking and formal verification. Science of Computer
Programming, 55(1-3):185–208, March 2005.

[17] M. Barnett, M. Fähndrich, K. R. M. Leino, P. Müller,
W. Schulte, and H. Venter. Specification and verification: the
Spec# experience. CACM, 54(6):81–91, 2011.

[18] K. Rustan M. Leino. Dafny: An automatic program verifier
for functional correctness. In Proc. LPAR, volume 6355 of
LNCS, pages 348–370. Springer-Verlag, 2010.

[19] J. Filliâtre and A. Paskevich. Why3 — where programs meet
provers. In Proc. ESOP, pages 125–128, 2013.

[20] B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx,
and F. Piessens. Verifast: A powerful, sound, predictable, fast
verifier for C and Java. pages 41–55. Springer-Verlag, 2011.

[21] D. J. Pearce and L. Groves. Whiley: a platform for research
in software verification. In Proc. SLE, pages 238–248, 2013.

[22] D. J. Pearce and Lindsay Groves. Reflections on verifying
software with Whiley. In Proc. FTSCS, pages 142–159, 2013.

[23] J. Bowen and M. Hinchey. Ten commandments of Formal
Methods . . . ten years later. IEEE Computer, 39(1), 2006.

[24] Ted Lewis. Where is software headed? A virtual roundtable.
IEEE Computer, 28(8):20–32, August 1995.

[25] L. Lamport. Who builds a house without drawing blueprints?
CACM, 58(4):38–41, 2015.

[26] J. Bowen and M. Hinchey. Ten commandments of formal
methods. IEEE Computer, 28(4):56–63, 1995.

[27] N. Polikarpova, C. Furia, Y. Pei, Y. Wei, and B. Meyer. What
good are strong specifications? In Proc. ICSE, pages 262–271,
2013.

[28] Emerson Murphy-Hill and Dan Grossman. How program-
ming languages will co-evolve with software engineering: a
bright decade ahead. In Proc. FOSE. ACM, 2014.

[29] S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira. A study
of the documentation essential to software maintenance. In
SIGDOC, pages 68–75. ACM Press, 2005.

[30] C. Male, D. J. Pearce, A. Potanin, and C. Dymnikov. For-
malisation and implementation of an algorithm for bytecode
verification of @NonNull types. Science of Computer Pro-
gramming, pages 587–568, 2011.

[31] R. W. Floyd. Assigning meaning to programs. In Proceedings
of Symposia in Applied Mathematics, volume 19, pages 19–
31. American Mathematical Society, 1967.

[32] I. R. Katz and J. R. Anderson. Debugging: An analysis of
bug-location strategies. HCI, 3(4):351–399, 1987.

[33] S. Fitzgerald, G. Lewandowski, R. McCauley, L. Murphy,
B. Simon, L. Thomas, and C. Zander. Debugging: finding,
fixing and flailing, a multi-institutional study of novice de-
buggers. Computer Science Education, 18(2):93–116, 2008.

60

