
Sound and Complete Flow Typing with Unions,
Intersections and Negations

David J. Pearce

School of Engineering and Computer Science
Victoria University of Wellington

What is Flow Typing?

Defining characteristic: ability to retype variables

JVM Bytecode provides widely-used example:

Groovy 2.0 now includes flow-typing static checker

Another Example

Non-null type checking provides another example:

Many works in literature on this topic!

The Whiley Programming Language

Statically typed using a flow-type algorithm

Look-and-feel of dynamically-typed language:

define Circle as {int x, int y, int r}
define Rect as {int x, int y, int w, int h}
define Shape as Circle | Rect

real area(Shape s):
if s is Circle:

return PI * s.r * s.r
else:

return s.w * s.h

Question: how to implement flow-type checker?

Intersection and Negation Types

True Branch: type of s is Shape∧ Circle = Circle

False Branch: type of s is Shape− Circle = Rect

NOTE: can write T1 − T2 as T1 ∧ ¬T2

Union Types

Unions capture types of variables are meet points:

Unions are useful for avoiding e.g. null dereferences:

Syntax of Types

A syntactic definition of types being considered:

T ::=any | int | (T1, . . . ,Tn) | ¬T | T1 ∧ . . .∧ Tn | T1 ∨ . . .∨ Tn

Made some simplifying assumptions:

• Intersections and Unions are unordered (e.g. T1∨ T2 is
syntactically identical T2∨ T1)

• Duplicates are removed from Intersections and Unions (e.g.
T1∨ T1 is syntactically identical to T1)

• Will often write void as short-hand for ¬any

Note: above defines a subset of types in Whiley

Semantics of Types

A semantic definition of types being considered:

JanyK = D
JintK = Z

J(T1, . . . ,Tn)K =
{
(v1, . . . ,vn) | v1∈JT1K, . . . ,vn∈JTnK

}
J¬TK = D− JTK

JT1 ∧ . . .∧ TnK = JT1K ∩ . . . ∩ JTnK
JT1 ∨ . . .∨ TnK = JT1K ∪ . . . ∪ JTnK

Some equivalences between types are implied:

Jint∨ ¬intK = JanyK
J(T1 ∨ T2,int)K = J(T1,int)∨ (T2,int)K

Such types are syntactically distinct, but semantically identical

Soundness and Completeness

Definition (Subtype Soundness)

A subtype operator, ≤, is sound if, for any types T1 and T2, it holds that
T1 ≤ T2 =⇒ JT1K ⊆ JT2K.

Definition (Subtype Completeness)

A subtype operator, ≤, is complete if, for any types T1 and T2, it holds
that JT1K ⊆ JT2K =⇒ T1 ≤ T2.

Any complete subtyping algorithm must cope with equivalent
types

For example, must be able to show that int∧ ¬int ≤ (int,int)

But, do we need completeness?

Subtype Rules (Sound, but not Complete)

T ≤ any void ≤ T

int ≤ ¬(T1, . . . ,Tn) (T1, . . . ,Tn) ≤ ¬int

∀i.Ti ≤ Si
(T1, . . . ,Tn) ≤ (S1, . . . ,Sn)

n 6= m∨ ∃i.Ti ≤ ¬Si
(T1, . . . ,Tn) ≤ ¬(S1, . . . ,Sm)

∀i.Ti≥ Si
¬(T1, . . . ,Tn) ≤ ¬(S1, . . . ,Sn)

∀i.Ti ≤ S

T1∨ . . .∨ Tn ≤ S

∃i.T ≤ Si
T ≤ S1∨ . . .∨ Sn

∃i.Ti ≤ S

T1∧ . . .∧ Tn ≤ S

∀i.T ≤ Si
T ≤ S1∧ . . .∧ Sn

Comparable to: S.Tobin-Hochstadt and M.Felleisen. The design and
implementation of typed Scheme. In Proceedings of POPL, 2008.

Towards a Sound & Complete Subtype Algorithm...

Developing a complete algorithm is challenging!

Tried many modifications on previous rules ... without success

Equivalences between types are the main difficulty

Problem previously shown as decidable:

A.Frisch,G.Castagna and V.Benzaken. Semantic subtyping:
Dealing set-theoretically with function, union, intersection, and
negation types. Journal of the ACM, 2008.

But, this does not present easily implementable algorithm...

Atoms

Let T∗ denote a type atom, defined as follows:

T∗ ::= T+ | T−

T− ::= ¬T+

T+ ::= any | int | (T+1 , . . . ,T
+
n)

Atoms are canonical by construction

Sound and complete subtyping for atoms is straightforward:

T+ ≤ T+ T+ ≤ any

∀i∈ {1, . . . ,n}.T+i ≤ S+i
(T+1 . . . ,T+n) ≤ (S+1 , . . . ,S

+
n)

Above can be extended to negative atoms as well

Disjunctive Normal Form

Let T =⇒∗ T ′ denote the application of zero or more rewrite rules
(defined below) to type T, producing a potentially updated type T ′.

¬¬T =⇒ T (1)
¬
∨
iTi =⇒ ∧

i¬Ti (2)
¬
∧
iTi =⇒ ∨

i¬Ti (3)(∨
i Si

)
∧
∧
jTj =⇒ ∨

i

(
Si ∧

∧
jTj
)

(4)
(. . . ,

∨
iTi, . . .) =⇒ ∨

i(. . . ,Ti, . . .) (5)
(. . . ,

∧
iTi, . . .) =⇒ ∧

i(. . . ,Ti, . . .) (6)
(. . . ,¬T, . . .) =⇒ (. . . ,any, . . .)∧ ¬(. . . ,T, . . .) (7)

Examples:

¬(T1 ∧ T2) =⇒ ¬T1 ∨ ¬T2

T1 ∧ (T2 ∨ T3) =⇒ (T1 ∧ T2)∨ (T1 ∧ T3)

(int∨ (int,int),any) =⇒ (int,any)∨ ((int,int),any)

Canonical Conjuncts

Definition (Canonical Conjunct)

Let T∧ denote a canonical conjunct. Then, T∧ is a type of the form
T+1 ∧ ¬T+2 ∧ . . .∧ ¬T+n where:

1 For every negation ¬T+k , we have T+1 6= T+k and T+1 ≥ T+k .
2 For any two distinct negations ¬T+k and ¬T+m , we have T+k 6≥ T+m .

Key Property: Let T1 and T2 be canonical conjuncts, then
JT1K = JT2K =⇒ T1 = T2

Key Observation: any conjunct of atoms can be expressed as a
canonical conjunct:

¬(int∨ (int,int),any) =⇒ (any,any)∧ ¬(int,any)∧ ¬((int,int),any)

(int,int)∧¬(any,any) =⇒ void

(any,any)∧ ¬(int,int)∧ ¬(any,int) =⇒ (any,any)∧ ¬(any,int)

Canonicalised Disjunctive Normal Form

Definition (DNF+)

Let T∨ denote a type in Canonicalised Disjunctive Normal Form
(DNF+). Then, either T∨ has the form

∨
iT

∧
i or is void.

Key Property: JTK = ∅ ⇐⇒ DNF+(T) = void

Examples:

DNF+
(
¬(int∧ (int,int))

)
= (any∧ ¬int)∨ (any∧ ¬(int,int))

DNF+
(
(int,any)∧ (int∨ ¬(any,any))

)
= void∨ void

Note: DNF+(T) is not a canonical form of T

A Sound & Complete Subtype Algorithm

Surprise: can encode subtype tests as types!

Definition (Subtyping)

Let T1 and T2 be types. Then, T1 ≤ T2 is defined as
DNF+(T1∧¬T2) = void.

Conclusions

Sound & Complete Subtyping over Unions, Intersections and
Negations is challenging!

Several sound (but not complete) algorithms have been presented

Frisch et al. showed completeness was decidable

We now have an easily implementable algorithm!

So ... does a polynomial time algorithm exist?

http://whiley.org

