Sound and Complete Flow Typing with Unions,
Intersections and Negations

David J. Pearce

School of Engineering and Computer Science
Victoria University of Wellington

What is Flow Typing?

m Defining characteristic: ability to retype variables

m JVM Bytecode provides widely-used example:

public static float convert (int):

iload 0 /load register 0 on stack \
Type of r0 here is int
i2f // convert int to float . :
Type of r0 here is int
fstore 0 / store float to register 0) i
Type of x0 here is £loat
fload 0 /load register 0 on stack . .

Type of x0 hereis £loat

A

freturn // return value on stack

m Groovy 2.0 now includes flow-typing static checker

Another Example

m Non-null type checking provides another example:

int compare (String sl, @NonNull String s2) {

@NonNull

if(sl != null) Type of sl here is }

return sl. campareTm(sZ

} else {
/(Type of s1 here is null }

return -1;

}
m Many works in literature on this topic!

The Whiley Programming Language

m Statically typed using a flow-type algorithm

m Look-and-feel of dynamically-typed language:

define Circle as {int x, int vy, int r}
define Rect as {int x, int vy, int w, int h}
define Shape as Circle | Rect

real area (Shape s):
i1f s is Circle:
return PI x s.r * s.r
else:
return s.w x s.h

m Question: how to implement flow-type checker?

Intersection and Negation Types

define Shape as Circle | Rect

Type of s here is both

real area (Shape s):
(P) Shape AND Circle

if s is Circle:

return PI s.r = s.r

else: fﬁéfﬂf;ﬂfaﬂf
Type of s here is

return s.w x s.h L Shape LESS Circle

m True Branch: type of s is Shape ACircle =Circle
m False Branch: type of s iIs Shape — Circle = Rect

m NOTE: canwrite T, — T, as T, AT,

Union Types

m Unions capture types of variables are meet points:

intV[int] fun(bool flagqg):

if flag:
x = 1
else:
x = [1,2,3]
return x /Type of x here is either

L int OR [int]

m Unions are useful for avoiding e.g. null dereferences:

nullVint indexOf (string str, char c):

[string] split(string str, char c):
idx = indexOf (str,c) r

if idx is int: Type of idx here is either
e null ORint

else:

Syntax of Types

m A syntactic definition of types being considered:

Ti=any|int | (T1,...,To) | " T | T1A...AT, | T1 V...V T,

m Made some simplifying assumptions:

e Intersections and Unions are unordered (e.g. T:V T, is
syntactically identical T,\ T;)

e Duplicates are removed from Intersections and Unions (e.g.
T.V T, IS syntactically identical to T;)

e Will often write void as short-hand for —any

m Note: above defines a subset of types in Whiley

Semantics of Types

m A semantic definition of types being considered:

[any] = D
[int] = Z

[[(Tl)“')Tn): — {(Vl>'°'>vn)|Vl€[[Tl]]>°”>Vn€[[Tn]]}
[-1] = D—[1]

[T1 Ao ATL] = [T NN [Ty]

[T, V...VT,] = [T1]U...U[T,]

m Some equivalences between types are implied:

[int V —int] = [any]
[[(Tl V T2, int)]] — [[(Tb il’lt) V (T2> int)]]

m Such types are syntactically distinct, but semantically identical

Soundness and Completeness

Definition (Subtype Soundness)

A subtype operator, <, is sound if, for any types T, and T, it holds that
T; < T, = [T1] C [T2].

Definition (Subtype Completeness)

A subtype operator, <, is complete if, for any types T, and T,, it holds
that [T.] C [T,] = T1 < T».

m Any complete subtyping algorithm must cope with equivalent
types

For example, must be able to show that int A—int < (int,int)

m But, do we need completeness?

Subtype Rules (Sound, but not Complete)

T < any void < T
int <—(Tqyy...,T,) (T1,...,T,) < —int
\V/i.Ti S Sy n #m\/fll.Tl S Sy
(T1y...,Tn) < (S1y...,5n) (T1y...yTn) < —(S1y...,Sn)
Vi.T;> S;
'(Tl>-°°)Tn) S'(Slw")Sn)

Vi.T; <S8 J1.T <S4
T:V...VT,<S T<S;V...VS,
J1.T; < S Vi.T < S;
TIN...AT, <3S T<S;NA...\S,

m Comparable to: S.Tobin-Hochstadt and M.Felleisen. The design and
implementation of typed Scheme. In Proceedings of POPL, 2008.

Towards a Sound & Complete Subtype Algorithm...

m Developing a complete algorithm is challenging!

m Tried many modifications on previous rules ... without success
m Equivalences between types are the main difficulty

m Problem previously shown as decidable:

A.Frisch,G.Castagna and V.Benzaken. Semantic subtyping:
Dealing set-theoretically with function, union, intersection, and
negation types. Journal of the ACM, 2008.

m But, this does not present easily implementable algorithm...

Atoms

m Let T* denote a type atom, defined as follows:

T = TT|T™
T~ = —T"
Tt == any|int |(T],..., T)

m Atoms are canonical by construction

m Sound and complete subtyping for atoms is straightforward:

T <TT Tt < any
Vie{l,...,n}.T7 < ST
(¥ ..., T5) < (sT,...,s})

m Above can be extended to negative atoms as well

Disjunctive Normal Form

m Let T —* T’ denote the application of zero or more rewrite rules
(defined below) to type T, producing a potentially updated type T’.

——T —> T

~ViT: — Ni7Ts

~“NAiTi — V,7Ti

(\/i Si)/\/\jTj — \/i<Si/\/\jT]>

(~~>\/iTi>) — \/i(--->Ti>--)

(°°>/\1T1>) — /\i(“-)Ti)-)

(')_lT)') ﬁ ("')aDY) ')/_|()T))

m Examples:
—(T1 ATy) = —T1 VT,
Ti1 A\ (T2 V T3) = (T1 A T2) V (T1 A Ts)

(int V (int,int),any) = (int,any) V ((int, int),any)

Nogrem=

Canonical Conjuncts

Definition (Canonical Conjunct)

Let T/ denote a canonical conjunct. Then, T\ is a type of the form
7 A—=TF A...A—T} where:

For every negation —T,", we have T # T,” and T > T, .

For any two distinct negations —T;” and —T;', we have T;” % T .

m Key Property: Let T; and T, be canonical conjuncts, then
[T1] =[T2] = T1=T>

m Key Observation: any conjunct of atoms can be expressed as a
canonical conjunct:

—(int V (int,int),any) = (any,any)/\—(int,any) A —((int,int),any)
(int,int)A—(any,any) — void
(any,any)/A—(int,int) A—(any,int) =— (any,any)/\ —(any, int)

Canonicalised Disjunctive Normal Form

Definition (DNF™)

Let TV denote a type in Canonicalised Disjunctive Normal Form
(DNFF). Then, either T has the form \/, T/ or is void.

m Key Property: [T] =0 <= DNF"(T) =void

m Examples:

DNE™ (ﬁ(int A (int, int))) = (any A—int)V (any A—(int,int))
DNF+((int, any)/\ (int V —(any, any))) = voidV void

m Note: DNF'(T) is not a canonical form of T

A Sound & Complete Subtype Algorithm

m Surprise: can encode subtype tests as types!

12

&

Definition (Subtyping)

Let T, and T, be types. Then, T; < T, is defined as
DNFT(T;/A\—T,) = void.

Conclusions

m Sound & Complete Subtyping over Unions, Intersections and
Negations is challenging!

m Several sound (but not complete) algorithms have been presented

m Frisch et al. showed completeness was decidable

m We now have an easily implementable algorithm!

m So ... does a polynomial time algorithm exist?

http://whiley.org

