Sound and Complete Flow Typing with Unions, Intersections and Negations

David J. Pearce

School of Engineering and Computer Science Victoria University of Wellington

What is Flow Typing?

Defining characteristic: *ability to retype variables*

■ JVM Bytecode provides **widely-used** example:

public static float convert(int):

Groovy 2.0 now includes flow-typing static checker

Another Example

■ Non-null type checking provides another example:

The Whiley Programming Language

Statically typed using a flow-type algorithm

Look-and-feel of **dynamically-typed** language:

```
define Circle as {int x, int y, int r}
define Rect as {int x, int y, int w, int h}
define Shape as Circle | Rect
```

```
real area(Shape s):
    if s is Circle:
        return PI * s.r * s.r
    else:
        return s.w * s.h
```

■ **Question**: how to implement flow-type checker?

Intersection and Negation Types

■ **True Branch:** type of s is Shape \land Circle = Circle

■ **False Branch:** type of s is Shape - Circle = Rect

```
NOTE: can write T_1 - T_2 as T_1 \wedge \neg T_2
```

Union Types

Unions capture types of variables are meet points:

```
int \[ [int] fun (bool flag):
    if flag:
        x = 1
    else:
        x = [1,2,3]
    return x
        Type of x here is either
        int OR [int]
```

■ Unions are useful for avoiding e.g. **null dereferences**:

```
nullVint indexOf(string str, char c):
...
[string] split(string str, char c):
idx = indexOf(str,c)
if idx is int:
...
else:
...
```

Syntax of Types

A syntactic definition of types being considered:

 $T ::= any \mid int \mid (T_1, \dots, T_n) \mid \neg T \mid T_1 \land \dots \land T_n \mid T_1 \lor \dots \lor T_n$

Made some simplifying assumptions:

- Intersections and Unions are unordered (e.g. T₁∨ T₂ is syntactically identical T₂∨ T₁)
- Duplicates are removed from Intersections and Unions (e.g. T₁ ∨ T₁ is syntactically identical to T₁)
- Will often write void as short-hand for ¬any

Note: above defines a subset of types in Whiley

Semantics of Types

• A **semantic** definition of types being considered:

$$\begin{bmatrix} any \end{bmatrix} = \mathbb{D} \\ \begin{bmatrix} int \end{bmatrix} = \mathbb{Z} \\ \begin{bmatrix} (T_1, \dots, T_n) \end{bmatrix} = \left\{ (v_1, \dots, v_n) \mid v_1 \in \llbracket T_1 \rrbracket, \dots, v_n \in \llbracket T_n \rrbracket \right\} \\ \begin{bmatrix} \neg T \rrbracket = \mathbb{D} - \llbracket T \rrbracket \\ \begin{bmatrix} T_1 \land \dots \land T_n \rrbracket = \llbracket T_1 \rrbracket \cap \dots \cap \llbracket T_n \rrbracket \\ \begin{bmatrix} T_1 \lor \dots \lor T_n \rrbracket = \llbracket T_1 \rrbracket \cup \dots \cup \llbracket T_n \rrbracket \end{bmatrix}$$

Some equivalences between types are implied:

```
\llbracket \text{int} \lor \neg \text{int} \rrbracket = \llbracket \text{any} \rrbracket\llbracket (T_1 \lor T_2, \text{int}) \rrbracket = \llbracket (T_1, \text{int}) \lor (T_2, \text{int}) \rrbracket
```

Such types are *syntactically distinct*, but *semantically identical*

Soundness and Completeness

Definition (Subtype Soundness)

A subtype operator, \leq , is *sound* if, for any types T_1 and T_2 , it holds that $T_1 \leq T_2 \Longrightarrow \llbracket T_1 \rrbracket \subseteq \llbracket T_2 \rrbracket$.

Definition (Subtype Completeness)

A subtype operator, \leq , is *complete* if, for any types T_1 and T_2 , it holds that $[T_1] \subseteq [T_2] \Longrightarrow T_1 \leq T_2$.

Any complete subtyping algorithm must cope with equivalent types

For example, must be able to show that $int \land \neg int \leq (int, int)$

But, do we need completeness?

Subtype Rules (Sound, but not Complete)

 Comparable to: S.Tobin-Hochstadt and M.Felleisen. The design and implementation of typed Scheme. In *Proceedings of POPL*, 2008.

Towards a Sound & Complete Subtype Algorithm...

Developing a complete algorithm is challenging!

- Tried many **modifications** on previous rules ... without success
- Equivalences between types are the main difficulty
- Problem previously shown as decidable:

A.Frisch,G.Castagna and V.Benzaken. Semantic subtyping: Dealing set-theoretically with function, union, intersection, and negation types. *Journal of the ACM*, 2008.

But, this does not present easily implementable algorithm...

Atoms

■ Let T* denote a **type atom**, defined as follows:

$$T^* ::= T^+ | T^-$$

$$T^- ::= \neg T^+$$

$$T^+ ::= any | int | (T_1^+, ..., T_n^+)$$

Atoms are canonical by construction

Sound and complete subtyping for atoms is straightforward:

Above can be **extended** to negative atoms as well

Disjunctive Normal Form

■ Let $T \implies^* T'$ denote the application of zero or more rewrite rules (defined below) to type T, producing a potentially updated type T'.

$$\neg \neg T \qquad \Longrightarrow T \qquad (1)$$

$$\neg \bigvee_{i} T_{i} \implies \bigwedge_{i} \neg T_{i}$$
(2)

$$\neg \bigwedge_{i} T_{i} \qquad \Longrightarrow \qquad \bigvee_{i} \neg T_{i} \qquad (3)$$

$$(\bigvee_{i} S_{i}) \wedge \bigwedge_{j} T_{j} \implies \bigvee_{i} (S_{i} \wedge \bigwedge_{j} T_{j})$$

$$(4)$$

$$(\dots, \bigvee_{i} T_{i}, \dots) \implies \bigvee_{i} (\dots, T_{i}, \dots)$$

$$(5)$$

$$(\dots, \bigwedge_{i} T_{i}, \dots) \implies \bigwedge_{i} (\dots, T_{i}, \dots)$$

$$(6)$$

$$(\dots, \neg T, \dots) \implies (\dots, \operatorname{any}, \dots) \land \neg (\dots, T, \dots)$$
 (7)

• Examples:

$$\neg(\mathsf{T}_1 \land \mathsf{T}_2) \Longrightarrow \neg \mathsf{T}_1 \lor \neg \mathsf{T}_2$$

 $T_1 \wedge (T_2 \vee T_3) \Longrightarrow (T_1 \wedge T_2) \vee (T_1 \wedge T_3)$

 $(\texttt{int} \lor (\texttt{int}, \texttt{int}), \texttt{any}) \Longrightarrow (\texttt{int}, \texttt{any}) \lor ((\texttt{int}, \texttt{int}), \texttt{any})$

Canonical Conjuncts

Definition (Canonical Conjunct)

Let T^{\wedge} denote a *canonical conjunct*. Then, T^{\wedge} is a type of the form $T_1^+ \wedge \neg T_2^+ \wedge \ldots \wedge \neg T_n^+$ where:

- 1 For every negation $\neg T_k^+$, we have $T_1^+ \neq T_k^+$ and $T_1^+ \geq T_k^+$. 2 For any two distinct negations $\neg T_k^+$ and $\neg T_m^+$, we have $T_k^+ \geq T_m^+$.
- Key Property: Let T_1 and T_2 be canonical conjuncts, then $\llbracket T_1 \rrbracket = \llbracket T_2 \rrbracket \implies T_1 = T_2$
- Key Observation: any conjunct of atoms can be expressed as a canonical conjunct:

 $\neg(\text{int} \lor (\text{int}, \text{int}), \text{any}) \Longrightarrow (\text{any}, \text{any}) \land \neg((\text{int}, \text{any}) \land \neg((\text{int}, \text{int}), \text{any})) \Rightarrow \text{void}$ $(\text{any}, \text{any}) \land \neg(\text{int}, \text{int}) \land \neg(\text{any}, \text{int}) \Longrightarrow (\text{any}, \text{any}) \land \neg(\text{any}, \text{int})$

Canonicalised Disjunctive Normal Form

Definition (DNF⁺)

Let T^{\vee} denote a type in *Canonicalised Disjunctive Normal Form* (*DNF*⁺). Then, either T^{\vee} has the form $\bigvee_{i} T^{\wedge}_{i}$ or is void.

• Key Property: $[T] = \emptyset \iff DNF^+(T) = void$

• Examples:

 $DNF^{+}(\neg(int \land (int, int))) = (any \land \neg int) \lor (any \land \neg (int, int))$

 $DNF^+((int, any) \land (int \lor \neg(any, any))) = void \lor void$

■ Note: DNF⁺(T) is *not* a canonical form of T

A Sound & Complete Subtype Algorithm

Surprise: can encode subtype tests as types!

Definition (Subtyping)

Let T_1 and T_2 be types. Then, $T_1 \leq T_2$ is defined as $DNF^+(T_1 \wedge \neg T_2) = void$.

- Sound & Complete Subtyping over Unions, Intersections and Negations is challenging!
- Several sound (but not complete) algorithms have been presented
- Frisch *et al.* showed completeness was **decidable**
- We now have an **easily implementable** algorithm!
- So ... does a polynomial time algorithm exist?

http://whiley.org