
A Calculus for Constraint-Based Flow Typing

David J. Pearce
School of Engineering and Computer Science,Victoria University of Wellington, New Zealand

djp@ecs.vuw.ac.nz

Abstract
Flow typing offers an alternative to traditional Hindley-Milner type
inference. A key distinction is that variables may have different
types at different program points. Flow typing systems are typi-
cally formalised in the style of a dataflow analysis. In the pres-
ence of loops, this requires a fix-point computation over typing
environments. Unfortunately, for some flow typing problems, the
standard iterative fix-point computation may not terminate. We for-
malise such a problem we encountered in developing the Whiley
programming language, and present a novel constraint-based solu-
tion which is guaranteed to terminate. This provides a foundation
for others when developing such flow typing systems.

1. Introduction
Traditional type inference in the style of Hindley-Milner requires
exactly one type be inferred for each program variable. Flow
typing offers an alternative where a variable may have different
types at different program points. The technique is adopted from
flow-sensitive program analysis and has been used for non-null
types [13], and more [6, 20]. Few languages exist which incor-
porate flow typing directly. Typed Racket [20] provides a typed
sister language for untyped Racket, where flow typing is essential
to capture common idioms in the untyped language. Similarly, the
Whiley language employs flow typing to give it the look-and-feel
of a dynamically typed language [11, 18]. Finally, Groovy 2.0 has
very recently incorporated an optional flow typing system [8].

A defining characteristic of flow typing is the ability to retype a
variable — that is, assign it a completely unrelated type. The JVM
Bytecode Verifier provides an excellent illustration:

public static void f(int):
iload 0 // load register 0 on stack
i2f // convert int to float
fstore 0 // store float to register 0
...

In the above, register 0 contains the parameter value on entry
and, initially, has type int. The type of register 0 is subsequently
changed to float by the fstore bytecode. To ensure type safety,
the JVM bytecode verifier employs a typing algorithm based upon
dataflow analysis [12]. This tracks the type of a variable at each
program point, allowing it easily to handle the above example.

1.1 Contributions
Existing flow typing systems are generally formulated in the style
of a dataflow analysis (e.g. [12, 13]). In the presence of loops, this

[Copyright notice will appear here once ’preprint’ option is removed.]

requires a fix-point computation over typing environments. Unfor-
tunately, for some flow typing problems, the standard iterative fix-
point computation may not terminate. We formalise such a prob-
lem that we encountered in developing the Whiley programming
language [11, 18], and present a novel constraint-based solution
which is guaranteed to terminate. Finally, whilst our language of
constraints is similar to previous constraint-based type inference
systems (e.g. [16, 2, 21, 4]), the key novelty of our approach lies
in a mechanism for extracting recursive types from constraints via
elimination and substitution.

AUTHORS NOTE: An earlier version of this paper was pre-
sented at the BEAT’13 workshop (co-located with POPL); however,
this workshop had no formal proceedings and authors were advised
that “the papers will not count as actual publications and that they
can therefore be submitted again to another outlet”.

2. Syntax, Semantics & Subtyping
We now introduce our calculus, called FT (for Flow-Typing), which
is specifically kept to a minimum to to focus on the interesting
problem. The following gives a syntactic definition of types in FT:

T ::= void | any | int | {T1 f1, . . . , Tn fn} | T1 ∨ T2 | µX.T | X

Here, void represents the empty set of values (i.e. ⊥), whilst any
the set of all possible values (i.e. ⊤). Also, {T1 f1, . . . , Tn fn} rep-
resents a record with one or more fields. The union T1∨ T2 is a type
whose values are in T1 or T2. Union types are used to characterise
information flow at meet points in the control-flow graph. Types
of the form µX.T describe recursive data structures. For example,
µX.({int data} ∨ {int data, X next}) gives the type of a linked
list, whilst µX.({int data} ∨ {int data, X lhs, X rhs}) gives
the type of a binary tree. For simplicity, recursive types are treated
equi-recursively [19]. That is, recursive types and their unfoldings
are not distinguished. For example, µX.(int ∨ {int data, X next})
and int ∨ {int data, µX.(int ∨ {int data, X next}) next} (i.e.
it’s one-step unfolding) are considered identical, and so on. Thus,
we don’t need to handle recursive types explicitly as, whenever we
encounter µX.T, we implicitly unfold it to T[X 7→µX.T] as necessary.

2.1 Subtyping
The subtyping rules are given in Figure 1 and employ judgements
of the form “T1 ≤ T2 ⇂ C”, read as: T1 is a subtype of T2 under
assumptions C.

DEFINITION 1 (Subtyping). Let T1 and T2 be types. Then, T1 is a
subtype of T2, denoted T1 ≤ T2, iff T1 ≤ T2 ⇂ ∅.

The set of assumptions C helps ensure the subtype rules from Fig-
ure 1 terminate. The S-I rule is critical here as it protects against
infinite recursion, following the standard treatment of recursive
types (see e.g. [19, 7]). Apart from assumption sets, the rules of
Figure 1 are mostly straightforward. Subtyping of records is via
rule S-R which allows for depth but (for simplicity) not width [19].
Thus, it follows that {T1 f1, . . . , Tn fn} ≤ {T′1 g1, . . . , T′m gm} if
n = m and ∀1≤i≤n.(fi = gi ∧ Ti ≤ T′i) (i.e. both records have

1 2013/4/22

Subtyping:

T ≤ T ⇂ C
{T1 ≤ T2} ⊆ C
T1 ≤ T2 ⇂ C (S-F, S-I)

void ≤ T ⇂ C T ≤ any ⇂ C (S-V, S-A)

C2 = C1 ∪ {T ≤ T′}
T1 ≤ T′1 ⇂ C2 . . . Tn ≤ T′n ⇂ C2

T = {T1 f1, . . . , Tn fn} T′ = {T′1 f1, . . . , T′n fn}
T ≤ T′ ⇂ C1

(S-R)

C2 = C1 ∪ {T1 ≤ T2 ∨ T3}
∃i∈{2, 3}.T1 ≤ Ti ⇂ C2

T1 ≤ T2 ∨ T3 ⇂ C1

C2 = C1 ∪ {T1 ∨ T2 ≤ T3}
T1 ≤ T3 ⇂ C2 T2 ≤ T3 ⇂ C2

T1 ∨ T2 ≤ T3 ⇂ C1
(S-U1,2)

T = {T1 f1 . . . , Ti ∨ T′i fi . . . , Tn fn}
S1 = {T1 f1 . . . , Ti fi, . . . , Tn fn}
S2 = {T1 f1 . . . , T′i fi, . . . , Tn fn}

T ≤ S1∨ S2 ⇂ C
(S-U3)

Figure 1. Subtyping rules for FT.

Syntax:
F ::= T f(T1 n1, . . . , Tn nn) {B}
B ::= S B | ϵ
S ::=

q
n = v

yℓ |
q
n = m

yℓ |
q
n.f = m

yℓ |
q
n = m.f

yℓ

|
q
return n

yℓ | while
q
n < m

yℓ {B}
v ::= {f1 : v1, . . . , fn : vn} | i

Figure 2. Syntax for FT. Here, n, m represent variable identifiers,
whilst i represents the integer constants.

Semantics:

⟨∆,
q
n=v

yℓ
B⟩ −→ ⟨∆[n 7→v], B⟩

(R-VC)

v = ∆(m)

⟨∆,
q
n=m

yℓ
B⟩ −→ ⟨∆[n 7→v], B⟩

(R-VV)

∆(m) = {. . . , f : v, . . .}
⟨∆,

q
n=m.f

yℓ
B⟩ −→ ⟨∆[n 7→v], B⟩

(R-VF)

∆(n) = {f1 : v1, . . . , fn : vn}
v = ∆(n)[f 7→∆(m)]

⟨∆,
q
n.f=m

yℓ
B⟩ −→ ⟨∆[n 7→v], B⟩

(R-FV)

v = ∆(n)

⟨∆,
q
return n

yℓ
B⟩ −→ halt(v)

(R-RV)

∆(n) < ∆(m)

⟨∆, while
q
n<m

yℓ {B1} B2⟩
−→ ⟨∆, B1 while

q
n<m

yℓ {B1} B2⟩
(R-W1)

∆(n) ≥ ∆(m)

⟨∆, while
q
n<m

yℓ {B1} B2⟩ −→ ⟨∆, B2⟩
(R-W2)

Figure 3. Small-step operational semantics for statements in FT.

the same fields and each field in the former subtypes its correspond-
ing field in the latter). Note, it is safe for e.g. {int f} ≤ {any f}
to hold because types in FT are not reference types (as in e.g.
Java), but value types. Rule S-U3 is perhaps the most inter-
esting, as it captures distributivity over records. For example,
{int ∨ {int x} f} ≤ {int f} ∨ {{int x} f} holds under S-U3.

Finally, FT’s subtype relation forms a join-semi lattice. That is,
any two types T1, T2 have a well defined least upper bound (denoted
T1 ⊔ T2). This is trivially true since it corresponds to T1 ∨ T2.

2.2 Syntax

Figure 2 gives the syntax of FT where
q
·
yℓ is not part of the

syntax but (following [14]) identifies the distinct program points
and associates each with a unique label ℓ (these will be explained
later). An example FT program is given below:

int f(int x) {
y = 11

z = {f : 1}2

while x < y3 { x = z.f4 }
return x5

}

Whilst FT programs are fairly limited, they characterise an inter-
esting flow typing problem which cannot easily be solved using
an iterative fix-point computation (such as is commonly used for
dataflow analysis).

2.3 Semantics
A small-step operational semantics for FT is given in Figure 3. The
semantics describe an abstract machine executing statements of the
program and (hopefully) halting to produce a value. Here, ∆ is the
runtime environment, whilst v denotes runtime values. A runtime
environment ∆ maps variables to their current runtime value.

In Figure 3, halt(v) is used to indicate the machine has halted
producing value v. This must be distinguished from the notion of
being “stuck”. The latter occurs when the machine has not halted,
but cannot execute further (because none of the transition rules
from Figure 3 applies). For example, a statement n = m.f can result
in the machine being stuck. To see why, notice that only rule R-VF
can be applied to such a statement. This has an explicit requirement
that m currently holds a record value containing at least field f.
Thus, in the case that m does not currently hold a record value, or
that it holds a record value which does not contain a field f, then
the machine will be stuck.

Some observations can be made from Figure 3. Firstly, vari-
ables do not need to be explicitly declared — rather, they are de-
clared implicitly by assignment. Secondly, variables must be de-
fined before being used — as, otherwise, the machine will get stuck.
Finally, assignments to fields always succeed. This is captured in
rule R-FV, where the record value being assigned is updated with a
(potentially new) field f. The following illustrates:

{any f, int g} f(any y) {
x = {f : 1}1

x.f = y2

x.g = 13

return x4

}

This program executes under the rules of Figure 3 without getting
stuck. Furthermore, as we will see, it can be type checked with
appropriate flow typing rules (§4). The key to this is that variable x
has different types at different program points: after initialisation,
it has type {int f}; after the subsequent assignment to field f this
becomes {any f}; and, finally, after the assignment to field g it has
type {any f, int g}.

The ability to safely update field types in FT contrasts with
traditional object-oriented languages (e.g. Java) where assignments
must respect the declared type of the assigned field. The semantics
of FT are (in some ways) closer to those of a dynamically typed
language where one can assign to fields and variables at will.

2 2013/4/22

3. Dataflow-Based Flow Typing
We now formulate the typing rules for FT as a dataflow analysis.
This is an intuitive and commonly used approach (e.g. [12, 13]).
Our purpose is to highlight an inherent limitation of using this
approach for FT — namely, that it requires finding a fix-point
over typing environments for which the standard iterative fix-point
computation fails to terminate in some cases.

Dataflow-based flow typing requires a separate environment,
Γℓ, for each program point ℓ. This gives the types of all variables
immediately before the statement at ℓ. For example, consider a
small program (left) along with its typing environments (right):

int f(int x) {
y = x1 // Γ1 = {x 7→ int}
return y2 // Γ2 = {x 7→ int, y 7→ int}

}

Since y is defined on line 1, it is absent from Γ1 (which represents
the environment immediately before line 1). Now, consider:

int ∨ {int g} f(int x) {
y = 11

while x < x2 { y = {g : 1}3 }
return y4

}

The question is, what type does y have in Γ4? We know that y has
type int if the loop isn’t taken, or {int g} otherwise. To capture
this, we compute the least upper bound of the type environments:

Γ4 = {x 7→int, y 7→int} ⊔ {x 7→int, y 7→{int g}}
↪→{x 7→int, y 7→int∨{int g}}

Here, Γ4(y) = int∨{int g} as an int value can flow from before
the loop, whilst {int g} can flow from around the loop. Here, we
are tacitly assuming the loop can be executed zero or more times,
even though (in principle) we could be more precise. This follows
the standard approach used in dataflow analysis (see e.g. [14]).

DEFINITION 2 (Environment Subtyping). Let Γℓ1 and Γℓ2 be typ-
ing environments. Then, we say that Γℓ1 subtypes Γℓ2, denoted
Γℓ1 ≤ Γℓ2, iff ∀v∈dom(Γℓ2).Γℓ1(v) ≤ Γℓ2(v).

For example, the following hold under Definition 2:

{v 7→ int} ≤ {v 7→ any}
{v 7→ {int f}, w 7→ int} ≤ {v 7→ any}

Since the underlying subtype relation over types forms a join semi-
lattice, it follows that environment subtyping does as well (where
⊥ = ∅ and ⊤ maps all program variables to any). Hence, it follows
that any two environments have a unique least upper bound.

3.1 Dataflow-Based Typing Rules
The dataflow-based typing rules for FT are given in Figure 4. Rule
T-FUN states that an FT function can be typed if its body can be
typed with parameters mapped to their declared types. The special
variable $ is included to provide access to the return type. Rule
T-BLK threads an environment through a sequence of statements.

The typing rules for statements describe their effect on the
typing environment. They are judgements of the form Γ ⊢ S : Γ′

where Γ represents the environment immediately before S, and Γ′

represents that immediately after. For example, consider:

int f(any x) { x = 11 ; return x2 }

Here, Γ1 = {x 7→any, $ 7→int} gives the environment immedi-
ately before the assignment. Applying T-VC yields the typing en-
vironment immediately after it, namely Γ2 = {x 7→int, $ 7→int}.

Function Typing (dataflow):

{n1 7→ T1, . . . , nk 7→ Tk, $ 7→ T} ⊢ B : Γ
⊢ T f(T1 n1, . . . , Tk nk) {B}

(T-FUN)

Block Typing (dataflow):

Γ0 ⊢ S : Γ1 Γ1 ⊢ B : Γ2
Γ0 ⊢ S B : Γ2

(T-BLK)

Statement Typing (dataflow):

⊢ v : T

Γ ⊢
q
n=v

yℓ
: Γ[n 7→T]

Γ(m) = T

Γ ⊢
q
n=m

yℓ
: Γ[n 7→T]

(T-VC,
T-VV)

Γ(m) = {. . . , T f, . . .}
Γ ⊢

q
n=m.f

yℓ
: Γ[n 7→T]

Γ(n) = {T1 f1, . . . , Tn fn}
T = Γ(n)[f 7→ Γ(m)]

Γ ⊢
q
n.f=m

yℓ
: Γ[n 7→T]

(T-VF,
T-FV)

Γ(n) ≤ Γ($)

Γ ⊢
q
return n

yℓ
: ∅

(T-RV)

Γ0 ⊔ Γ1 ⊢ B : Γ1
Γ0 ⊔ Γ1(n)=int Γ0 ⊔ Γ1(m)=int

Γ0 ⊢ while
q
n < m

yℓ {B} : Γ0 ⊔ Γ1

(T-WHILE)

Figure 4. Dataflow-based typing rules for FT.

Rule T-VC exploits the fact that values have fixed types (ob-
tained via ⊢ v : T). The requirement Γ(m) = {. . . , T f, . . .} in rule
T-VF ensures that m holds a record containing field f at the given
point. Similarly, in T-VF, {T1 f1, . . . , Tn fn}[f 7→T] constructs a
type identical to {T1 f1, . . . , Tn fn}, but where field f now has type
T (even if the original didn’t contain a field f). Rule T-RV confirms
the returned value is a subtype of the declared return type. Finally,
rule T-WHILE requires a fix-point be found for the environment
produced from the body, and we discus this in more detail below.

3.2 Termination
Computing a fix-point for a dataflow analysis is normally done
using an iterative computation (see e.g. [14]). Unfortunately, using
such a computation to solve the typing rules of Figure 4 will not
always terminate. The following illustrates:

void loopy(int x, int y) {
z = {f:1}1 ; while x < y2 { z.f = z3 }

}

This example causes an iterative fix-point solver for rule T-WHILE
to iterate forever, generating larger and larger environments:

Γ3 = {z 7→ {int f}, . . .}
Γ3 = {z 7→ {int ∨ {int f} f}, . . .}
Γ3 = {z 7→ {int ∨ {int f} ∨ {int ∨ {int f} f} f}, . . .}
. . .

Proving that an iterative fix-point computation always terminates is
normally done by showing two key properties: firstly, the domain
(i.e. types) and partial order (i.e. subtyping) must form a join semi-
lattice (of finite height); secondly, the transfer functions (i.e. the
rules of Figure 4) must be monotonic. Sadly, the lattice of types
in FT has infinite height, hence such a proof can’t apply. Observe,
however, that intuitively a valid typing of the above example exists:

Γ
3 = {x 7→ int, y 7→ int, z 7→ µX.{(int ∨ X) f}} (1)

The key problem, then, is how one could obtain such a typing in
practice. In fact, there are many examples in the dataflow analysis
literature of systems with lattices of infinite height (e.g. integer

3 2013/4/22

range analysis [14]). Such systems are forced to terminate through
the introduction of a widening operator. Such an operator is applied
after a certain number of iterations of the computation. Typically,
it will attempt to “guess” a value which causes the computation
to converge and, if that fails, will move to a worst-case default
(e.g. Γ3 = {x 7→ int, y 7→ int, z 7→ any} — which in this case
prevents the program from being typed).

4. Constraint-Based Flow Typing
We now present a novel constraint-based formulation of the typ-
ing rules for FT in the style of e.g. [10, 2]. Critically, this does not
require a fix-point computation and, hence, is guaranteed to termi-
nate. Our language of type constraints is as follows:

c ::= nℓ⊒ e | T ⊒ e
e ::= T | nℓ | e.f | e1[f 7→e2] |

⊔
ei

Here, T represents a fixed type from those outlined in §2, whilst
nℓ denotes the set of labelled type variables which range over types
(though, for simplicity, we will sometimes omit the label). The idea
is that, for a given FT program, we generate a set of such constraints
and subsequently solve them. The following illustrates the idea:

int ∨ {int g} f(int x,int y){ // x0⊒int, y0⊒int

r = 01 // r1 ⊒ int

while x < y2 { // r2 ⊒ r1 ⊔ r3

r = {g : 1}3 // r3 ⊒ {int g}
}
return r4 // int ∨ {int g} ⊒ r2

}

Here, we see that each program variable may be split across multi-
ple constraint variables (e.g. r is represented by r1, r2 and r3).

DEFINITION 3 (Typing). A typing, Σ, maps variables to types and
satisfies a constraint set C, denoted by Σ |= C, if for all e1⊒e2 ∈ C
we have E(Σ, e1) ≥ E(Σ, e2). Here, Σ(e) is defined as follows:

E(Σ, T) = T (1)
E(Σ, nℓ) = T if {nℓ 7→ T} ⊆ Σ (2)

E(Σ, e.f) =
∨
Ti if E(Σ, e)=

∨
{. . . , Ti f, . . .} (3)

E(Σ, e1[f 7→e2]) =∨
{T f}[f 7→ T] if E(Σ, e1)=

∨
{T f} and E(Σ, e2)=T (4)

E(Σ,
⊔
ei) =

∨
Ti if E(Σ, e1) = T1, . . . , E(Σ, en) = Tn (5)

Rule (3) selects field f from a union of one or more records con-
taining that field (e.g. E(∅, ({int f}∨{any f}).f) = int ∨ any).
Likewise, rule (4) updates the type of field f across a union of one
or more records. Here,

∨
{T f} is a short-hand notation for a union

of records {T11 f11, . . . , T1n f1n} ∨ . . . ∨ {Tk1 fk1, . . . , Tkm fkm}, while
{T f}[f 7→ T] constructs a type identical to {T f}, but where field
f now has type T (even if the original didn’t contain a field f). Thus,
E(∅, ({int f}∨{int g})[f 7→any])={any f}∨{any f, int g}.

Finally, a given FT program is considered type safe if a valid
typing exists which satisfies the generated typing constraints.

4.1 Constraint-Based Typing Rules
Figure 5 gives the constraint-based typing rules for FT which have
a general form of Γ0 ⊢ S : Γ1 ⇂ C (except T-FUN, which is similar).
In the constraint-based formulation, a typing environment Γ maps
each variable to the program point where its current value was
defined. Finally, C is the constraint set which must hold (i.e. admit
a valid solution) for that statement to be type safe.

As before, T-FUN initialises the typing environment from the
parameter types, and adds a constraint for the return type. The latter
employs a special variable, $, to connect the return type with any
returned values (via T-RV). The following illustrates:

Function Typing (constraints):

{n1 7→ 0, . . . , nk 7→ 0} ⊢ B : Γ1 ⇂ C1
C2 = C1 ∪ {n10 ⊒ T1, . . . , nk0 ⊒ Tk, T ⊒ $}

⊢ T f(T1 n1, . . . , Tk nk) B ⇂ C2
(T-FUN)

Block Typing (constraints):

Γ0 ⊢ S : Γ1 ⇂ C1 Γ1 ⊢ B : Γ2 ⇂ C2
Γ0 ⊢ S B : Γ2 ⇂ C1 ∪ C2

(T-BLK)

Statement Typing (constraints):

⊢ v : T

Γ ⊢
q
n=v

yℓ
: Γ[n 7→ ℓ] ⇂ {nℓ⊒T}

(T-VC)

Γ(m) = κ

Γ ⊢
q
n=m

yℓ
: Γ[n 7→ ℓ] ⇂ {nℓ⊒mκ}

(T-VV)

Γ(m) = κ

Γ ⊢
q
n=m.f

yℓ
: Γ[n 7→ ℓ] ⇂ {nℓ⊒mκ.f}

(T-VF)

Γ(n) = κ Γ(m) = λ

Γ ⊢
q
n.f=m

yℓ
: Γ[n 7→ ℓ] ⇂ {nℓ⊒nκ[f 7→mλ]}

(T-FV)

Γ(n) = κ

Γ ⊢
q
return n

yℓ
: ∅ ⇂ {$ ⊒nκ}

(T-RV)

defs(B) = n

Γ1 = Γ0[n 7→ ℓ] Γ1 ⊢ B : Γ2 ⇂ C1
Γ0(n) = κ Γ2(n) = λ
Γ1(n) = κ Γ1(m) = λ

C2 = {int ⊒ nκ, int ⊒ mλ}
C3 = C1 ∪ C2 ∪ {nℓ⊒nκ⊔ nλ}

Γ0 ⊢ while
q
n < m

yℓ {B} : Γ1 ⇂ C3

(T-WHILE)

Variable Definitions:

defs(S ; B) = defs(S) ∪ defs(B)
defs(

q
n = . . .

yℓ
) = {n}

defs(
q
n.f = . . .

yℓ
) = {n}

defs(
q
return n

yℓ
) = ∅

defs(while
q
n < m

yℓ {B}) = defs(B)

Figure 5. Constraint-Based Typing rules for FT.

int f(any x) { // x0⊒ any, int⊒ $ (T-FUN)

x = 11 // x1⊒ int (T-VC)

return x2 // $ ⊒ x1 (T-RV)

}

Here, x1 is connected to the return type through $. Rule T-VC
constrains the type of the assigned variable to that of the assigned
(constant) value. The environment produced (i.e. Γ[n 7→ ℓ]) equals
the old (i.e. Γ) but with n mapped to ℓ. Rule T-VV constrains the
type of the assigned variable to that of the right-hand side. Here,
Γ(m) = κ determines the program point (κ) where the type variable
currently representing m was defined (mκ). Rule T-VF constrains
the assigned variable to the corresponding field of the right-hand
side. Rule T-FV uses a constraint of the form nℓ⊒nκ[f 7→mλ]. This
constrains all fields of nℓ (except for f) to their corresponding type
in nκ, whilst field f now maps to mλ.

Finally, in rule T-WHILE the overbar (e.g. n) is a short-hand
indicating a list (or set) of items. The rule employs a support
function, defs(B), to identify variables assigned in B. Each variable
n∈defs(B) requires a constraint to merge flow from before the

4 2013/4/22

loop (i.e. nκ) with that from around the loop (i.e. nλ). For each,
a variable nℓ is created to capture this flow. This corresponds
(roughly) to the placement of ϕ−nodes in SSA form [5].

4.2 Variable Elimination
We now begin presenting our algorithm for solving the typing
constraints generated for a given function. We first consider the
variable elimination step. The essence is, for each variable nℓ, to
generate a single constraint from which we can extract its typing.

DEFINITION 4 (Variable Scoping). Let CX denote a constraint set
where X defines the variables permissible in any e1⊒e2 ∈ CX .

DEFINITION 5 (Single Assignment). A constraint set CX is in sin-
gle assignment form if, for each nℓ ∈ X , there is at most one con-
straint in CX of the form nℓ⊒ e.

Any constraint set CX generated from the rules of Figure 5 is
almost in single assignment form. This is because only T-RV can
give rise to multiple constraints with the same left-hand side (i.e.
$). Thus, we can transform CX into single assignment form by
collecting all such constraints and combining them:

$ ⊒ nℓ0, . . . , $ ⊒ nℓn =⇒ $ ⊒ nℓ0 ⊔ . . . ⊔ nℓn

We now apply successive substitutions to eliminate variables
and narrow down the final constraint for a given variable:

DEFINITION 6 (Elimination Step). Let CX be a constraint set in
single assignment form, where we have nℓ⊒ e ∈ CX . Then, we can
eliminate nℓ from CX to form a (smaller) constraint set as follows:
CX−{nℓ}={e1⊒ e2Jnℓ 7→eK | e1⊒ e2 ∈ CX ∧ e1 ̸= nℓ}.

Here, the choice of nℓ to eliminate is arbitrary. Recall that e1 is
either a variable nκ, or a type T (i.e. not an arbitrary expression).
Furthermore, e2Jnℓ 7→eK substitutes all occurrences of nℓ with e
in e2. To determine the typing for a given variable nℓ, we pro-
gressively eliminate variables until only nℓ remains. Then, we have
nℓ⊒ e ∈ C{nℓ} and from this we extract the type for nℓ (discussed
further in §4.3). To illustrate, we revisit our running example:

void loopy(int x, int y) { // x0⊒ int, y0⊒ int,
// void⊒ $ (T-FUN)

z = {f : 1}1 // z0⊒ {int f} (T-VC)

while x < y2 { // z1⊒ z0 ⊔ z2, int⊒x0,
// int⊒y0 (T-WHILE)

z.f = z3 // z2⊒ z1[f 7→ z1] (T-FV)

} }

Eliminating for each of the constraint variables contained in the
above yields the following constraint sets (left) and extracted vari-
able typings (right):

C{$}={void ⊒ $} =⇒ Σ($)=void
C{x0}={x0 ⊒ int} =⇒ Σ(x0)=int
C{y0}={y0 ⊒ int} =⇒ Σ(y0)=int
C{z0}= {z0 ⊒ {int f}} =⇒ Σ(z0)={int f}
C{z1}={z1⊒{int f} ⊔ z1[f 7→z1]}

=⇒ Σ(z1)=µX.({(int ∨ X) f})
C{z2}={z2⊒({int f} ⊔ z2)[f 7→{int f}⊔z2]}

=⇒ Σ(z2)=µX.({{int f}∨X f})
An interesting observation lies in the difference between the type
of z1 and z2. The “smallest” type contained in z1 is {int f},
whilst for z2 it is {{int f} f}. These types correspond to the first
iteration of the loop, with the latter representing the case where
{int f} (i.e. z’s initial value) was already assigned into field f
of variable z. Furthermore, it is relatively easy to show that Σ
(as shown above) is a valid typing (under Definition 3) for the
constraints generated for loopy().

The variable elimination process is trivially guaranteed to ter-
minate. However, an important property is to show that it preserves
solutions. That is, if a solution for the original constraint set exists,
then a solution still exists a after variable elimination:

LEMMA 1 (Safe Substitution). Assume e1, e2, nℓ, E and Σ where
E(Σ, e1) ≤ Σ(nℓ) and E(Σ, e2) is well-defined. Then, it follows that
E(Σ, e2Jnℓ 7→ e1K) ≤ E(Σ, e2).

PROOF 1. Proof omitted for brevity — see [17] for details.

THEOREM 1 (Elimination Preservation). Let CX be a constraint
set in single assignment form where {nℓ⊒e} ⊆ CX , and Σ an
arbitrary typing. If Σ |= CX then, Σ |= CX−{nℓ} for any nℓ ∈ X .

PROOF 2. Proof omitted for brevity — see [17] for details.

4.3 Type Extraction
Given the final constraint set C{nℓ} for a variable nℓ, the remaining
challenge is to extract a type for nℓ. In such case, we know there
is a single constraint of the form nℓ⊒e ∈ C{nℓ} where e either
uses no variables (i.e. it’s non-recursive) or uses at most nℓ (i.e. it’s
recursive). For the non-recursive case, this is straight-forward as
E(∅, e) (if it is well-defined) gives the typing for nℓ (recall E(Σ, e)
from Definition 3). For example, for nℓ⊒{int f}[f 7→ any] we
have E(∅, {int f}[f 7→ any]) = {any f}. If E(∅, e) is not well-
defined (e.g. E(∅, int.f)) then the original program contained a
type error. For the recursive case, things are more involved. Given
a recursive constraint of the form nℓ ⊒ e (i.e. where nℓ is used in
e), we first check no other nλ is used in e (if not we default to
rejecting the program — see §4.4), and then proceed as follows:

Base Extraction. To extract the base case, we use the following:

B(nℓ, T) = T (1)
B(nℓ, nℓ) = • (2)
B(nℓ, e.f) = • if B(nℓ, e) = • (3)

B(nℓ, e.f) =
∨
Ti if B(nℓ, e) =

∨
{. . . , Ti f, . . .} (4)

B(nℓ, e1[f 7→ e2]) = • if B(nℓ, e1) = • or B(nℓ, e2) = • (5)
B(nℓ, e1[f 7→ e2]) =∨

{T f}[f 7→ T] if B(e1)=
∨
{T f} and B(e2)=T (6)

B(nℓ,
⊔
ei) =

∨
Tj forall Tj where ∃i.B(nℓ, ei) = Tj (7)

Essentially, this factors out expressions which cannot generate con-
crete types (i.e. because they reference the recursive variable nℓ).
For example, we have B(z1, {int f} ⊔ z1[f 7→z1])={int f} and
B(z2, ({int f} ⊔ z2)[f 7→{int f} ⊔ z2]) = {{int f} f} for the
recursive constraints generated for loopy() above.

Base Substitution. To extract a type for nℓ we exploit knowledge
of the e1[f 7→ e2] construct using the following substitution func-
tion:

S(Σ, T) = T (1)
S(Σ, nℓ) = T if {nℓ 7→ T} ⊆ Σ (2)

S(Σ, e1.f) = e2.f if S(Σ, e1) = e2 (3)
S(Σ, e1[f 7→ e2]) = e3[f 7→ e2] if S(Σ, e1) = e3 (4)

S(Σ,
⊔
ei) =

⊔
e′i if

S(Σ, e1) = e′1, . . . ,S(Σ, en) = e′n (5)

For e1[f 7→ e2], rule (4) substitutes into e1 but not e2. For example,
S({z1 7→{int f}}, {int f}⊔z1[f 7→z1])={int f}⊔{int f}[f 7→z1].

Final Extraction. For a recursive constraint nℓ⊒e1 we extract the
base type TB=B(nℓ, e1) and substitute to give e2=S({nℓ 7→TB}, e1).
The type for nℓ is then determined as µX.E({nℓ 7→X}, e2). For ex-
ample, for z1 ⊒ {int f} ⊔ z1[f 7→z1] we get µX.({int f} ∨ {X f})
and, likewise, for z2 ⊒ ({int f} ⊔ z2)[f 7→{int f} ⊔ z2] we ob-
tain µX.({{int f}∨X f} ∨ {{int f}∨X f}).

5 2013/4/22

4.4 Limitations
The typing procedure described above is not complete because it is
possible (in some cases) that generated constraints contain multiple
variables in the right-hand side after elimination:

void loopy(int x, int y) { // x0⊒ int, y0⊒ int,
// void⊒ $ (T-FUN)

z = {f : 1}1 // z0⊒ {int f} (T-VC)

while x < y2 { // z1⊒ z0 ⊔ z2, int⊒x0,
// int⊒y0 (T-WHILE)

z.f = z3 // z2⊒ z1[f 7→ z1] (T-FV)

}
while x < y2 { // z3⊒ z1 ⊔ z4, int⊒x0,

// int⊒y0 (T-WHILE)

z.f = z3 // z4⊒ z3[f 7→ z3] (T-FV)

} }

In this case, we have the following for z3:

C{z1,z3} = {z1 ⊒ {int f} ⊔ z1[f 7→ z1], z3 ⊒ z1 ⊔ z3[f 7→ z3]}
↪→ C{z3} = {z3 ⊒ {int f} ⊔ z1[f 7→ z1] ⊔ z3[f 7→ z3]}

Here, we have not successfully eliminated z1 from C{z3} because it
was a recursive constraint. Therefore, in some cases, our extraction
procedure cannot be applied and we must reject the program (even
if it could, in principle, be typed). A more expressive language of
constraints would help overcome this limitation.

Claim. Our typing procedure can be used to type many interesting
examples (such as loopy() from above). Furthermore, it is trivial
to show that it is both sound and complete for sets of non-recursive
constraints. Thus, our procedure is at least as good as the dataflow-
based approach outlined in §3 with the added benefit of guaranteed
termination. Observe that we need not be concerned about whether
our extraction procedure is sound or not. This is because we can
simply extract a typing and then certify via Definition 3 that it does
(or does not) satisfy the generated constraints. And, of course, if it
does not satisfy the constraints we reject the program (for safety).

5. Related Work
Numerous systems have been developed for object-oriented lan-
guages (e.g. [16, 2, 21, 4]). These, almost exclusively, assume the
original program is completely untyped and employ set constraints
(see [1, 10]) as the mechanism for inferring types. As such, they
address a somewhat different problem to that studied here. To per-
form type inference, such systems generate constraints from the
program text, formulate them as a directed graph and solve them
using an algorithm similar to transitive closure.

Palsberg and O’Keefe consider the problem of finding a type
system equivalent to a constraint-based safety analysis [15]. They
find that a type system previously studied by Amadio and Cardelli
(which includes subtyping and recursive types [3]) accepts exactly
the same set of programs as the particular safety analysis they
examined. Their work shows some similarity with the problem
studied in this paper. In particular, Palsberg and O’Keefe develop
a constraint-based type inference where typings are generated by
solving constraints and extracting a least solution for each variable.
However, their type system does not include union types and this
limits the possible constraint forms needing to be considered. As
such, the problem of extracting a typing from a constraint set is
strictly simpler in their system than that studied here.

The work of Guha et al. focuses on flow-sensitive type check-
ing for JavaScript [9]. The system retypes variables as a result of
runtime type tests, although only simple forms are permitted. Re-
cursive data types are not supported, although structural subtyping

would be a natural fit here. Tobin-Hochstadt and Felleisen consider
the problem of typing previously untyped Racket (aka Scheme)
programs and develop a technique called occurrence typing [20].
They employ union types to increase the range of possible values
from the untyped world which can be described, but do not permit
retyping through assignment. The Java Bytecode Verifier employs
flow typing. Since locals and stack locations are untyped in Java
Bytecode, it must infer their types to ensure type safety. A dataflow
analysis is used to do this [12], although the problem is simpler than
that studied here since one cannot retype through field assignment.

6. Conclusion
We presented a small calculus, FT, for reasoning about flow typing
systems motivated from our experiences developing Whiley [11,
18]. This characterises a flow-typing problem not suitable for a
dataflow-style solution, because this requires a fix-point compu-
tation over typing environments which, unfortunately, may not ter-
minate. We then presented a novel constraint-based formulation of
typing which is guaranteed to terminate. This provides a founda-
tion for others developing such flow typing systems. More details,
including proofs of progress and preservation for FT, can be found
in [17]. Finally, whilst our language of constraints is similar to pre-
vious constraint-based type inference systems (e.g. [16, 2, 21, 4]),
the key novelty of our approach lies in a mechanism for extracting
recursive types from constraints via elimination and substitution.

References
[1] A. Aiken and E. L. Wimmers. Solving systems of set constraints. In

Proceedings of LICS, pages 329–340, 1992.
[2] A. Aiken and E. L. Wimmers. Type inclusion constraints and type

inference. In Proc. FPCA, pages 31–41. ACM Press, 1993.
[3] R. M. Amadio and L. Cardelli. Subtyping recursive types. ACM

TOPLAS, 15:575–631, 1993.
[4] C. Anderson, P. Giannini, and S. Drossopoulou. Towards type

inference for javascript. In Proc. ECOOP, pages 428–452, 2005.
[5] R. Cytron, J. Ferrante, B. K. Rosen, M. K. Wegman, and F. K. Zadeck.

An efficient method of computing static single assignment form. In
Proc. POPL, pages 25–35. ACM Press, 1989.

[6] J. S. Foster, T. Terauchi, and A. Aiken. Flow-sensitive type qualifiers.
In Proc. PLDI, pages 1–12. ACM Press, 2002.

[7] V. Gapeyev, M. Y. Levin, and B. C. Pierce. Recursive subtyping
revealed. JFP, 12(6):511–548, 2002.

[8] The Groovy programming language. http://groovy.codehaus.org/.
[9] A. Guha, C. Saftoiu, and S. Krishnamurthi. Typing local control and

state using flow analysis. In Proc. ESOP, pages 256–275, 2011.
[10] N. Heintze. Set-based analysis of ML programs. In Proc. LFP, pages

306–317. ACM Press, 1994.
[11] D. J.Pearce and J. Noble. Implementing alanguage with flow-sensitive

+ structural typing on the JVM. In Proc. BYTECODE, 2011.
[12] X. Leroy. Java bytecode verification: algorithms and formalizations.

Journal of Automated Reasoning, 30(3/4):235–269, 2003.
[13] C. Male, D. J. Pearce, A. Potanin, and C. Dymnikov. Java bytecode

verification for @NonNull types. In Proc. CC, pages 229–244, 2008.
[14] F. Nielson, H. R. Nielson, and C. L. Hankin. Principles of Program

Analysis. Springer-Verlag, 1999.
[15] J. Palsberg and P. O’Keefe. A type system equivalent to flow analysis.

ACM TOPLAS, 17(4):576–599, 1995.
[16] J. Palsberg and M. I. Schwartzbach. Object-oriented type inference.

In Proc. OOPSLA, pages 146–161. ACM Press, 1991.
[17] D. J. Pearce. A calculus for constraint-based flow typing. Technical

Report ECSTR12-10, Victoria University of Wellington, 2012.
[18] D. J. Pearce. Sound and complete flow typing with unions,

intersections and negations. In Proc. VMCAI, pages 335–354, 2013.
[19] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.
[20] S. Tobin-Hochstadt and M. Felleisen. Logical types for untyped

languages. In Proc. ICFP, pages 117–128, 2010.
[21] T. Wang and S. Smith. Precise constraint-based type inference for

Java. In Proc. ECOOP, pages 99–117. Springer-Verlag, 2001.

6 2013/4/22

