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Abstract The quest to develop increasingly sophisticated verification systems continues
unabated. Tools such as Dafny, Spec#, ESC/Java, SPARK Ada, and Whiley attempt to seam-
lessly integrate specification and verification into a programming language, in a similar way
to type checking. A common integration approach is to generate verification conditions that
are handed off to an automated theorem prover. This provides a nice separation of concerns,
and allows different theorem provers to be used interchangeably. However, generating ver-
ification conditions is still a difficult undertaking and the use of more “high-level” inter-
mediate verification languages has become common-place. In particular, Boogie provides
a widely used and understood intermediate verification language. A common difficulty is
the potential for an impedance mismatch between the source language and the intermediate
verification language. In this paper, we explore the use of Boogie as an intermediate verifi-
cation language for verifying programs in Whiley. This is noteworthy because the Whiley
language has (amongst other things) a rich type system with considerable potential for an
impedance mismatch. We provide a comprehensive account of translating Whiley to Boo-
gie which demonstrates that it is possible to model most aspects of the Whiley language.
Key challenges posed by the Whiley language included: the encoding of Whiley’s expres-
sive type system and support for flow typing and generics; the implicit assumption that
expressions in specifications are well-defined; the ability to invoke methods from within
expressions; the ability to return multiple values from a function or method; the presence
of unrestricted lambda functions; and the limited syntax for framing. We demonstrate that
the resulting verification tool can verify significantly more programs than the native Whiley
verifier which was custom-built for Whiley verification. Furthermore, our work provides
evidence that Boogie is (for the most part) sufficiently general to act as an intermediate
language for a wide range of source languages.
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1 Introduction

The idea of verifying that a program meets a given specification for all possible inputs has
been studied for a long time. Part of the appeal of software verification is that it can ensure
theoretical correctness of a software module for all possible usages. This is complementary
to testing which, by acting at a more concrete level, may detect resource or hardware errors
that are typically outside the scope of software verification [44].

According to Hoare’s vision, a verifying compiler “uses automated mathematical and
logical reasoning to check the correctness of the programs that it compiles” [79]. A variety
of tools have blossomed in this space, including Spec# [17], Dafny [103], Why3 [64], Open-
JML [47], ESC/Java [67], VeriFast [84], SPARK/Ada [120], AutoProof for Eiffel [162],
Frama-C [53], KeY [2], SPARK/Ada [14,41], and Whiley [169,140]. Automated Theorem
Provers are integral to such tools and are responsible for discharging proof obligations [67,
17,46,84]. Various Satisfiability Modulo Theory (SMT) solvers are typically used for this,
such as Z3 [123], CVC4 [20,21], Yices2 [60], Alt-Ergo [50], Vampire [81,94] or Sim-
plify [54]. These provide hand-crafted implementations of important decision procedures,
e.g. for linear and non-linear arithmetic [145,61,45,24], congruence [127,129] and quanti-
fier instantiation [124,70,147,146]. Different solvers are appropriate for different tasks, so
the ability to utilise multiple solvers can improve the chances of successful verification.

Verifying compilers often target an intermediate verification language, such as Boo-
gie [15], WhyML [29,64] or Viper [126], as these provide a nice separation of concerns and
allow different theorem provers to be used interchangeably. SMT-LIB [22] provides another
standard readily accepted by modern automated theorem provers, although it is often con-
sidered rather low-level [29]. One issue faced by intermediate verification languages is the
potential for an impedance mismatch [140] (see Section 5). This arises when constructs in
the source language cannot be easily translated into those of the intermediate verification
language (and vice-versa).

Whiley is a programming language with first-class support for software specifications
that is designed to simplify verification [169,139,138,167,135,140,168,136,141,44]. An
important goal was to develop a system which is as accessible as possible, and which one
could imagine being used in a day-to-day setting. As such, Whiley superficially resembles
a modern imperative language and employs flow-typing [159,76,134] to eliminate unneces-
sary casts (which also aids specification). The ultimate aim is that all programs written in
Whiley will be verified at compile-time to ensure their specifications hold which, for exam-
ple, has obvious application in safety-critical systems [41,135]. In this paper, we explore
Boogie as an intermediate verification language for Whiley. Our motivation is the desire to
improve the verification capability of Whiley by leveraging the significant resources already
invested in the development of Boogie (and Z3). A particular concern is the potential for an
impedance mismatch arising, such as from Whiley’s type system (e.g. which supports union
types and flow typing).

The contributions of this paper include:

– (Translation) A comprehensive account of our encoding of Whiley programs into Boo-
gie for the purpose of verification. Whilst in many cases the translation is straightfor-
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ward, a number of challenges had to be overcome arising from Whiley’s design, in-
cluding: the encoding of Whiley’s expressive type system and support for flow typing
and generics; Whiley’s implicit assumption that expressions in specifications are well-
defined; the ability to invoke methods from within expressions; the ability to return mul-
tiple values from a function or method; the presence of unrestricted lambda functions;
and Whiley’s limited syntax for framing.

– (Evaluation) An empirical comparison between Boogie/Z3 and the native Whiley veri-
fier using the existing suite of 1100+ tests provided for the Whiley compiler. The results
confirm that Boogie/Z3 significantly outperforms the Whiley native verifier in terms of
the number of tests passing.

– (Case Studies) A report into the use of Boogie/Z3 to verify a number of larger Whiley
programs, including a web-based implementation of Conway’s Game of Life and a num-
ber of challenges from the VerifyThis 2019 competition [58]. From these case studies
we identify several areas in which the Whiley language or libraries could be improved
to better exploit Boogie.

We note also that our work provides further evidence of Boogie’s utility as a general
purpose intermediate verification language. In particular, compared with Dafny or Spec#,
Whiley was developed entirely independently from Boogie and includes various design
choices that are not necessarily a natural fit. As such, it was unclear from the outset of this
project whether or not Boogie would be sufficiently general for this task. Finally, compared
with our earlier paper [163], this paper represents a significant evolution and improvement of
our translation. We also provide a much more detailed account which covers almost the en-
tire language, including generics, lambdas, references and the handling of various soundness
issues. Our evaluation now includes a number of larger case studies, and we have expanded
the related work discussion.

Organisation. The remainder of this paper is organised as follows: §2 provides an intro-
duction to Whiley and Boogie; §3 provides a detailed description of our Whiley-2-Boogie
translator and discusses the various challenges encountered; §4 presents our evaluation us-
ing the existing Whiley compiler test suite and various case studies; §5 examines the related
work; and, finally, §6 concludes. Finally, for reference, the appendix illustrates our verified
version of Conway’s Game of Life.

2 Background

We begin with an overview of Whiley, then a brief discussion of Boogie.

2.1 Whiley

The Whiley programming language has been developed to enable compile-time verification
of programs and, furthermore, to make this accessible to everyday programmers [169,140].
The Whiley Compiler (WyC) attempts to ensure that all functions and methods in a program
meet their specifications. When this succeeds, we know that: (i) all function/method post-
conditions are met (assuming their preconditions held on entry); (ii) all invocations meet
the respective function or method precondition; (iii) runtime errors such as divide-by-zero,
out-of-bounds accesses and null-pointer dereferences cannot occur. Notwithstanding, such
programs may still loop indefinitely and/or exhaust available resources (e.g. stack or heap).
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2.1.1 Primitive Types

Whiley provides a small number of primitive types, including: null , bool , byte

and int (for unbound integers). Likewise, types can be composed into records (e.g.

{int x, int y} ), arrays (e.g. int[] ) and unions (e.g. null|int ). Here, the

latter represents a type which is either null or an int . Records can be constructed us-
ing literals (e.g. {x:1,y:2} , whilst arrays can be constructed using either literals (e.g.

[1,2,3] ) or generators (e.g. [0;3] which gives [0,0,0] ). The length of an array

can also be queried dynamically (e.g. |xs| ). As expected, user-defined types are sup-
ported and can be declared as follows:� �
type Point is { int x, int y }� �

Whiley also supports type polymorphism (i.e. generics) and recursive types (which are
similar to algebraic data types) as follows:� �
type Node<T> is { T data, List<T> next }
type List<T> is null | Node<T>� �

The type {T data, List<T> next} indicates a record with two fields, data

and next . Thus, a List<T> is either null or a record with the given structure. For
completeness, we note that subtyping of generic types follows an (implicit) definition-site
variance protocol [4]. Furthermore, user-defined types in Whiley offer greater flexibility than
typically found with implementations of algebraic data types (e.g. in Haskell). For example:� �
type IntList is null | { int data, IntList next }

function id(IntList l) -> (List<int> r):
return l� �

The above illustrates how one recursive type ( IntList ) can implicitly subtype an-
other ( List<int> ). This highlights a key advantage of typing in Whiley over, for ex-
ample, algebraic data types. The approach to typing taken in Whiley is, in fact, closer to
structural typing [37,71,116,117,59] with certain caveats to ensure safe treatment of type
invariants (see below).

2.1.2 Flow Typing

An unusual feature of Whiley is the use of a flow typing system [159,76,134,133] coupled
with union types [13,83]. Union types support runtime type tests to discriminate their cases,
as the following illustrates (recall List<T> from above):� �
function length<T>(List<T> list) -> int:

if list is null:
return 0

else:
return 1 + length(list.next)� �
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This counts the number of nodes in a list. Here, we see flow typing in action as list

is automatically retyped to Node<T> on the false branch [134,133]. Flow typing turns out
to be particularly useful when specifying programs. Specifically, in (x is T) ==> e

it follows that x has type T within the expression e . This helps, for example, when
writing postconditions (as we’ll see shortly).

2.1.3 Value Semantics

The semantics of Whiley diverge from many mainstream languages (e.g. Java) in the treat-
ment of compound data types, such as arrays. Specifically, arrays and records in Whiley
have value semantics. This means they are passed and returned by-value (as in Pascal, MAT-
LAB [97] or most functional languages). But, unlike functional languages (and like Pascal),
values of compound types can be updated in place [130,152]. This latter point serves to give
Whiley the appearance of an imperative language when, in fact, Whiley has a functional
core. The following illustrates:� �
function fill<T>(T[] items, int n, T v) -> (T[] nitems):

for i in 0..n:
items[i] = v

return items� �
Despite appearances, the above is a pure function which has no side-effects. This con-

trasts with languages like Java, where arrays are references and updating them has unavoid-
able side-effects. The following attempts to clarify this further:� �

int[] xs = [1,2,3]
int[] ys = xs
ys[0] = 0
assert xs[0] == 1
assert ys[0] == 0� �

In a language like Java, the assertion xs[0] == 1 would fail because xs and ys
would alias each other. However, since this is not the case in Whiley, the above verifies
without problem. We can think of arrays and records in Whiley as being immutable, so
that updating them effectively means cloning them. The reason this semantics is adopted in
Whiley is to facilitate their use in specification. Indeed, without a fundamental immutable
collection type, verification is inherently challenging [98].

2.1.4 Side-Effects

A function in Whiley is pure and cannot have side-effects. In contrast, a method
is impure and may have side-effects, such as mutating the global heap or performing I/O.
Whiley provides reference types which are allocated from a single global heap. For example,
&int is a reference to an integer variable. The following illustrates the syntax:� �

&int p = new 1
&int q = p

*p = 2
assert *p == *q� �
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Here, the assignment through p affects q (because they are aliases) and, hence, the
final assertion holds. We note that, at the time of writing, Whiley supports allocation but not
deallocation (and, hence, currently relies on garbage collection).

Statements which mutate the heap must appear within the body of a method and, for
example, are not permitted within a function . To illustrate a more complete example,
here is the classical algorithm for reversing a linked list [7]:� �
type LinkedList<T> is null | &{T data, LinkedList<T> next}

method reverse<T>(LinkedList<T> v) -> (LinkedList<T> r):
//
LinkedList<T> w = null
//
while !(v is null):

LinkedList<T> t = v->next
v->next = w
w = v
v = t

//
return w� �

We note that the above is not yet fully specified, and this would be necessary before its
behaviour could be fully verified (more on this later).

2.1.5 Packaging

Whiley currently supports a relatively limited form of packages and package management.
For example the standard library, STD.wy, can be added as a dependency and compiled
against. The following illustrates a simple example:� �
import std::ascii
import append from std::array

function to_string(int[] items) -> (ascii::string str):
ascii::string r = "["
// Convert each element to an ascii string
for i in 0..|items|:

// Add comma (when necessary)
if i != 0:

r = append(r,",")
// Add element as string
r = append(r,ascii::to_string(items[i]))

return append(r,"]")� �
The above illustrates a simple function for converting an integer array into a string. This

employs standard library functions from the modules std::ascii and std::array .
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type nat is (int n) where n >= 0

property contains<T>(T[] items, int n, T item)
where some { i in 0..n | items[i] == item }

function indexOf<T>(T[] items, T item) -> (int|null r)
// If valid index returned, element at r matches item
ensures (r is int) ==> (items[r] == item)
// If invalid index return, no element matches item
ensures (r is null) ==> !contains(items,|items|,item):

//
nat i = 0
while i < |items|
// Nothing so far equals item
where !contains(items,i,item):

//
if items[i] == item:

return i
i = i + 1

// Sanity check?
assert i == |items|
//
return null� �

Fig. 1 Implementation of indexOf() in Whiley, returning the least index in items which matches

item , or null if no match exists.

2.1.6 Specification and Verification

We now consider those features of Whiley provided for specifying and verifying programs.
Figure 1 provides an initial example to illustrate the salient features:

– Properties are used to specify things of interest, particularly to help with verification.
They are interpreted meaning that, during verification, they can be expanded/unrolled as
necessary. To facilitate this, they have a restricted form allowing them to be substituted
in place for their body. In contrast, functions are uninterpreted which helps ensure veri-
fication remains (mostly) modular [77]. This means that, during verification, their actual
implementation is ignored at call sites (more on this below).

– Preconditions are given by requires clauses and postconditions by ensures
clauses. Multiple clauses are simply conjoined together. We have found that allowing
multiple requires and/or ensures clauses can help readability, and note that
JML [49], Spec# [17] and Dafny [103] also permit this.

– Loop invariants are given by where clauses. Figure 1 illustrates an inductive loop
invariant covering indices from zero to i (exclusive). Similarly, type invariants arise
from where clauses. For example, type nat has an invariant and is used for variable
i to avoid the need for a loop invariant of the form i >= 0 . We consider good use

of type invariants as critical to improving the readability of function specifications.

– Assertions must be statically checked during verification, thus providing a useful de-
bugging tool. For example, if during verification we are struggling to understand why a
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given postcondition is not met, assertions can be added to check our beliefs at a given
point. In contrast, assumptions are not statically checked and, instead, are simply as-
sumed to hold during verification. As such, they are a useful tool for overriding the
verifier in cases where it cannot establish something we know to be true.

– Flow typing simplifies postconditions (amongst other things) by ensuring that casts
need not be given. For example, without flow typing, the first ensures clause from
Figure 1 would require a cast for r on the right-hand side.

Being uninterpreted means a function’s implementation can change arbitrarily without
affecting callers provided it still meets its specification. However, it also means that functions
need to be properly specified before they can be used, which is sometimes problematic (e.g.,
when several functions are developed in tandem). For example, consider the following:� �
function max(int x, int y) -> (int r):

if x >= y:
return x

else:
return y� �

Whilst the above function is implemented correctly, it has yet to be specified. Perhaps
this has arisen because it is, in fact, part of a larger function being developed:� �
function max(int[] items, int i) -> (int r)
// At least one item must remain
requires 0 <= i && i < |items|
// Return greater than all remaining items
ensures all { k in i .. |items| | items[k] <= r }:

if (i+1) == |items|:
return items[i]

else:
return max(items[i], max(items,i+1))� �

At this moment, max(int[],int) cannot be statically verified because the spec-

ification for max(int,int) (or lack thereof) yields insufficient information at the call
site.

Framing. A related aspect of static verification is the need for clarity around side-effects
and framing [131,90,91,10,132,154]. A key issue is the ability to distinguish the value of
state before a method call from that after it. Languages such as Dafny, JML and Boogie
support this by allowing one to refer to the “old” state of a location (i.e. the value it held
on entry). For example, in JML writing \old(*p) < *p in a method’s postcondition
indicates the value stored in *p is increased by the method. Whiley supports similar syntax
as the following illustrates:� �
method swap(&int p, &int q)
ensures *p == old(*q) && *q == old(*p):

int tmp = *p

*p = *q

*q = tmp� �
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This simple method swaps the values referred to by p and q and, to specify it, we

had to use the old() syntax. With the above specification for swap(&int,&int) we
can verify, for example, the following snippet:� �

...
&int x = new 2
&int y = new 123
&int z = new 234
swap(x,y)
// Check expected outcome
assert (*x == 123) && (*y == 2)
// Check z unchanged
assert (*z == 234)� �

Here, the first assert follows from the specification of swap(&int,&int) . In
contrast, the second follows because the state referred to by z is not reachable from any
parameter passed to swap(&int,&int) and, hence, could not be modified by it.

2.2 Boogie

Boogie [15] is an intermediate verification language developed by Microsoft Research as
part of the Spec# project [17]. Boogie is intended as a back-end for other programming lan-
guage and verification systems [105], and has found use in various tools, such as Dafny [103],
VCC [46], and others (e.g. [26]). Boogie is both a specification language (which shares
some similarity with Dijkstra’s language of guarded commands [56]) and a tool for check-
ing that Boogie “programs” are correct. The original Boogie language was “somewhat like
a high-level assembly language in that the control-flow is unstructured but the notions of
statically-scoped locals and procedural abstraction are retained” [15]. However, later ver-
sions support structured if and while statements to improve readability. Nevertheless,
a non-deterministic goto statement is retained for encoding arbitrary control-flow, which
permits multiple target labels with non-deterministic choice. Boogie provides various prim-
itive types including bool , int , and map types, which can be used to model arrays
and records. Concepts such as a “program heap” can also be modelled using a map from
references to values.

Boogie supports function and procedure declarations which have an impor-
tant distinction. In general, functions are pure and can be used within the Boogie logic,
such as in axioms and specifications. In contrast, procedures are potentially impure and are
intended to model methods in the source language. A procedure can be given a specifica-
tion composed of requires and ensures clauses, and also a modifies clause
indicating non-local state that can be modified. Most importantly, a procedure can be given
an implementation , and the tool will attempt to ensure this implementation meets

the given specification. The requires and ensures for procedures demarcate proof
obligations, for which Boogie emits verification conditions in first-order logic to be dis-
charged by Z3. In addition, the implementation of a procedure may include assert and
assume statements. The former lead to proof obligations, whilst the latter give properties

which the underlying theorem prover can exploit.
To illustrate Boogie, Figure 2 provides an example encoding of the indexOf() func-

tion into Boogie. Note that the example encodings used in this section are a little different
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// array length operator
function len(arr:[int]int) returns (r: int);
// no negative length arrays
axiom (forall A:[int]int :: len(A) >= 0);

procedure indexOf(xs: [int]int, x:int) returns (r:int)
ensures r >= 0 && r <= len(xs);
ensures (r < len(xs)) ==> (xs[r] == x);
ensures (forall k:int :: (0<=k && k<r) ==> xs[k]!=x); {

var i : int;
i := 0;
while (i < len(xs))
invariant i >= 0 && i <= len(xs);
invariant (forall k:int :: (0<=k && k<i) ==> xs[k] != x); {
if(xs[i] == x) { break; }
i := i + 1;

}
r := i;

}� �
Fig. 2 Simple Boogie program encoding an implementation of the indexOf() function, making extensive
use of the structured syntax provided in later versions of Boogie.

to the more sophisticated encoding used later in the paper. At first glance, it is perhaps sur-
prising how close to an actual programming language Boogie has become. Various features
of the language are demonstrated with this example. Firstly, an array length operator is en-
coded using an uninterpreted function len() , and accompanying axiom . Secondly, the

input array is modelled using the map [int]int , which is a total mapping from arbi-
trary integers to arbitrary integers. For example, xs[-1] identifies a valid element of the
map despite -1 not normally being a valid array index (e.g. in Whiley). We can refine this
to something closer to an array through additional constraints, as shown in the next section.

Whilst the structured form of Boogie is preferred, where possible, it is also useful to con-
sider the unstructured form, which we use for a few Whiley constructs such as switch
(Section 3.4.1). Figure 3 provides an unstructured encoding of the indexOf() function
from Figure 2. In this version, the while loop is decomposed using a non-deterministic
goto statement – the goto LOOP_BODY, LOOP_EXIT statement allows flow of

control to jump to either label, but the assume statements after those labels block progress
if their condition is false. Likewise, in this unstructured encoding, the loop condition and in-
variant are explicitly assumed (lines 8,9,12) and asserted (lines 15,16), rather than being
done implicitly by the tool (as in Figure 2). The havoc statement“assigns an arbitrary
value to each indicated variable” [15], so is used here to indicate that variable i contains
an arbitrary integer value at this point.

Finally, we note that Boogie allows one to designate preconditions, postconditions and
loop invariants as free . This allows Boogie to assume these conditions hold without
checking them — thereby (potentially) reducing overall verification time [102].
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procedure indexOf(xs: [int]int, x:int) returns (r:int)
... {

var i : int;
i := 0;
assert i >= 0 && i <= len(xs); // invariant
assert (forall k:int :: (0<=k && k<i)==> xs[k]!=x);
LOOP_HEAD:
havoc i;
assume i >= 0 && i <= len(xs); // assume invariant
assume (forall k:int :: (0<=k && k<i)==> xs[k]!=x);
goto LOOP_BODY, LOOP_EXIT;
LOOP_BODY:
assume i < len(xs); // assume loop condition
if(xs[i] == x) { goto BREAK_EXIT; }
i := i + 1;
assert i >= 0 && i <= len(xs); // invariant
assert (forall k:int :: (0<=k && k<i)==> xs[k]!=x);
goto LOOP_HEAD;
LOOP_EXIT:
assume i >= len(xs); // assume negated condition
BREAK_EXIT:
r := i;

}� �
Fig. 3 Unstructured encoding of the example from Figure 2 — the pre/postconditions are omitted as they are
unchanged from above, and likewise for len() .

3 Modelling Whiley in Boogie

Our goal is to model as much of the Whiley language as possible in Boogie, so that we can
utilise Boogie for verifying Whiley programs. Indeed, the motiviation for this project was
the hope that Boogie would offer significantly better verification capability than the existing
(and relatively adhoc) native verifier used in Whiley (and, as §4 shows, this is the case). At
a superficial level, Whiley’s native verifier is not so different from Boogie/Z3. In particular,
it employs an intermediate assertion language in which verification conditions are encoded
and then discharged using a purpose-built SMT solver [140]. A key advantage is that the
generated verification conditions resemble the Whiley source language much more closely.
Nevertheless, whilst this toolchain has potential, it remains relatively immature compared
with Boogie/Z3 and the considerable resources invested in their development [17]. However,
this transition is not without challenges as, despite their obvious similarities, there remain
significant differences between Whiley and Boogie:

– Types. Whiley has a relatively rich (structural) type system which includes: union,
record, array, reference and lambda types. Furthermore, there is support for type poly-
morphism through generics.

– Flow Typing. Whiley’s support for flow typing is also problematic, as a given variable
may have different types at different program points and there is a need to support run-
time type tests [134].

– Functions. Whiley functions are defined via code bodies, whereas the body of a Boogie
function can contain only a single expression.

– Methods. Whiley methods correspond quite well with procedures in Boogie, but may
be invoked from within expressions in Whiley.
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– Definedness. Whiley implicitly assumes specification elements (e.g. pre-/postconditions
and invariants) are well defined. This differs from other tools (e.g. Dafny) which require
programmers to explicitly ensure that specification elements are well defined.

To understand the definedness issue, consider a precondition that contains an array ref-
erence, like requires a[i] == 0 . In a language like Dafny, one would additionally

need to explicitly specify i >= 0 && i < |a| to avoid the verifier reporting an out-
of-bounds error. Such preconditions are implicit in Whiley, so must be (automatically) ex-
tracted by our translator and made explicit in the generated Boogie.

We now present the main contribution of this paper, namely a mechanism for translat-
ing Whiley programs into Boogie, which is implemented in our translator program, called
Wy2B.1

3.1 Types

Finding an appropriate representation of Whiley types is a challenge. We begin by consid-
ering the straightforward (i.e. naive) shallow translation of Whiley types into Boogie, and
highlight why this fails. Then, we present a more sophisticated approach which corresponds
more closely with a deep embedding of types.

Shallow Embedding. The simple and obvious translation of Whiley types into Boogie would
be a direct translation to the built-in types of Boogie. Here, an int in Whiley is translated
into a Boogie int , which is appropriate since both languages support unbounded integers.
A Whiley array (e.g. int[] ) then translates to a Boogie map (e.g. [int]int , with
appropriate constraints), and Whiley records can also be translated using Boogie’s map type.
However, by itself, this is not sufficient to model all Whiley types. For example, the type
int|null has no obvious corresponding representation in Boogie. Likewise, a Whiley

type test such as x is int requires additional machinery. So this shallow embedding
where Whiley types are directly translated into Boogie types is insufficient.

Deep Embedding. To support the more complex types found in Whiley such as unions,
we provide a deep embedding of all types into Boogie.2 Specifically, we model all Whiley
values as disjoint members of a single set, Any , and model the various Whiley types as
subsets of this:� �
type Any; // The set of all Whiley values.� �

For each Whiley type T , we define a membership predicate T#is(Any) that holds

for values in T , an extraction function T#unbox(Any) that maps Any to a Boogie

type, and an injection function T#box(T) which does the reverse. We axiomatize these
two functions to define a partial bijection between a type’s representation and its correspond-
ing subset of Any . We also add Boogie axioms to ensure the subtypes of Any which cor-

respond to each built-in Whiley type ( int , bool , T[] , etc.) are mutually disjoint. This

1 See https://github.com/Whiley/Whiley2Boogie.
2 An alternative (though untested) approach would be to utilise Boogie’s support for algebraic data types.

https://github.com/Whiley/Whiley2Boogie
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embedding has several advantages. Firstly, it is easy to model a Whiley user-defined subtype
S by defining a predicate S#is(v) as (T#is(v) && ...) . Secondly, union types

simply map to disjunctions of these type predicates. Thirdly, Boogie can prove equality of
two Any values only if they are constructed using the same T#box() injection function
from values that are equal.

Finally, to aid with the translation of compound types in Whiley (such as arrays — see
§3.1.2 below) a special constant, Void , is used:� �
const unique Void : Any;� �

Observe that, since this value has (by design) no counterpart in Whiley, we must ensure
it remains disjoint from all other Whiley values.

3.1.1 Primitives

Integers. The mapping functions for the Whiley int type of unbounded integers are as
follows (recall int is also the Boogie name for integers).� �
function Int#is(Any v) returns (bool) {

(exists i:int :: Int#box(i) == v)
}
function Int#unbox(Any) returns (int);
function Int#box(int) returns (Any);

axiom (forall i:int :: Int#unbox(Int#box(i)) == i);
axiom (forall i:int :: Int#box(i) != Void);� �

Bits & Bytes. Whiley includes a native byte type which supports the usual plethora of bit-
wise operators, including left- and right-shifts. For this, Boogie provides a family of bitvec-
tor types (e.g. bv8 , bv16 , etc) of which bv8 provides a suitable match. To use this,
however, we must exploit various internal functions to implement bitwise operators as fol-
lows:� �
function Byte#box(bv8) returns (Any);
function Byte#unbox(Any) returns (bv8);
function Byte#is(v : Any) returns (bool) {

(exists b:bv8 :: Byte#box(b) == v)
}
function {:bvbuiltin "bv2int"} Byte#toInt(bv8)
returns (int);
function {:bvbuiltin "(_ int2bv 8)"} Byte#fromInt(int)
returns (bv8);
function {:bvbuiltin "bvnot"} Byte#Not(bv8)
returns (bv8);
function {:bvbuiltin "bvand"} Byte#And(bv8, bv8)
returns (bv8);
...
axiom (forall b:bv8 :: Byte#unbox(Byte#box(b)) == b);
axiom (forall b:bv8 :: Byte#box(b) != Void);� �
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Coercions. In order to utilise our deep embedding, values must be coerced to / from prim-
itive Boogie types. Consider an assignment x = 0 where x has type int|null .

Since union types in Whiley are encoded as type Any in Boogie, we must coerce the

value 0 (of Boogie type int ) into its embedded form via Int#box() . Such an as-
signment is thus translated as x := Int#Box(0); . In general, our translation attempts
to minimise the amount of boxing/unboxing. For example, generated expressions of the
form Int#Unbox(Int#Box(x)) are automatically reduced to x , etc. Amongst other
things, this helps to simplify debugging!

3.1.2 Arrays

Whiley arrays are fixed-length sequences of values whose length can be queried at runtime
(recall from §2.1.3 they have value semantics). We model Whiley arrays using: (1) a Boo-
gie map [int]Any from integers to Any values; and, (2) an uninterpreted function
returning the length. The embedding requires a number of additional axioms, as follows. As
before, we provide extraction/injection functions as follows:� �
function Array#box([int]Any) returns (Any);
function Array#unbox(Any) returns ([int]Any);
function Array#is(v : Any) returns (bool) {

(exists a:[int]Any :: Array#box(a) == v)
}
axiom (forall i:[int]Any :: Array#unbox(Array#box(i))==i);
axiom (forall a:[int]Any :: Array#box(a) != Void);
// Helper constraining index to be in-bounds
function Array#in(a : [int]Any, i : int) returns (bool) {

(i >= 0) && (i < Array#Length(a))
}� �

A key aspect of our embedding is the treatment of indices which are out-of-bounds.
The primary issue is that Boogie maps (e.g. [int]Any ) are infinite structures with no
concept of bounds. Elements which have not been explicitly defined always exist with some
arbitrary value. This presents a problem for equality of arrays, as illustrated in Figure 4. To
resolve this we fix all out-of-bounds indices to the special Void value, and enforce this
throughout the axioms that follow.

Array Length. We employ the following function for extracting the length of an array:� �
// Extraction for array length
function Array#Length([int]Any) returns (int);
// Length of an array is non-negative
axiom (forall a:[int]Any :: 0 <= Array#Length(a));
// Updates don’t affect array length
axiom (forall a:[int]Any,i:int,v:Any ::

(v != Void && Array#in(a,i))
==> (Array#Length(a) == Array#Length(a[i:=v])));� �

In the above, we take steps to ensure the axioms remain consistent. To understand this,
consider the last axiom above which holds the array length invariant across an update. The
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1 1 5 1 0 ? ? ?? ? ? ? ? ? ? ? ?3 2 4 9

1 1 5 1 0 ? ? ?? ? ? ? ? ? ? ? ?3 2 4 9

1 1 1 0 ? ? ?? ? ? ? ? ? ? ? ?3 4 9

1 1 5 1 ? ? ?? ? ? ? ? ? ? ?3 2 4 9 0

8 9 10 11 12 1413−3 −2 −1−6 −5 −4 2 31 4 6 750

0 8

4

Fig. 4 A pictorial illustration of four arrays embedded using (infinite) Boogie maps, where undefined (i.e.
out-of-bounds) values are shown as “?”. We might expect the first and fourth arrays to be equal (i.e. since they
have the same length and values within bounds), but this depends also on whether the out-of-bounds values
are also equal. To ensure these two arrays are indeed equal, we fix these undefined values to some known
constant ( Void ).

value v being assigned cannot be Void as, otherwise, we could artificially reduce an
array’s length (e.g. by assigning Void to the last element). Finally, whilst our encoding
of arrays here may appear somewhat elaborate, it does allow us to exploit Boogie’s internal
notion of equality. An alternative, however, would be to define a bespoke equality operator
for arrays (though this is complicated by the presence of unions and recursive types).

Array Initialisers. Array values in Whiley can be constructed using the array literal syntax
(e.g. [0,4,3] , etc). This creates an array containing the given values (zero-indexed). To

translate this we employ a constructor, Array#Empty(int) , as follows:� �
// Construct (empty) array literal of size n
function Array#Empty(int) returns ([int]Any);
// Fix out-of-bounds indices for array literal
axiom (forall l:int,i:int ::

(i < 0 || l <= i) ==> (Array#Empty(l)[i] == Void));
// Fix in-bounds indices for array literal
axiom (forall l:int,i:int ::

(0 <= i && i < l) ==> (Array#Empty(l)[i] != Void));
// Array length must match length of array literal
axiom (forall a:[int]Any,l:int ::

(0 <= l && Array#Empty(l)==a) ==> (Array#Length(a)==l));� �
The intuition is that Array#Empty(n) constructs an uninitialised array of size n ,

whose elements must then be initialised individually. For example, the array literal [6,3]

is translated into Array#Empty(2)[0:=Int#box(6)][1:=Int#box(3)] .

Array Generators. Array values can also be constructed using the array generator syntax,
[v;n] (recall §2.1.1). The constructor, Array#Generator(Any,int) , is used for

translating these as follows:
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� �
function Array#Generator(Any, int) returns ([int]Any);
// Every element of array generator matches given value
axiom (forall v:Any,l:int,i:int ::
(0<=i && i<l && v!=Void) ==> Array#Generator(v,l)[i]==v);
// Fix out-of-bounds indices for array generator
axiom (forall v:Any,l:int,i:int ::
(i < 0 || l <= i) ==> (Array#Generator(v,l)[i] == Void));
// Array length must match length of array generator
axiom (forall a:[int]Any,v:Any,l:int ::
(0<=l && Array#Generator(v,l)==a) ==> Array#Length(a)==l);� �

3.1.3 Records

Records are encoded using maps, [Field]Any , where Field characterises field names.
For every field name used within the program, a unique constant is created. For example, if
the type {int x, int y} is used then the following constants are generated:� �
type Field; // Set of all field names
const unique $x : Field;
const unique $y : Field;� �

These constants are then used as indices for the map encoding of the record (and any
other record type containing a field x or y ). The constants are marked unique to
ensure they are disjoint. Thus, the number of constants generated depends on exactly what
types are used within the target program. As for arrays, care must be taken when encoding a
given record to ensure that all other fields are mapped to Void . Again, various functions
and axioms are provided to allow records to be embedded within other compound types:� �
function Record#box([Field]Any) returns (Any);
function Record#unbox(Any) returns ([Field]Any);
function Record#is(v : Any) returns (bool) {

(exists r:[Field]Any :: Record#box(r) == v)
}
axiom (forall i:[Field]Any ::

Record#unbox(Record#box(i)) == i);
axiom (forall r:[Field]Any :: Record#box(r) != Void);� �

Like arrays, all fields not in a given record should hold Void . This cannot be enforced
with an axiom as it depends upon the record type in question (i.e. what fields it has). Instead,
this is enforced using constraints on parameters, returns and local variables as necessary.

Record Literals. As for arrays, a simple constructor is used for translating record literals:� �
const unique Record#Empty : [Field]Any;
// Every field in an empty record holds Void
axiom (forall f:Field :: Record#Empty[f] == Void);� �

As an example, the record literal {x:1,y:2} would be translated into Boogie as

Record#Empty[$x:=Int#box(1)][$y:=Int#box(2)] .
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3.1.4 Generics

Type polymorphism in Whiley presents a number of challenges when translating to Boogie.
Roughly speaking, we translate generic types (e.g. T ) into Boogie’s Any type. We will
return to discuss this in more detail later (see §3.4).

3.1.5 Lambdas

The ability to pass around first-class functions and methods as lambdas also presents some
challenges, since lambdas in Boogie are relatively restricted. We return to discuss this in
more detail later (see §3.4.1), but for now it suffices to introduce the following which repre-
sents the set of all lambda values:� �
type Lambda; // Set of all lambda values

function Lambda#box(Lambda) returns (Any);
function Lambda#unbox(Any) returns (Lambda);
function Lambda#is(v : Any) returns (bool) {

(exists l:Lambda :: Lambda#box(l) == v)
}
axiom (forall l:Lambda :: Lambda#unbox(Lambda#box(l))==l);
axiom (forall l:Lambda :: Lambda#box(l) != Void);� �

3.1.6 References

References in Whiley are modelled in a relative standard fashion as indexes into a heap
represented as a map of the form [Ref]Any [102]. Again, we return to discuss this in

more detail later (see §3.5), and for now we simply introduce the Ref type:� �
type Ref; // Set of all Whiley references

function Ref#box(Ref) returns (Any);
function Ref#unbox(Any) returns (Ref);
function Ref#is(v : Any) returns (bool) {

(exists r:Ref :: Ref#box(r) == v)
}
axiom (forall r:Ref :: Ref#unbox(Ref#box(r)) == r);
axiom (forall r:Ref :: Ref#box(r) != Void)� �

In addition, the following constant is provided for describing an arbitrary heap:� �
const unique Ref#Empty : [Ref]Any;� �

The above is useful in various situations where there is no logical heap (more on this
later). In particular, since it does not provide any guarantee about its contents, it cannot be
relied upon at all.
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3.1.7 User-Defined Types

Our treatment of user-defined types follows naturally from our embedding of types discussed
above. Roughly speaking, we can consider that every user-defined type in Whiley consists of
two parts: firstly, its base or underlying type; secondly, its invariants (if any). For example,
consider the following Whiley declaration:� �
type nat is (int x) where x >= 0� �

The underlying type of nat is int , and it enforces a single invariant x >= 0 . In
our translation to Boogie, this declaration would produce the following:3� �
type nat = int;

function nat#inv(x : int, HEAP : [Ref]Any) returns (bool) {
x >= 0

}
function nat#is(x : Any, HEAP : [Ref]Any) returns (bool) {

Int#is(x) && nat#inv(Int#unbox(x),HEAP)
}� �

This allows for several different use cases. For example, if we have a variable of type
nat and wish to assume or assert its invariant, then nat#inv() can be applied directly.

Alternatively, if we are reading such a variable from a boxed position (e.g. out of an array or
record), then nat#is() can be applied. Observe also that, for uniformity, such methods
always accept a HEAP parameter even if (as in this case) this is not used. This parameter
is necessary for user-defined types which are, or contain, references. For example, consider
this declaration which builds upon the definition of nat :� �
type pNat is (&nat p)� �

This describes the type of references to integer values which enforce the nat con-
straint. This would be translated as follows:� �
type pNat = Ref;

function pNat#inv(p:Ref,HEAP:[Ref]Any) returns (bool){true}
function pNat#is(p:Any, HEAP:[Ref]Any) returns (bool) {

Ref#is(p) && nat#is(HEAP[Ref#unbox(p)],HEAP)
&& pNat#inv(Ref#unbox(p),HEAP)

}� �
Here, pNat#is() enforces nat#is() upon the element in HEAP referred to by p .
Thus it becomes clear that the embedding of a reference type only makes sense in the context
of a given HEAP .

3 In practice, name mangling is applied to ensure uniqueness across modules and packages in Whiley.
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3.2 Constants

Global constants in Whiley require care to ensure a safe translation. A well-known issue
with Boogie arises when specifications written by the user (i.e. in Whiley) are translated
into unguarded Boogie axioms. In such cases, the user can be considered as maliciously
injecting problematic (though rarely useful) code.4 For example, a user can (perhaps acci-
dentally) insert axiom false; (or some equivalent thereof) into the generated Boogie
file. Unfortunately, the presence of such a declaration allows Boogie to immediately ver-
ify all assertions in the file (i.e. regardless of whether they are correct or not) [101]. More
importantly, Boogie does not report this as an error and, hence, it happens silently without
the user being made aware. To see how this applies to constants in Whiley, consider the
following (recall definition of nat from page 18):� �
final nat x = 0� �

The challenge here is to ensure the value being assigned adheres to any type invariant(s)
required of x . One approach is to generate a typing axiom, such as axiom nat#is(x) ,
for this. Whilst this is sufficient for the above example, a problem arises if the value assigned
was -1 instead of 0 . In such case, the translation leads to the following:� �
const x : int;
axiom x == -1;
axiom nat#is(x);� �

Unfortunately, these axioms conflict as they imply both x == -1 and x >= 0

(which is equivalent to axiom false ). To protected against this, we stratify our trans-
lation into two levels: the first establishes global constants are correctly initialised; and, the
second verifies functions and methods assuming they are correctly initialised. Following the
approach taken in Dafny [103], this is done using a special constant Context#Level .
The following illustrates the translation of our example above:� �
const Context#Level:int;

const x : nat;
axiom x == 1;
axiom (Context#Level > 1) ==> nat#is(x);

procedure x#check()
requires Context#Level == 1;
{

assert nat#is(x);
}� �

The above verifies without trouble. However, were x to be initialised with -1 , Boo-
gie would now correctly report a failed proof obligation inside the x#check() method.
Furthermore, note that all procedure bodies generated from functions or methods in Whiley
require Context#Level > 1 to ensure access to x ’s invariant (see Figure 6 below).

4 This is perhaps somewhat reminiscent of SQL injection attack, whereby a user submits arbitrary SQL
(e.g. through a form) which is executed on the server (e.g. because an input string was not escaped properly).
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3.3 Properties

Properties in Whiley are straightforward as they can be translated directly as Boogie func-
tions. For example, consider the following property in Whiley:� �
property above(int[] xs, int n)
where all { i in 0..|xs| | n < xs[i] }� �

This is translated directly as follows (again name mangling would be applied in practice):� �
function above(HEAP : [Ref]Any, xs : [int]Any, n : int)
returns (bool) { (forall i:int ::
Array#in(xs,i) ==> n < Int#unbox(xs[i])

)}� �
As for types, properties always accept a HEAP parameter for uniformity even when

not needed. A key observation is that Boogie functions are strictly more expressive than
properties in Whiley, and we will return later to consider the impact of this (see §4.4).

3.4 Functions

Recall that functions in Whiley are pure, have bodies comprised of statement blocks and may
have multiple return values. This differs from functions in Boogie, whose bodies are made up
of a single expression and can only return a single value. This presents challenges: firstly, the
body of a Whiley function corresponds more closely with a Boogie procedure; but, secondly,
functions in Whiley can be called from specification elements (e.g. pre-/post-conditions)
whereas Boogie procedures cannot. As such we provide a two-pronged translation (similar
to that found in Dafny [101]) comprising: a prototype implemented as a Boogie function
which can be invoked from a specification element; and a body, implemented as a Boogie
procedure, which can be invoked directly from the body of other functions or methods.

Figure 5 illustrates a simple function written in Whiley which we adopt as a running
example, whilst the generated Boogie for this is shown in Figure 6. We will endeavour
to fully clarify all aspects of this figure over the coming pages, but for now we focus on
the procedure’s specification. Here, additional requires clauses are included to enforce
the type of xs and, likewise, additional ensures clauses for the type of rs . Whilst
the soundness assumption for constants was discussed above, we will return to discuss the
purpose of the function prototype and linkage later. We note also that, whilst functions in
Whiley cannot modify the heap, they can manipulate references as simple values (though
cannot mutate through them).

� �
function fill(int[] xs, int x) -> (int[] rs)
// Result has same dimension
ensures |xs| == |rs|:

// fill elements!
for i in 0..|xs|:

xs[i] = x
return xs� �

Fig. 5 Illustrating a simple function in Whiley which, for brevity, has not been fully specified.
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// Procedure
procedure fill(xs : [int]Any, x : int) returns (rs : [int]Any);
// Elements in xs have integer type
requires (forall i:int :: Array#in(xs,i) ==> Int#is(xs[i]));
// Out-of-bounds elements in xs are void
requires (forall i:int :: !Array#in(xs,i) ==> (xs[i] == Void));
// Soundness assumption
requires Context#Level > 1;
// Elements in rs have integer type
ensures (forall i:int :: Array#in(rs,i) ==> Int#is(rs[i]));
// Out-of-bounds elements in rs are void
ensures (forall i:int :: !Array#in(rs,i) ==> (rs[i] == Void));
// Given ensures clause
ensures Array#Length(xs) == Array#Length(rs);
// Function linkage
free ensures fill(HEAP,xs,x) == rs;
{

var i : int;
i := 0;
while(i < Array#Length(xs))
// type preservation
invariant (forall k:int :: Array#in(xs,k) ==> Int#is(xs[k]));
invariant (forall k:int :: (!Array#in(xs,k)) ==> (xs[k] == Void));
// for loop invariant
invariant (0 <= i) && (i <= Array#Length(xs));
{

// well-definedness for assignment
assert 0 <= i;
assert i < Array#Length(xs);
// translation of assignment
xs := xs[i:=Int#box(x)];
// invariant preservation for assignment
assert (forall k:int :: Array#in(xs,k) ==> Int#is(xs[k])
assert (forall k:int :: (!Array#in(xs,k)) ==> (xs[k] == Void));
//
i := i + 1;

}
rs := xs;
return;

}
// Function Prototype
function fill(HEAP:[Ref]Any, xs:[int]Any, x:int) returns ([int]Any);� �

Fig. 6 Illustrating the generated Boogie code for the fill() example. Note, this is somewhat simplified as
various details related to name mangling and parameter shadowing are omitted.

Generics. Since Whiley supports type polymorphism, we might like to upgrade our fill()
function as follows:� �
function fill<T>(T[] xs, T x) -> (T[] rs)

...� �
As discussed in §3.1.4, we translate the Whiley type T as Boogie type Any . In terms

of verifying the above function in isolation, this presents no problems. However, in most
cases, call sites of this function would expect to receive an array of the same type they put
in. For example, consider this:
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� �
function zero(int[] xs) -> (int[] ys):

return fill<int>(xs,0)� �
In this case, Boogie must be able to determine that the return from fill() is an array

of integers. Thus, a mechanism is required to enable our translation to state meta properties
about the relationships between variable types (e.g. that they are the same). To do this, we
introduce meta types as follows:� �
type Type;
// Meta type test
function Type#is([Ref]Any, Type, Any) returns (bool);� �

Here, the Boogie type Type represents the set of all meta types, whilst Type#is()

performs a similar function as, for example, Int#is() (but for an arbitrary meta type).
In this way, we extend the generated procedure for fill<T>() as follows:� �
procedure fill(T:Type, xs:[int]Any, x:Any)

returns (rs:[int]Any);
// Elements in xs have type T
requires (forall i:int :: Array#in(xs,i)

==> Type#is(HEAP,T,xs[i]));
...
// Elements in rs have type T
ensures (forall i:int :: Array#in(rs,i)

==> Type#is(HEAP,T,rs[i]));
...� �

Here, we see the generic type T is now passed as an argument to procedure fill()
and using this we can, for example, make statements about the return value. For example,
the postcondition now tells us at a given call site that all elements in the returned array have
the same type as those elements in the input array. To make this work, we still need one
additional piece. Specifically, for every type which can be used to instantiate a type variable
(e.g. int in fill<int>() ) we construct a unique meta type constant. For example,

the meta type constant for int is declared as follows:� �
// Int meta type
const unique Type#I : Type;
// Int meta axiom
axiom (forall HEAP:[Ref]Any,v:Any ::

Type#is(HEAP,Type#I,v) <==> Int#is(v));� �
Finally, we note that user-defined types must be extended to use meta types as well. For

example, consider the following:� �
type List<T> is (null | { List<T> next, T data } l)� �

The various Boogie support functions generated for this type (recall §3.1.7) must now
accept a meta type parameter. For example, List#is() is defined as:� �
function List#is(T:Type, l:Any, HEAP:[Ref]Any)
returns (bool) { ... }� �
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Overloading & Parameters. Overloading on parameter types is supported in Whiley, but not
in Boogie. To resolve this, we employ name mangling for every property, function, method
and type. The latter is necessary because mangling also includes package and module infor-
mation. Likewise, parameters for Boogie procedures are immutable, whereas parameters to
functions or methods can be mutated in Whiley. To resolve this, our translator generates a
shadow variable for each parameter which is assigned the parameter’s value on entry.

Function Linkage. Since functions in Whiley can be called from specification elements, a
key question arises as to how such calls are encoded. Consider the following partial imple-
mentation of a stack:� �
type Stack is {int[] items, nat len} where len < |items|

function size(Stack b) -> (nat r):
return b.len

function top(Stack s) -> (int v) requires size(s) > 0:
return s.items[s.len]� �

Here, the postcondition of top() uses other publicly visible functions to hide the

implementation of Stack .5 Our translation of top() looks roughly as follows:� �
procedure top(s : Stack) returns (v : int);
...
requires size(HEAP,s) > 0;
...� �

The key here is that size(HEAP,s) refers to the function prototype of size() ,

rather than its procedure. Furthermore, since size(HEAP,s) == r is ensured in the

postcondition of procedure size() , we can verify statements such as the following:� �
Stack s = ...
if size(s) > 0:

return top(s)� �
Partial Correctness. An important limitation of Whiley is that it cannot ensure termination.
For example, there is no equivalent syntax to decreasing as found in Dafny. As a
result, non-terminating recursive functions can be verified with almost any postcondition.
The following illustrates such an example:� �
function inc(int x) -> (int y)
ensures y > x:

return inc(x)� �
Observe that the above function will never violate its postcondition and, hence, is correct

up to non-termination. In the future, we expect Whiley to be extended with support for
variant expressions such that a well-founded ordering over recursive calls can be specified
to ensure termination.

5 We note that Whiley supports a range of visibility modifiers for statically enforcing information hiding,
though these are beyond the scope of this paper.
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3.4.1 Statements & Expressions

Translating most Whiley statements and expressions into Boogie is straightforward (see
the similarities between Figures 1 and 2). Here, we describe only the interesting cases that
present specific challenges.

Variable Scoping. Boogie requires all local variables to be declared at the start of a proce-
dure body where, like most modern languages, Whiley allows variables to be declared with
block scopes. Whilst, in most cases, this is relatively trivial to manage there are cases where
name clashes arise. The following illustrates:� �
type imsg_t is {int kind, int data}
type bmsg_t is {int kind, bool data}

function read(imsg_t|bmsg_t m) -> (int r):
if m is imsg_t:

int tmp = m.data
...

else:
bool tmp = m.data
...� �

In this case, the same variable is declared twice with different types. This is a problem
because they have incompatible types and, hence, we cannot declare a single Boogie variable
to cover both. Instead, we apply name mangling to ensure variables in different scopes have
unique names.

Well-Definedness. As highlighted already, Whiley’s treatment of expressions (especially
when used in specification elements such as pre-/post-conditions) differs from other com-
parable systems (e.g. Dafny). In fact, handling this is straightforward and has been covered
reasonably extensively elsewhere [101]. Essentially, when translating a Whiley expression,
care must be taken to insert checks as necessary to ensure expressions are well defined. The
following illustrates a simple example:� �

...
int x = xs[i]
...� �

Here, there is an implicit assumption that i >= 0 and i < |xs| . Of course, this

may not actually be the case and we employ assert statements to check such precondi-
tions. As such, the above is translated roughly as follows:� �

...
assert 0 <= i;
assert i < Array#Length(xs);
x := Int#unbox(xs[i]);
...� �

Whilst, in many cases, the extraction of such checks is straightforward there are some
challenges. For example, we employed window inference [149] here. To understand this,
consider the following:
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� �
...
if i < |xs| && xs[i] == w:

...� �
For this example, the following translation is not sufficient:� �
...
assert (0 <= i);
assert (i < Array#Length(xs));
if(i < Array#Length(xs) && Int#unbox(xs[i]) == w) {

...� �
This translation is invalid because the second assert may not hold. This arises be-

cause this definedness check is for part of the condition in a given context. Instead, for every
check extracted, we must additionally extract facts which have become known within the
expression. Thus our translation, in fact, is as follows:� �

...
assert (i < Array#Length(xs)) ==> (0 <= i);
assert (i < Array#Length(xs)) ==> (i < Array#Length(xs));
if(i < Array#Length(xs) && Int#unbox(xs[i]) == w) {

...� �
Another aspect of this issue is the well-definedness of specification elements, such as

pre-/post-conditions, loop invariants, etc. Consider the following (albeit contrived) example:� �
function read(int i, int[] map) -> (int r)
requires map[i] >= 0:

...� �
Since the precondition for this function requires facts about map[i] , it follows (im-

plicitly) that map[i] must be well-defined (i.e. that i is within bounds). Thus, our
translator extracts such additional requirements as necessary, as the following illustrates:� �
procedure read(i : int, map : [int]Any) returns (r : int);
...
requires (0 <= i) && (i < Array#Length(map));
requires Int#unbox(map[i]) >= 0;
...� �

A similar approach is taken to handling loop invariants and, perhaps surprisingly, also
for postconditions. For example, consider the following (albeit also contrived) example:� �
function create(int n) -> (int[] xs)
ensures xs[0] == n:

...� �
In this case, it follows from the postcondition that |xs| > 0 holds and, hence, is

translated as follows:
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� �
procedure create(n : int) returns (xs : [int]Any);
...
ensures (0 <= 0) && (0 < Array#Length(xs));
ensures Int#unbox(xs[0]) == n;
...� �

Finally, we note that care must be taken in a number of contexts when extracting well-
definedness conditions, such as for expressions nested within quantifiers, etc.

Type Invariants. Our translation must ensure type invariants are properly preserved at all
points. For example, consider the following (recall definition of nat from page 18):� �

...
nat x = 1
...
x = y + 1� �

In this case, we must establish that x >= 0 holds after x is initialised, and also after
it is subsequently reassigned. To do this, the above is translated as follows:� �

...
var x : nat;
x := 1;
assert nat#is(Int#box(x),HEAP);
...
x := y + 1;
assert nat#is(Int#box(x),HEAP);� �

Here the Boogie function nat#is() encapsulates the invariant for nat and is gen-
erated where translating the type declaration (recall §3.1.7).

Looking at Figure 6 provides further insight into this process. No assertion for invariant
preservation is generated for i := i + 1 because the type of variable i is uncon-
strained. In other words, since the check would correspond to assert true; we sim-
ply optimise it away. However, such optimisation remains relatively simplistic, as checks
are still produced unnecessarily for the xs := xs[i:=Int#box(x)] assignment.

Invocation. Translating function invocations into Boogie presents something of a challenge,
since functions can be invoked from arbitrary expressions (including specification elements
discussed previously in §3.4). However, Boogie does not permit procedure invocations
from within an expression, and provides only a simple statement form for calling procedures
(e.g. call x := f(y); ).6 In short, this means function invocations must be extracted
from expressions. Consider the following snippet in Whiley:� �

int y = f(x) + 1� �
The above is translated into the following Boogie sequence:

6 Presumably, this is because Boogie wants to remain agnostic regarding execution order of expressions.
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� �
call f#114 := f(x);
y := f#114 + 1;� �

Here a temporary variable, f#144 , is introduced to hold the value returned from
f(x) . Thus, the order of evaluation for expressions is exposed by the order in which

the calls are made prior to the final expression. In general this approach works fine, but there
are challenges. Short-circuit semantics presents the first challenge. For example, consider
the following:� �

if (x < 0) || (f(x) > 0):
...� �

In this case, we cannot just extract the function invocation and execute it before the
if statement. Such a translation would model f(x) being executed every time the if

statement is executed, which is not the case. Instead, we must carefully preserve short circuit
semantics using unstructured branching as necessary. For example, we can translate the
above as follows:� �

if(x < 0) { goto trueLab; }
call f#114 := f(x);
if(f#114 <= 0) { goto falseLab; }

trueLab:
...

falseLab:� �
We can see that, whilst this gives a faithful rendition of the original program, it is quite

low-level and harder to comprehend. This issue is further compounded with loops, whose
unstructured representation is far more verbose (recall Figure 2 versus Figure 3).

Finally, we note our approach above is reminiscent of that used for Spec# [112] but
differs from Dafny (because Dafny does not permit method calls within expressions).

Assignments. Boogie supports assignments to variables (e.g. x := y; ) and map ele-

ments (e.g. xs[0] := 0; ). Unfortunately, our choice to represent arrays uniformly with

Boogie type [int]Any presents some minor challenges. For a Whiley variable xs of

type int[] , we could translate xs[i] = 0 directly as xs[i] := Int#box(0); .

However, for a Whiley variable ys of type int[][] a direct translation fails because

the Boogie type for ys is still [int]Any (i.e. not [int][int]Any as needed for
a direct translation). For simplicity, we translate array assignments uniformly regardless of
the nesting level. For example, consider the following:� �

...
xs[i] = 0� �

As seen in Figure 6, the above is translated using Boogie’s m[e->v] operator as follows:� �
xs := xs[i:=Int#box(0)];� �
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A similar approach is needed for assignments to records and to the heap via references.
A slightly more challenging issue arises from multiple assignments in Whiley. These

have interesting semantics from a verification perspective. Consider this example:� �
type Point is { int x, int y } where x < y || x > y

function swap(Point p) -> (Point r):
p.x,p.y = p.y,p.x
return p� �

The semantics of multiple assignments mean that the type invariant of p must hold
after the assignment (hence the above correctly preserves its invariant). Observe, however,
that attempting to assign each field individually would give a verification error, as the type
invariant for p would be temporarily broken. Thus, our translation of the above would be:� �

...
t#0 := Int#unbox(p$97[$y]);
t#1 := Int#unbox(p$97[$x]);
p := p[$x:=Int#box(t#0)];
p := p[$y:=Int#box(t#1)];
assert Point#is(Record#box(p),HEAP);
...� �

Notice that the values of p.y and p.x are first stored in temporary variables to avoid
interference between the left- and right-hand sides.

Another important aspect of multiple assignments is the semantics for conflicting as-
signments [74,75]. The following illustrates:� �

xs[i],xs[j] = 0,1� �
They key question is what value is assigned to xs[i] when i==j . We follow Gries

by resolving this based on the order of the right-hand side. Thus, when i==j above,

xs[i] == 1 holds after the assignment since xs[i] is first assigned 0 then 1 .

This differs from Dafny where the above would be rejected unless i!=j was known.

Switches. Like many languages, Whiley supports multi-way branching via switch state-
ments. Although Boogie has no switch statement, it does support non-deterministic goto .
Hence, rather than using a sequence of if-else statements, we exploit this with appropriate
constraints. The following illustrates:� �

switch c:
case 0,1:

...
default:

...
...� �

� �
goto l1,l2;
l1:
assume (c == 0) || (c == 1);
...
goto l3;

l2:
assume (c != 0) && (c != 1);
...

l3:� �
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Here, l1 corresponds with case 0,1 whilst l2 corresponds with the default case.
Note also that cases do not fall through by default in Whiley. Furthermore, if there are nested
break / continue statements these are translated into goto s as well.

Loops. Loops are also relatively easy to translate. Since Boogie supports only while
loops, all other looping forms found in Whiley must be translated using this. Furthermore,
since Boogie has no break or continue statement, we translate these using goto s

as for switch statements. We note also that, for a do-while loop in Whiley, the loop
invariant need not hold before the first iteration (which makes some proofs easier). Further-
more (if desired) one can always check the invariant on entry using an explicit assert
statement.

One challenge faced in translating loops is the handling of types for variables which
are modified in a loop. For example, in our translation of fill() our translator inserted
additional loop invariants to preserve the type of variable xs (recall Figure 6). This is
necessary because the post-condition for fill() restates that rs is an array of integers

and this is not expressed explicitly in the type [int]Any . Indeed, this is stated for xs

in the function’s precondition but, since xs is modified in the loop, this information is lost
within and after the loop (because Boogie sends its value to havoc). To resolve this, we must
reassert this type information as a loop invariant. Furthermore, this is done for any variables
modified in the loop.

A related issue, which our translator does not currently address, is that of preserving
immutable properties of variables. Consider again the fill() example from Figure 5. In
fact, this example does not verify as is with our translator! Again, key information about xs
is lost within and after the loop. In this case, the information that needs to be preserved is
that the length of xs is unchanged by the loop. In principle, our translator could be extended
with a static analysis to infer this and add it implicitly as a loop invariant (but this remains
future work). We note that this extends to records, as the following illustrates:� �
type Buffer is {nat len, int[] items} where len < |items|

function clean(Buffer b) -> (Buffer r)
// Buffer is emptied!
ensures (r.len == 0):

b.len = 0
for i in 0..|b.items|:

b.items[i] = 0
return b� �

Perhaps surprisingly, this also does not verify because the property b.len == 0 is
not preserved across the loop. This can be fixed by performing the assignment to b.len

after the loop. Or, we could add a loop invariant to ensure b.len == 0 is preserved.

Lambdas. Boogie provides syntax (e.g. (lambda y:int :: y + 1) ) for lambdas

(with map type [int]int in this case). They are comparable with Boogie functions
and cannot, for example, call procedures, etc. As such, they are insufficient for represent-
ing lambdas in Whiley which can have side effects. Instead, we translate them into named
Boogie procedures. Mostly this is straightforward, but a few challenges arise with captured
variables. For example, consider the following:
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� �
type Pred<T> is function(T)->(bool)

function isBelow(int n) -> Pred<int>:
return &(int v -> v < n)� �

Translating the lambda into a standalone procedure requires identifying captured
variables ( n in this case) and adding them as parameters. The following illustrates:� �
procedure lambda#131(HEAP : [Ref]Any, v : int, n : int)
returns (r : bool);
{

...
}
const unique lambda#131 : Lambda;� �

Here, the procedure contains the body of the lambda, which will include any necessary
checks on the lambda itself. Likewise, the constant lambda#131 is generated to represent
this particular lambda. When translating an indirect invocation, we automatically generate a
suitable prototype to invoke. For example:� �

Pred<int> fn = ...
bool b = fn(10)� �

The above Whiley snippet is then translated (roughly speaking) as follows:� �
fn := ...;
assert Pred#is(Type#L,Lambda#box(fn),HEAP);
b := Bool#unbox(f_apply(fn,Int#box(10)));� �

Here, the function f_apply() is generated (in practice, with a suitable mangling) to
represent the anonymous function being invoked. It accepts the lambda as a parameter, thus
allowing one to exploit the fact that the same lambda returns the same value(s) when given
the same parameter. Finally, we note that work remains to improve our translation of lamb-
das. In particular, information known about captured variables is not currently transferred to
the generated procedure . Thus, the following fails to verify:� �
function isBelow(int[] xs, int i) -> Pred<int>
// index i within bounds
requires i >= 0 && i < xs[i]:

// Return lambda
return &(int v -> v < xs[i])� �

The above fails because the generated procedure accepts the captured variables i

and xs , but does not include a corresponding precondition. Whilst, in this case, it would
be relatively easy to fix, in other cases it is more challenging (e.g. when a parameter has
been modified prior to being captured). One approach, for example, would be to apply the
Weakest Precondition transformer [56,100,18] to the body of the lambda (which should be
relatively straightforward since this is just an expression).
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3.5 Methods & Framing

Recall from §2.1.4 that methods in Whiley are permitted to have side effects and, for ex-
ample, manipulate heap-allocated data through references. As such, Whiley methods corre-
spond closely with procedures in Boogie. However, methods in Whiley can be called from
expressions used in statements (though not from specification elements, such as pre-/post-
conditions or loop invariants). In many ways, the translation of methods follows that for
functions, but with some important differences which we now consider.

Framing. Whilst the Whiley language provides relatively limited support for describing the
effect a method has on the heap, a lot of machinery is nevertheless required to manage
what can be expressed. As highlighted before, we adopt a relatively standard approach to
modelling the heap. Specifically, a global variable HEAP of type [Ref]Any is provided
to model this. For example, consider the following Whiley method:� �
method swap(&int p, &int q)
ensures *p == old(*q) && *q == old(*p):

...� �
Our translation produces both a procedure prototype and implementation in Boogie. The

prototype for the above method looks roughly as follows:� �
procedure swap(p : Ref, q : Ref);
// Heap may be modified
modifies HEAP;
// Incoming typing constraints
requires Int#is(HEAP[p]) && Int#is(HEAP[q]);
// Post condition
ensures Int#unbox(HEAP[p]) == old(Int#unbox(HEAP[q]))

&& Int#unbox(HEAP[q]) == old(Int#unbox(HEAP[p]));
// Outgoing typing guarantees
ensures Int#is(HEAP[p]) && Int#is(HEAP[q]);
// Frame condition (i)
free ensures ...
// Frame condition (ii)
free ensures ...� �

Observe that the modifies clause is provided as we must conservatively assume
methods may modify the heap. Note also that old() in Whiley is translated directly
using Boogie’s old() syntax. There are two essential issues here: typing and framing.
The former simply makes explicit guarantees on the shape of the heap provided by Whiley’s
type system. For example, that for an integer reference p there is indeed an integer value at

HEAP[p] , etc. The latter aspect of framing is perhaps more interesting. We divide framing

into two separate conditions (both of which are marked free since Whiley’s type system
guarantees them). These conditions rely on a simple predicate for determining whether a
reference is reachable from — or within — the frame of a given variable (see Figure 7).

The first frame condition enforces self-framing [91] by ensuring that only locations
within the method’s frame can be modified:
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� �
...
// Frame Condition I
free ensures (forall r:Ref ::

Ref#within(HEAP,r,p) || Ref#within(HEAP,r,q) // (1)
|| (old(HEAP[r]) == HEAP[r]) // (2)
|| (old(HEAP[r]) == Void)); // (3)

...� �
There are three parts of the condition as follows:

1. (Mutable) This identifies which locations could be modified by the method and, for
these, does not provide a connection between the heap beforehand with that after.

2. (Immutable) For locations which could not be modified by the method, an explicit
connection is made to ensure this between the heap beforehand and that after.

3. (Allocated) As a special case, heap locations which did not exist prior to the method
(i.e. were mapped to Void ) can have arbitrary values afterwards.

In essence, the footprint of a method (i.e. those locations it could write) is conservatively
tied with its frame (i.e. those locations it could read). This provides a straightforward and
extensible basis for reasoning about how methods modify the heap. For example, if syntax
for describing the old heap in postconditions was added to Whiley, this would easily layer on
top. The key is that, in the absence of more expressive syntax for restricting the locations a
method may modify, we must adopt a worst-case assumption that any reachable location

could be modified.

� �
// Check if reference within arbitrary value
function Any#within(HEAP:[Ref]Any, p:Ref, q:Any)
returns (bool) {

(Ref#is(q) && Ref#within(HEAP,p,Ref#unbox(q))) ||
(Array#is(q) && Array#within(HEAP,p,Array#unbox(q))) ||
(Record#is(q) && Record#within(HEAP,p,Record#unbox(q)))

}
// Check if reference within array
function Array#within(HEAP:[Ref]Any, p:Ref, q:[int]Any)
returns (bool) {

(exists i:int :: Any#within(HEAP,p,q[i]))
}
// Check if reference within record
function Record#within(HEAP:[Ref]Any, p:Ref, q:[Field]Any)
returns (bool) {

(exists f:Field :: Any#within(HEAP,p,q[f]))
}
// Check if one reference (p) reachable from another (q)
function Ref#within(HEAP:[Ref]Any, p:Ref, q:Ref)
returns (bool) {

(p == q) || Any#within(HEAP,p,HEAP[q])
}� �

Fig. 7 Illustrating the Boogie definition of a predicate for determining whether a reference p is within the
footprint of given variable q . More specifically, it searches the contents of q (whatever that might be)
looking for p , whilst traversing references as necessary.
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The second frame condition (known as the swinging pivots restriction [91]) prevents
unreachable locations from “migrating” into the frame:� �
...
// Frame Condition II (Swinging Pivots)
free ensures (forall r:Ref ::

// any reference r in postframe
(Ref#within(HEAP,r,p) || Ref#within(HEAP,r,q)) ==>
// (1) was either freshtly allocated, or

(old(HEAP[r]) == Void ||
// (2) was reachable from the preframe
Ref#within(old(HEAP),r,p) || Ref#within(old(HEAP),r,q)));

...� �
In essence, this ensures that any reference reachable from parameters p or q after

the method was either freshly allocated, or was reachable from them beforehand. Note that,
whilst for this particular method, these conditions are trivial they are required in general
(e.g. for handling linked structures).

As a further example to illustrate the challenges addressed by the frame conditions,
consider the following:� �
type LinkedList is null | &{ int data, LinkedList next }

method clear(LinkedList l):
l->data = 0

method main():
LinkedList l1 = new {data:1, next:null}
LinkedList l2 = new {data:2, next:null}
// Clear first node of l1 twice!
clear(l1)
clear(l1)
// Check l2 unaffected
assert l2->data == 2� �

Establishing that l2 is not modified by the calls to clear(l1) above requires both
frame conditions (something which is not immediately obvious at first glance). It is clear
that the first frame condition (self-framing) allows us to establish that l2 is not modified
by the first call. One might then conclude the first condition is sufficient to establish this
across both calls — but that is not the case! The challenge is that clear(l1) ensures
l2 is not modified, but allows l1 to be modified. Without the second frame condi-

tion, the verifier might then consider that l2 was within l1 after the first call (e.g. that
l1->next == l2 ). And, in such case, it would then rightly conclude that l2 could

be modified by the second call. As such, we see how the second frame condition helps to
ensure that disjoint frames remain disjoint.

Finally, we note that our encoding makes heavy use of a recursive predicate (see Fig-
ure 7) which (as we have observed) can lead to the butterfly effect [110]. That is, where the
verifier loops indefinitely unrolling predicates fruitlessly. In our experience, this typically
happens when the condition being checked is invalid and, hence, the verifier cannot quickly
find a proof-by-contradiction.
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Allocation. Since data can be allocated on the heap in Whiley methods using the new
operator, a translation of this operator is required. To this end, we employ the following:� �
procedure Ref#new(val : Any) returns (ref : Ref);
modifies HEAP;
// Location not previously allocated
ensures old(HEAP[ref]) == Void;
// Location now holds given value
ensures HEAP[ref] == val;
// Everything else untouched
ensures (forall r:Ref :: ref==r || old(HEAP[r])==HEAP[r]);� �

This simply returns an arbitrary location which was not previously allocated, and ensures
it now holds the requested value. Recall that, at the time of writing, Whiley does not support
explicit memory deallocation and, hence, no counterpart for this is required. Finally we note
that, since allocations result in calls to Ref#new , they must be extracted from expressions
as for method invocations above.

4 Experimental Results

In this section, we compare our Wy2B translator against the Whiley native verifier using the
existing compiler test suite which consists of 1100+ (mostly) small Whiley programs. In
particular, we are concerned with the number of tests that Wy2B can pass correctly, and note
that the existing Whiley native verifier does not pass all the tests (e.g. because of outstanding
bugs, etc). In addition, we discuss our experiences using the new Wy2B toolchain on several
larger case studies.

4.1 Micro Test Statistics

The Whiley compiler system includes a comprehensive suite of ‘micro’ test programs, which
are small Whiley programs intended to methodically test all Whiley language features, in-
cluding the Whiley native verifier. At the time of this evaluation (May 2021), this test suite
included 731 ‘valid’ micro test case programs that should be verifiable, as well as 461 ‘in-
valid’ micro test case programs that should generate compiler errors or verification failures
(to ensure that the compiler correctly catches them). Our first step in evaluating the correct-
ness and usefulness of our new verifier is to apply it to this test suite. We use Boogie v2.8.26
and Z3 v4.8.10 for these evaluations.

When we applied our new Wy2B verifier to the invalid programs, ignoring 7 programs
that are marked as IGNORE due to current limitations of the compiler front end, we found
that all 454 of the remaining programs failed as expected. This confirms that the Boogie
back end is correctly detecting verification issues in programs that should not be verifiable.
For completeness, we illustrate one such example:� �
function f(int[] xs) -> int[]:

xs[0] = 1
return xs� �
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Fig. 8 Stacked bar chart of the Whiley native verifier and Boogie-based verifier results on the ‘valid’ test pro-
grams. Green (left and middle bars) indicates percentage of programs fully verified, and red (right) indicates
percentage where one or more proofs failed or timed out.

The above ‘invalid’ program is used to test that the verifier correctly reports a potential
out-of-bounds access on line 2. Both the native verifier and our Wy2B verifier pass this test.

The valid micro test programs are small Whiley programs (ranging from 3 to 250 lines of
code with an average length of 18 lines) that each contain several (2.2 on average) function
and method definitions, some with specifications and some without. Around one third of
the programs have functions or methods with requires/ensures specifications, one third use
arrays (which generate array bound proof obligations), and 21% have loops with invariants.
On average, our Wy2B translator generates 6.0 explicit proof obligations per micro test
program (to check array bounds, function call preconditions, etc.). This is on top of any
explicit assert statements in the Whiley program and also in addition to the main proof
obligations of Boogie, which are that each function or method body correctly implements its
specification, and that every loop invariant is correctly preserved. Again, for completeness
we illustrate one such example:� �
function f(int[] xs) -> (int r)
requires xs[0] >= 0
ensures r >= 0:

return xs[0]

public export method test():
int[] xs = [1,2,3]
int x = f(xs)
assert x >= 0� �

The above ‘valid’ program is expected to pass verification without raising any errors.
This means that, amongst other things, the verifier must prove that the body of f satisfies
its specification, and within test must establish the precondition for the call f(xs)

and that the final assert holds. Again, both the native verifier and our Wy2B verifier
pass this test.

Figure 8 compares the percentages of these ‘valid’ micro tests that the native Whiley ver-
ifier and the Wy2B Boogie-based verifier can verify respectively. The left-most bar on each
row corresponds to the programs that both verifiers can verify (604 programs, or 82.6%).
The middle bars show that the Whiley native verifier can verify an extra 7 programs (1.0%),
whereas the Boogie verifier can verify an additional 102 programs (14.0%). So in total, the
Whiley native verifier can verify 83.6% of the programs, while the Boogie verifier can verify
a total of 96.6%.
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We investigated the 7 programs that the Whiley native verifier could verify but Boogie
could not, and found that 4 of them are verifiable by a later version of Boogie (v2.9.6.0)
and Z3 (v4.8.12). The remaining three are due to outstanding issues with the translation to
Boogie related to lambda functions that return union types (Issue #59 in the Whiley2Boogie
repository) and to proving the type invariants of cyclic data structures (Issue #61).

The larger number of programs that are verifiable by Boogie but not by the Whiley native
verifier are largely because there are several Whiley language features that are not supported
by the Whiley native verifier, such as:

– heap updates;
– reasoning about the results of calls to lambda functions;
– some kinds of generic types.

The Wy2B+Boogie toolchain takes 15:30 minutes (930 seconds) to translate and verify
just the 706 test programs that it can verify, on a Dell Precision 5520 laptop with an Intel
i7-7820HQ CPU @ 2.90GHz and 32Gb RAM, and a 60 second timeout for Boogie. This is
1.3 seconds on average for each small valid test program, which is acceptable performance
for real-world usage. When run on all 731 programs with a timeout of 60 seconds, the whole
test run takes around 17:55 minutes, because some of the more difficult programs hit the 60
second timeout and fail. This is around 1.5 seconds average for each test, with a maximum
of 60 seconds for those that time out, which is still reasonable.

Another interesting performance issue is that we run Boogie with the -useArrayTheory
flag by default — this uses the built-in SMT theory of arrays within Z3, which handles large
arrays better, usually gives better performance, and enables more programs to be verified
(without this flag, Boogie can verify only 665/731 = 91% of the valid test suite). How-
ever, there are a few programs (e.g. While Valid 71.whiley) where performance becomes
dramatically worse with this flag — it takes 4.5 minutes to report 5 unverifiable proof obli-
gations with the flag, but less than one second to finish and report 7 unverifiable proof
obligations without the flag.

The Whiley native verifier takes only four minutes to process the 600+ test programs that
it can verify (around 2.5 programs/sec), which is significantly faster than the Boogie verifier,
but takes 18:32 minutes to process all the 731 valid tests (around 1.5 secs/test on average).
However, it is difficult to compare the actual proof times, because the Whiley verifier runs
within a single Java JVM process, whereas the Wy2B+Boogie toolchain creates several
separate processes and intermediate files for each test program.

4.2 Case Study: Conway Game of Life

The first case study we discuss is an interactive web page for playing the Game of Life
by Conway [69]. This consists of a small index.html file to load the game, plus three
Whiley modules:

– model.whiley (141 lines): defines the 2D board and the logic of the game;
– view.whiley (26 lines): defines how to draw the board onto an HTML canvas;
– main.whiley (87 lines): defines mouse event handlers and other controller methods.

The Whiley compiler compiles these three modules and generates JavaScript as output,
which can then run in a standard web browser (see Figure 9). We focussed on verifying just
the model component, since the others are just the view and controller components whose
correct functioning is generally obvious by the visual updates of the canvas. We aimed to
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Fig. 9 Illustrating the web-based implementation of Conway’s Game of Life developed in Whiley.

specify and verify as much of the functional behaviour of the model as possible, to try to
explore the limits of the Boogie verification path. Figure 10 shows the main data structure
that represents the board, plus a Whiley function that counts the number of neighbouring
cells that are alive. Appendix A gives the full listing of model.whiley plus links to the
corresponding output Boogie code.

As well as adding specifications to model.whiley, we made some small changes to
the code to make specification or verification easier:

– The original board init function took width and height inputs as arbitrary
pixel sizes, but we changed these to be cell counts rather than pixels (since the size in
pixels is just a GUI display issue) and required them to be greater than zero to avoid
empty board cases that are not interesting in practice;

– We moved the cell-update code out of a doubly-nested loop into a separate function, for
better modularity and easier specification;

– Whiley currently supports only one-dimensional arrays, so the code implemented the
2D board as a one-dimensional array, where each (x,y) location was translated into
an index x + y*state.width . We respected this data representation choice,7 but
initially had some difficulty with Boogie struggling to verify in-range assertions about
these indexes, due to the non-linear multiplication ( state.width is initialised at
the start of each game, so is not a static constant). Frequently, Boogie would go into
an infinite loop trying to prove these assertions (or terminate with a timeout error if we
set a time limit). Eventually we found that upgrading Z3 from version 4.8.9 to 4.8.10
solved most of these problems, and Boogie was then able to prove most of the required
assertions, or give a quick failure result for those it could not prove. Even then, we found
that it was sometimes necessary to try several different ways of specifying indexes and
bounds before finding one that Boogie could verify. For example, it was much easier to
verify the count_living(...) function when it took a single index parame-
ter rather than separate x and y parameters — this is why in our final version the

count_living function re-derives the x and y coordinates from the index. This

meant that only one variable needed to be quantified in the update loop invariant,
instead of both the x and y coordinates. Typically, we found that cases where Boogie

7 An alternative would be to use an array of arrays, but we did not explore this option as we wanted to
leave the code relatively unchanged.
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/**
* Define the board state with the requirement that the width and
* height match the length of the cells array.
*/
public type State is {

bool[] cells,
uint width,
uint height

} where |cells| == width * height && width > 0 && height > 0

/**
* Count the number of living cells surrounding a given cell on the board.
* Since there are at most eight neighbouring cells for any given cell, the result can
* be at most eight. Cells on the edge of the board are assumed to be next to dead cells.
*/
public function count_living(uint index, State state) -> (uint r)
requires index < |state.cells|
ensures r <= 8:

int x = index % state.width
int y = index / state.width
//
uint count = alive(x-1,y-1,state)
count = count + alive(x-1,y,state)
count = count + alive(x-1,y+1,state)
count = count + alive(x,y-1,state)
count = count + alive(x,y+1,state)
count = count + alive(x+1,y-1,state)
count = count + alive(x+1,y,state)
count = count + alive(x+1,y+1,state)
return count� �

Fig. 10 Snippets from the Game of Life case study: the State data structure with its invariants, and the
count living function that counts how many neighbouring cells are alive. As explained in the text, the
index input of count living is given a cell location (x,y) as x+y*width . Note, uint is defined

in the standard library and has the same definition as nat (recall Figure 1).

did not terminate were due to array accesses that it couldn’t prove were within bounds,
and that adding redundant constraints to the specification to make it clear that they were
in-bounds would fix that problem. This process was rather frustrating, but reflects a lim-
itation of SMT solvers (because non-linear arithmetic is not decidable) rather than of
the Whiley-to-Boogie translation.

After these changes, Boogie (v2.8.26) can easily verify all the functions in this program
in 2.2 seconds, plus 2.8 seconds for the translation from Whiley to Boogie.

4.3 VerifyThis 2019 Competition Challenges

In this section, we briefly discuss our experience of translating and verifying several of
the Dafny and JML solutions to the ‘VerifyThis 2019’ verification challenge [58].8 These

8 See the VerifyThis 2019 archive, https://www.pm.inf.ethz.ch/research/verifythis/
Archive/2019.html, “Sample solutions by the organizers” in Dafny for Challenge 1 and the “OpenJML:
David Cok” solution for Challenge 2.

https://www.pm.inf.ethz.ch/research/verifythis/Archive/2019.html
https://www.pm.inf.ethz.ch/research/verifythis/Archive/2019.html
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challenges involve quite sophisticated algorithms, with full specifications of the functional
behaviour, so are reasonably challenging verification tasks.

Dafny and Boogie were designed to work together, whereas Whiley was independently
designed, and originally used several generations of custom-built ‘native’ provers to dis-
charge proof obligations. It is only recently that we have developed the Boogie back-end
as an alternative verifier. So a useful way to evaluate the usability of the Whiley+Boogie
verifier is to take verification solutions that are written in Dafny, translate them into Whiley
and see how well the verification works in comparison with Dafny+Boogie. This can help us
to understand how various language features of Whiley help or hinder the verification pro-
cess and how well Whiley translates into the underlying Boogie verifier, which is a common
back-end for both languages.

We translated and verified the following challenge solutions using Boogie v2.9.6.0 and
Z3 v4.8.12 – the resulting Whiley solutions can be seen on GitHub.9

Challenge 1A: Monotonic Segments. This challenge takes an array and cuts it into mono-
tonic segments, which are either increasing or decreasing. The Dafny solution used
the built-in extensible sequences to specify some of the operations, but Whiley has
only fixed size arrays. So to replicate Dafny’s sequence append operator, we defined
in Whiley an append() function that adds an element to the end of an array. To

replicate the functionality of Dafny’s sequence slicing, we added start and end
parameters to each of the properties used where necessary, as these were the only uses of
sequence slicing in the Dafny version. Interestingly, the lemmas found in the Dafny ver-
sion were not necessary, as they were needed to prove properties of Dafny’s sequence
manipulations that were not relevant to Whiley. Some assertions found in the Dafny
version were also not needed in the Whiley code, as they were only needed to prove
properties of the sequence manipulation in Dafny. The Dafny solution was 72 lines of
non-comment specification and source code (excluding curly braces), while the Whiley
solution was slightly shorter at 56 lines (including 11 lines for append<T>() ) and
took roughly 30s to verify without the -useArrayTheory flag. We note, with that
flag enabled, it would not verify the program within 20 minutes.

Challenge 1B: GHC Sort. This challenge was to verify a sorting algorithm used by the
GHC Haskell compiler, which takes the monotonic segments from the previous chal-
lenge, reverses the decreasing ones, and then pairwise merges the segments into a sorted
result. For this challenge, we added the same append<T>() function as above. As
01 ghc sort builds upon 01 findcuts, the same start-and-end modifications to
the properties were made, but a separate slice function was also added, as Dafny’s
sequence slicing was used more extensively than in the cutpoints solution. The lem-
mas from the Dafny code were not needed in the Whiley code, and neither were any
of the assertions. New assertions were necessary to add to the Whiley code in the
merge_pair and monotonic_segments functions to demonstrate properties

of the implemented slice function. The ghc_sort function was simplified, as the
Dafny solution uses an extra while loop to copy its output sequence into an array, which
is not necessary in Whiley as arrays are used throughout. The reverse function
was re-implemented slightly to avoid an append() on every iteration. The Dafny
language includes multisets (bags) and the Dafny solution used these to prove that one

9 See https://github.com/DavePearce/VerificationBenchmarks/tree/master/
Competitions/VerifyThis19.

https://github.com/DavePearce/VerificationBenchmarks/tree/master/Competitions/VerifyThis19
https://github.com/DavePearce/VerificationBenchmarks/tree/master/Competitions/VerifyThis19
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sequence is a permutation of the other. However, the authors comment the “specification
(and hence proofs) that the output is a permutation of the input is incomplete”. Whiley
does not have built-in support for multisets, and it is difficult to recreate this using un-
interpreted functions. As such, we also did not establish the permutation property in the
Whiley version. Overall, the Dafny solution was 137 lines of non-comment specification
and source code (excluding curly braces), and the Whiley solution was slightly longer at
152 lines. The Wy2B+Boogie verifier takes roughly 20 seconds to verify this program,
and again failed to verify within 20mins with the Boogie -useArrayTheory flag.

Challenge 2A: Cartesian Trees. This challenge was to verify a stack-based algorithm for
finding the nearest smaller value for each item in an array. There was no Dafny solution,
so we started from the OpenJML solution, which has a single function with a doubly-
nested loop.
For this challenge, it was only necessary to add the loop invariants |left| == |s|

and |stack| == |s| to the outer loop, as Whiley is not able to automatically
determine that the sizes of the arrays are unmodified when the loop body only updates
valid indexes in the array, whereas OpenJML can infer this invariant.
The OpenJML solution was 38 lines of code and specifications, and the Whiley solution
is 35 lines. The Wy2B+Boogie verifier takes 1.8 seconds to verify this program, or 5
seconds if we add the Boogie -useArrayTheory flag.

4.4 Discussion

From our case studies and our micro-test results, we have observed that using Boogie to
verify Whiley programs has significantly increased the verification abilities of Whiley. This
is partly due to Boogie making it easier to provide proof support for a wider range of Whiley
language features, and partly due to the maturity and power of the underlying proof tools —
the decades of careful proof engineering that have gone into Z3.

However, the use of Boogie and Z3 is not yet perfect. The Boogie -useArrayTheory
flag is necessary in some case studies to handle large arrays, but in other case studies it can
lead to vastly increased proof times or even non-termination. Also, we have observed that
Boogie can often make effective use of recursive predicates to prove a valid proof obligation,
but can go into an infinite unfolding loop if that proof obligation is difficult or unprovable.

On the Whiley side, we found that when reasoning about arrays it is helpful to define
various supporting properties, such as taking slices of an array, appending two arrays, count-
ing the occurences of a given element, etc. It would be useful to develop a Whiley library
of these supporting properties and this would be easier if Whiley properties could return
arbitrary values, rather than being limited to boolean results. This would allow them to be
used as specification-only functions, which would make it easier for Boogie to reason about
the domain-specific concepts that are captured by those functions.

5 Related Work

We now consider various tools with similar aims to Whiley, including several which also
compile to Boogie.



Verifying Whiley Programs with Boogie 41

5.1 Extended Static Checkers

The Extended Static Checker for Java (ESC/Java) [67] and its later successor (ESC/Java2) is
perhaps one of the most influential tools in the area of verifying compilers [49,39]. The tool
essentially provides a verifying compiler for Java programs whose specifications are given
as annotations in a subset of the Java Modelling Language (JML) [39,40,98]. JML provides
a standard notation for expressing contracts in Java, and the following illustrates a simple
method in JML which ESC/Java verifies as correct:� �

/*@ requires n >= 0;
@ ensures \result >= 0;
@*/
public static int method(int n) {

int i = 0;
/*@ maintaining i >= \old(i); */
while(i < n) { i = i + 1; }
return i;

}� �
Here, we can see pre- and post-conditions are given for the method, along with an appro-

priate loop invariant. Since \old(i) refers to i on entry to the loop, we have \old(i)==0
in this case. Despite some unsoundness (e.g. ignoring arithmetic overflow and unrolling
loops a fixed number of times), the tool has been demonstrated in real-world settings. For
example, Cataño and Huisman [38] used it to check specifications given for an indepen-
dently developed implementation of an electronic purse. In addition to ESC/Java, a Runtime
Assertion Checker (RAC) was developed for JML [35,98,40] as well as various utilities for
specification-based testing [43,33,170,171]. Likewise, Krakatoa [66] provided an alterna-
tive to ESC/Java for statically verifying Java programs based on the original Why platform.
Finally, whilst the development of JML and its associated tooling stagnated somewhat over
the last decade, we note more recent efforts through the OpenJML initiative [48,150,47,30].

The approach taken to generating verification conditions in an earlier tool, ESC/Modula-
3, was also adopted in ESC/Java [55]. In fact, ESC/Modula-3 was one of the earliest tools
to use an intermediate verification language (based on Dijkstra’s language of guarded-
commands [56]) and, in many ways, is Boogie’s predecessor. Such a language typically
includes assignment, assume and assert statements and non-deterministic choice. It is
notable that the guarded-command language used in ESC/Modula-3 lacked type informa-
tion and used a similar encoding of types as ours, although Modula-3 has a simpler type
system than Whiley. For example, a predicate isT was defined for each type to determine
whether a given variable was in the type T. A similar approach was also taken in Leino’s
Ecstatic tool, where the subtyping relation was encoded using a subtype() predicate [99].
Again, every type was given a membership predicate with specific axioms stating their non-
intersection, and was contained in what Leino refers to as the background predicate and
included with each generated verification condition. A key difference from ESC/Modula-3
is that ESC/Java employed a multi-stage process allowing “high-level” guarded command
programs to be desugared into a lower-level form. Further refinements were also made with
“passive form” which reduced the size of generated verification conditions, and supported
unstructured control-flow [18].
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5.2 Spec#

The Spec# system followed ESC/Java and benefited from many of the insights gained in
that project. Spec# added proper support for handling loop invariants [17], for handling safe
object initialisation [63] and allowing temporary violations of object invariants through the
expose keyword [108]. The latter is necessary to address the so-called packing problem
which was essentially ignored by ESC/Java [16]. Two further improvements meant Spec#
was capable of verifying a wider range of programs than ESC/Java: firstly, Spec# incorpo-
rated the new Z3 automated theorem prover (as opposed to Simplify) [123]; secondly, Spec#
refined the language of guarded commands used in ESC/Java to form Boogie. Boogie was
described as an “effective intermediate language for verification condition generation of
object-oriented programs because it lacks the complexities of a full-featured object-oriented
programming language” [15]. In essence, Boogie was a version of the guarded command
language from ESC/Java which also supported a textual syntax, type checking, and static
analysis for inferring loop invariants. Other important innovations included the ability to
specify triggers to help guide quantifier instantiation, and the use of trace semantics to for-
malise the meaning of Boogie [106].

Leino and Schulte [112] provide an excellent account of how Spec# programs are en-
coded in Boogie, and there is much similarity with that presented here. For example, the
heap is modelled using a global variable of type [ref,name]any where a special field,

alloc , tracks whether a location is allocated. Like Whiley, Spec# permits method calls
within expressions and, hence, a similar mechanism for safely extracting them is employed.
Furthermore, key challenges arise in preserving class invariants across inheritance and own-
ership relationships. The approach adopted was based on packing/unpacking [16] which
identify code regions where class invariants are not required to hold.

5.3 Dafny

Dafny [103,104] is perhaps the most comparable related work to Whiley, and was developed
independently at roughly the same time. That said, the goals of the Dafny project are some-
what different. In particular, the primary goal of Dafny is to provide a proof-assistant for
verifying algorithms rather than, for example, generating efficient executable code (though
it does compile to C#). In contrast, Whiley aims to generate code which is, for example,
suitable for embedded systems [157,135]. Dafny is an imperative language with simple sup-
port for objects and classes without inheritance and, more recently, traits [1]. Like Whiley,
Dafny employs unbound arithmetic and distinguishes between pure and impure functions.
Dafny provides algebraic data types (which are similar to Whiley’s recursive data types)
and supports immutable collection types with value semantics that are primarily used for
ghost fields to enable specification of pointer-based programs. Dynamic memory allocation
is possible in Dafny, but no explicit deallocation mechanism is given and presumably any
implementation would require a garbage collector.

Leino [101] provides a detailed description of how Dafny programs are translated into
Boogie, much of which has already been touched upon earlier in this paper. Dafny also sup-
ports generic types and, unlike Whiley, dynamic frames [90]. As discussed in §2.1.6, the
latter provides a suitable mechanism for reasoning about pointer-based programs. For ex-
ample, Dafny has been used successfully to verify the Schorr-Waite algorithm for marking
reachable nodes in a graph [103]. Finally, Dafny has been used to successfully verify bench-
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marks from the VSTTE’08 [107], VSCOMP’10 [92], VerifyThis’12 [82] challenges (and
more).

Leino and Pit-Claudel [110] characterise the “Butterfly Effect” where minor changes to
the program source cause significant instabilities in verification time. The authors argue one
reason for this are so-called “matching loops” where the SMT solver repeatedly instantiates
quantifiers or recursive predicates without making actual progress towards either a proof or
a contradiction. Their approach is prototyped in Dafny and moves responsibility for trigger
selection out of the SMT solver. This enables trigger selection to occur before quantifiers
are rewritten into lower-level forms (i.e. as necessary for the SMT solver) where important
triggers are obscured. Furthermore, whilst the authors don’t expect Dafny users to write
triggers themselves, they are expected to understand them in order to diagnose verification
performance problems.

5.4 Why3

In addition to Boogie, the other main intermediate verification language in use is WhyML [29,
64]. This is part of the Why3 verification platform which is intended to enable a range of
different theorem provers to be used in proving correctness, depending on the nature of the
program being verified. For example, a short but extremely intricate C program for solving
the N-Queens program has been fully verified with the aid of Why3 [65]. This was achieved
by abstracting the original program into WhyML, and the proof required the use of three dis-
tinct theorem provers to discharge 41 verification conditions. Of these, 35 were discharged
automatically by Alt-ERGO [3] or CVC3 [20], whilst the remainder were discharged man-
ually using Coq [25]. Indeed, the authors of Why3 state [29]:

The Why3 platform can be used by itself, as some kind of standalone “meta” theorem
prover, but the main purpose of Why3 is to be used as an intermediate language.

WhyML is a first-order language with polymorphic types, pattern matching, inductive
predicates, records and type invariants. It has also been used in the verification of C, Java
and Ada programs (amongst others). Like Boogie, WhyML provides structured statements
(e.g. while and if statements). In addition, a standard library is included which provides
support for different theories (e.g. integer and real arithmetic, sets and maps).

Of note here is the Boogie to WhyML translation developed by Ameri and Furia [5]
which, although largely successful, did expose some important mismatches between them.
Their primary motivation was the wide support for alternative (even interactive) provers
with Why3. The structured nature of WhyML presented some problems in handling Boo-
gie’s unstructured branching, and aspects of Boogie’s polymorphic maps and bitvectors were
problematic. They showed that Why3 could verify 83% of the translated programs with the
same outcome as Boogie. However, they also identified three simple Boogie programs which
Boogie either did not verify or incorrectly verified. Why3, on the other hand, handles these
cases by virtue of its ability to use a wider range of provers. One of the cases, for example,
failed to verify because of the way Z3 handles quantifier instantiation through triggers.

As another example, Spark/ADA is a commercially developed verifying compiler build-
ing upon Why3 which has seen good industrial uptake [86,14]. For example, it has been
used used for (amongst other things) space-control systems [34], aviation systems [41], au-
tomobile systems [80] and railway systems [57].

Finally, given our success here using Boogie to verify Whiley programs, we note it
would be interesting future work to explore a WhyML backend for verifying Whiley pro-
grams as well.
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5.5 Viper

Müller et al. [126] observed that existing intermediate verification languages (e.g. Boogie or
WhyML) do not support separation logics and related permission-based logics. They iden-
tify that such systems have a more “higher-order nature” than typical software verification
problems, and make extensive use of recursive predicates (which Boogie/Z3 does not sup-
port well). They developed an alternative intermediate verification language (Viper) which
offers more precise handling of recursive predicates and protects against “infinite unrolling”
using a least fixed-point semantic. The tool also supports two backends, one of which gener-
ates an encoding in Boogie. This builds on earlier work looking at the encoding of abstract
predicates and abstraction functions in the context of permission-based logics [78]. Here,
abstract predicates describe the (potentially infinite) set of access permission a given object
has, but this is problematic for an SMT solver which cannot arbitrarily unroll them. To han-
dle this an encoding is employed which “versions” predicates to prevent arbitrary unrolling,
along with various tactics to prevent unlimited matching loops.

An example of work utilising Viper is that of Ter-Gabrielyan et al. who argue that SMT
solvers typically provide limited support for graph reachability problems, which is pro-
hibitive for reasoning about mutable data structures that admit sharing in various forms [158].
By restricting themselves to problems involving acyclic structures of bounded outdegree,
they obtained an encoding ammenable to first order theorem provers which they demon-
strated in the context of Viper. Finally, we note that Viper currently acts as the intermediate
verification language for Chalice [109,113], Prusti [9], Nagini [62], VerCors [6,28] and
more.

5.6 VeriFast

VeriFast is a modular program verifier for concurrent and sequential programs written in
C and Java, which employs separation logic and fractional permissions to ensure memory
safety [85,84]. The tool comes from a line of work exploring the use of dynamic frames in
the context of verification [155,153,154]. VeriFast is unusual in eschewing the use of quan-
tifiers within specifications. Instead, inductive predicates are provided to model properties
that would otherwise be expressed using quantified formulae. VeriFast supports algebraic
data types to allow specifications to reason about locations contained in linked structures.
Finally, VeriFast has been used to reason about memory safety in JavaCard programs and
Linux device drivers [84], and also in the verification of FreeRTOS [125].

5.7 Frama-C

Frama-C [53] provides a set of sound software analyses for the industrial analysis of ISO
C99 source code. The system uses the ACSL specification language as a platform on which
different solver plugins can operate. For example, different plugins may use different ap-
proaches to checking functions meet their specifications, such as abstract interpretation or
deductive verification. The ACSL specification language is based loosely upon JML and
supports a variant of separation logic through the \separated command. An unusual
feature of Frama-C (e.g. compared with Dafny or Whiley) is that multiple loop invariants
may be specified at different positions within the loop [23].
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Volkov et al. [164] developed an extension for lemma functions (similar to those in
Dafny) which enables a more “interactive” style of verification, and applied this to various
functions from the Linux Kernel. We note that, whilst Whiley lacks specific support for lem-
mas, a similar effect can be achieved using a function with a void return. Kosmatov
and Signoles illustrate runtime assertion checking with Frama-C which they argue provides
useful stepping stone prior to static verification [93]. We note similar findings in the context
of an automated testing tool for Whiley [44].

Finally, Frama-C has been applied to a range of real-world problems. For example, it
has been used in the context of Air Traffic Management systems to reason about floating
point operations and establish bounds on rounding errors [72]. Similarly, AirBus has in-
vestigated the use of Frama-C within the context of the DO-178B standard for software in
airborne systems and equipment [156]. Frama-C has also been used in the context of IoT de-
vices employing AES encryption [27], for verifying components of Contiki, an open-source
operating system for IoT [118], and the Xen hypervisor [144]. It has also been applied to
verifying railway software [143], and combined with CBMC [96] for test case generation in
the context of automotive controllers [128].

5.8 AutoProof

Eiffel [121] is an influential and widely used language that promotes the idea of “Design by
Contract” as a lightweight alternative to formal specification [122].

Tschannen et al. characterise the AutoProof verifier for Eiffel as being auto-active —
meaning it lies somewhere between fully automatic and manual (i.e. interactive) [162]. Here,
an automated theorem prover is used (as for Dafny or Whiley) in conjunction with appropri-
ate annotations (e.g. pre-/post-conditions, loops invariants, etc). AutoProof translates Eif-
fel programs into Boogie which, for example, allows strengthening of postconditions and
weakening of preconditions in subclasses [161]. Of relevance here is the approach to fram-
ing. Whilst Eiffel has no specific syntax for framining, a modifies was implemented as a
pragma. A default frame condition is employed which assumes only references mentioned
in the postcondition can be modified. This utilises a similar rule to that in §3.5 for state
preservation across method calls.

Finally, we note AutoProof has been used in various settings, such as for teaching a
graduate course on software verification [68].

5.9 Other

Aside from various descriptions of Boogie’s syntax and semantics [15,102,111], several
works focus on the usability of Boogie as an interemdiate verification language. For exam-
ple, Chen and Furia were concerned with the “brittleness” of verification tools [42]. Specif-
ically, a verifier is brittle if small (inconsequential) changes can have major impacts on
the outcome (e.g. it no longer verifies). They investigated this in the context of Boogie by
mutating various (verified) programs in ways that preserved correctness finding, perhaps
surprisingly, several issues. For example, where the ordering of declarations in a Boogie
program affected the chance of success. Indeed, for one program consisting of five (inde-
pendent) statements, Boogie only managed to verify half of the 120 possible orderings. In
a similar vein, the Boogie Verification Debugger (BDV) addresses the disconnect between
counterexamples generated at the Boogie level and the source language above [73]. The tool
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employs plugins to convert Boogie counterexamples into a form recognisable in the source
language, with plugins provided for VCC and Dafny. Likewise, Boogaloo attempts to im-
prove the process of debugging failed verification attempts by generating concrete inputs
(e.g. arguments) that illustrate the failing trace [142]. A key challenge was in providing a
runtime semantics for Boogie and, for input generation, a mixture of symbolic execution
and constraint solving with Z3 was applied.

Segal and Chalin [151] attempted a systematic comparison of Boogie and Pilar. Here,
Pilar is a component of the open-source Sireum framework and is similar in many ways to
Boogie. They stated that it is “not trivial to define a common intermediate language that can
still support the syntax and semantics of many source languages”. Their research method
was to develop translations from Ruby into both Boogie and Pilar, and then compare. Various
aspects of Ruby proved challenging for Boogie, including its dynamically-typed nature and
arrays. Their solution bears similarity to ours, as they defined an abstract Boogie type as the
root of all Ruby values. Overall, they concluded that Boogie’s type system makes it “more
flexible for languages with non-traditional type systems” whereas Pilar is more suitable for
traditional Object-Oriented languages.

Arlt et al. [8] presented a translation from SOOT’s intermediate bytecode language (Jim-
ple) to Boogie, with an aim of identifying unreachable code. As such, an important aspect
of the translation was the preservation of feasible execution paths. Overall, they found many
aspects of the translation straightforward. For example, Java’s instanceof operator was
modelled using an uninterpreted function. Another interesting aspect of their translation
was the use of multiple typed heaps (a Burstall-Bornat heap [31]) to model the Java heap.
However, some aspects of impedance mismatch were present and they had difficulty with
monitor bytecodes, exceptions, certain chains of if-else statements and finally blocks.

On a related note, Cook et al. [51] focus on the impedance mismatch, arguing that “ex-
isting theorem provers, such as Simplify, lack precise support for important programming
language constructs such as pointers, structures and unions”. For example, that integer
types are almost never unbounded in practice, though verification tools often assume this.
Likewise, that the lack of support for non-linear arithmetic is often a problem (though we
note useful advances have been made in the intervening years [52,95,87,45,24]). Their tool,
Cogent, “implements an eager and accurate translation of ANSI-C expressions (including
features such as bitvectors, structures, unions, pointers and pointer arithmetic) into proposi-
tional logic”. It is in essence a layer that sits above tools like Boogie and encodes ANSI-C
data types using bitvectors and we note the obvious similarity with the more recent tool,
Frama-C, discussed above.

Rust provides another interesting perspective as there has also been growing interest in
exploiting its safety guarantees for program verification. For example, RustHorn, translates
Rust programs into Constrained Horn Clauses (CHC) which can then be discharged by
a specialised CHC solver [119]. Likewise, Astrauskas et al. leverage Rust’s type system to
simplify the specification and verification of systems software [9]. Their tool, Prusti, extends
Rust with a specification language embedded using annotations and statically checked using
Viper [126]. The SMACK verifier which translates LLVM IR to Boogie/Z3 [15,123] was
also extended to Rust [12]. The CRUST tool [160] enables unsafe code to be checked using
the C Bounded Model Checker (CMBC) [96]. This employs a custom C code generator for
rustc, and correctly identified bugs arising during development of Rust’s standard library.
The widely-used symbolic execution tool, Klee [36], was also extended for Rust allowing
assertions to be checked statically [114,115]. Finally, we note ongoing work to formalise
subsets of the Rust language which could assist the development of verification tools [89,
88,137,165,166].
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Finally, Jahob supports multiple provers and is concerned with recursive data-structures
(e.g. trees, etc) and their encoding in first-order logic [32,148]. Bannwart and Müller pre-
sented a Hoare-style logic for a sequential bytecode language similar to JVM Bytecode or
MSIL [11]. As expected, the unstructured nature of bytecode languages presented a key
challenge here. In a similar fashion, Barnett and Leino consider the problem of translating
MSIL bytecode into a form suitable for Boogie, in particular by turning unstructured loops
into quantified expressions [19].

6 Conclusion

Using Boogie as an intermediate verification language eases the development of a verifying
compiler, particularly as it handles verification condition generation, and offers high-level
structures such as while loops and procedures with specifications. However, as with any
intermediate language, there is potential for an impedance mismatch when Boogie structures
do not exactly match the source language. Fortunately, this impedance mismatch can be
circumvented in a variety of ways, such as translating to lower-level Boogie statements (e.g.
with unstructured control flow). Furthermore, Boogie provides a good level of flexibility
to define the “background theory” of a source language, such as its type system, its object
structure, and support for heaps. This background theory is at a similar level of abstraction
in Boogie as it would be in SMT-LIB so, whilst Boogie offers no major advantages in this
area, it also has no disadvantages.

Our work provides a comprehensive account of the encoding of an independently
developed non-trivial source language (Whiley) into Boogie. In doing this, we faced
many challenges in figuring out a good encoding and, unfortunately, encountered many dead
ends along the way. As such, we hope this work can offer guidance to researchers when de-
veloping verifying compilers for other languages. Indeed, it would be beneficial to have
a repository of knowledge about different ways of encoding various language constructs.
Some alternatives (particularly for various heap encoding techniques and procedure framing
axioms) are discussed in the published Boogie papers, but there is no central repository of
techniques or publications comparing encoding techniques. A major benefit of Boogie is,
of course, its easy access to Z3. We have shown that the Wy2B/Boogie/Z3 stack offers
significant advantages over the native Whiley verifier in terms of the percentage of pro-
grams that can be verified automatically. We note, however, that whilst Boogie/Z3 offers
tangible benefits, they are not without their own challenges. For example, understanding why
Boogie/Z3 cannot verify a particular program, or loops indefinitely, still requires consider-
able expertise. We have also shown that a number of non-trivial case studies written in
Whiley can be successfully verified with Boogie. This has also helped us identify areas in
which the Whiley language itself could be improved to better exploit Boogie.

Finally, interesting future work would be to explore translating Boogie’s counter-example
models back into Whiley-like notation to improve error reporting. We would also like to ex-
tend Whiley’s support for framing and, consequently, our Boogie back end. Another inter-
esting path would be a more detailed comparison against the Whiley verifier. As discussed
in §3, this has a layered designed based around an intermediate assertion language and an
underlying SMT solver. Hence, one could swap out the SMT solver for Z3 to provide a more
accurate comparison with Boogie itself.
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Appendix A: Conway Game of Life

This shows the Whiley specifications and code for the Conway Game of Life example
— just the src/model.whiley component that implements the game logic. The full
source including the top-level HTML file can be seen in the GitHub repository https:
//github.com/utting/Conway.wy. The output Boogie code can be seen in the
bin folder in that repository, with filename conway.debug.bpl. Note that we use the
debug=true flag to turn off name mangling in order to make the generated Boogie code
more human-readable.� �

import uint from std::integer

/**
* Define the board state with the requirement that the width and
* height match the length of the cells array.
*/
public type State is {

bool[] cells,
uint width,
uint height

} where |cells| == width * height && width > 0 && height > 0

/**
* Intialise the game in a window with given dimensions. Since the width and
* height come from the Canvas properties, assume they are non−negative.
*/
public function init(uint width, uint height) −> (State r)
requires width > 0 && height > 0
ensures r.width == width
ensures r.height == height
ensures |r.cells| == r.width*r.height
ensures all {i in 0..|r.cells| | r.cells[i] == false}:

return {
cells: [false; width*height],
width: width,
height: height

}� �

https://github.com/utting/Conway.wy
https://github.com/utting/Conway.wy
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� �
/**
* Click event handler that toggles a square on or off.
* Since the click locations are generated on the JavaScript side, they could be
* anything. However, we know that the State will be valid since it is only
* ever created and manipulated on the Whiley side.
*/
public function click(int x, int y, State s) −> (State r)
ensures s.height == r.height && s.width == r.width
ensures all {a in 0..s.width, b in 0..s.height | (a + b * s.width < |r.cells|) && (a != x || b != y)

<==> r.cells[a + b * s.width] == s.cells[a + b * s.width]}
ensures 0 <= x && x < s.width && 0 <= y && y < s.height ==>

r.cells[x + y * s.width] == !s.cells[x + y * s.width]:
// Check clicked location is within bounds.
if x >= 0 && y >= 0 && x < s.width && y < s.height:

int index = x + (y * s.width)
s.cells[index] = !s.cells[index]

//
return s

/**
* Defines the rules for updating a single cell.
*/
public property updated cell(int index, State s, bool out) where

0 <= index && index < |s.cells| &&
(out <==> (count living((uint) index, s) == 3

|| (s.cells[index] && count living((uint) index,s) == 2)))

/**
* Update the game based on the current arrangement of live cells.
* This applies the three rules of Conway’s game of life to either
* kill cells or to create new cells.
*/
public function update(State state)−> (State r)
ensures all {j in 0..|r.cells| | updated cell(j, state, r.cells[j]) }
ensures state.width == r.width && state.height == r.height:

// Create copy of cells array
bool[] ncells = state.cells
// Iterate through all cells
for y in 0..state.height
where |ncells| == |state.cells|
where all {j in 0..(y*state.width) | j < |ncells| && j >= 0 && ncells[j] == update cell(j,state)}:

for x in 0..state.width
where |ncells| == |state.cells|
where all {j in 0..(x + y*state.width)| j < |ncells| && j >= 0 && ncells[j] == update cell(j,state)}:

int i = x + y*state.width
ncells[i] = update cell(i, state)

// Switch over new cells array
state.cells = ncells
// Done
return state� �
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� �
/**
* Calculate a cell update according to Conway’s game of life rules.
*/
public function update cell(int index, State state) −> (bool out)
requires index >= 0 && index < |state.cells|
ensures updated cell(index, state, out):

uint count = count living((uint) index, state)
if state.cells[index]:

switch count:
case 0,1:

// Any live cell with fewer than two live neighbours dies,
// as if caused by under-population.
return false

case 2,3:
// Any live cell with two or three live neighbours lives
// on to the next generation.
return true

case 4,5,6,7,8:
// Any live cell with more than three live neighbours dies,
// as if by overcrowding.
return false

else if count == 3:
// Any dead cell with exactly three live neighbours becomes alive, as if by reproduction.
return true

// Other dead cells remain dead
return false

/**
* Count the number of living cells surrounding a given cell on the board.
* Since there are at most eight neighbouring cells for any given cell, the result can
* be at most eight. Cells on the edge of the board are assumed to be next to dead cells.
*/
public function count living(uint index, State state) −> (uint r)
requires index < |state.cells|
ensures r <= 8:

int x = index % state.width
int y = index / state.width
uint count = alive(x−1,y−1,state)
count = count + alive(x−1,y,state)
count = count + alive(x−1,y+1,state)
count = count + alive(x,y−1,state)
count = count + alive(x,y+1,state)
count = count + alive(x+1,y−1,state)
count = count + alive(x+1,y,state)
count = count + alive(x+1,y+1,state)
return count

/**
* Determine whether a given cell is alive or not. This returns an integer for
* convenience when implementing the count living function above.
*/
public function alive(int x, int y, State state) −> (uint r)
ensures (r == 0 || r == 1)
ensures r == 0 <==> (x < 0 || x >= state.width || y < 0 || y >= state.height ||

some {i in 0..|state.cells| | i == x + y*state.width && !state.cells[i]}):
if x < 0 || x >= state.width || y < 0 || y >= state.height || !state.cells[x + y*state.width]:

return 0
else:

return 1� �



Verifying Whiley Programs with Boogie 51

References

1. Ahmadi, R., Leino, K.R.M., Nummenmaa, J.: Automatic verification of Dafny programs with traits.
In: Proceedings of the Workshop on Formal Techniques for Java-like Programs (FTFJP), pp. 4:1–4:5.
ACM Press (2015)

2. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.): Deductive Software
Verification — The KeY Book — From Theory to Practice, LNCS, vol. 10001. Springer (2016). DOI
10.1007/978-3-319-49812-6

3. The Alt-Ergo automated theorem prover, http://alt-ergo.lri.fr/
4. Altidor, J., Huang, S.S., Smaragdakis, Y.: Taming the wildcards: combining definition- and use-site

variance. In: Proceedings of the ACM conference on Programming Language Design and Implemen-
tation (PLDI), pp. 602–613. ACM Press (2011)

5. Ameri, M., Furia, C.A.: Why just Boogie? - translating between intermediate verification languages.
In: Proceedings of the Conference on Integrated Formal Methods (iFM), pp. 79–95 (2016)

6. Amighi, A., Blom, S., Darabi, S., Huisman, M., Mostowski, W., Zaharieva-Stojanovski, M.: Verification
of concurrent systems with VerCors. In: International School on Formal Methods (SFM), LNCS, vol.
8483, pp. 172–216. Springer-Verlag (2014)

7. Appel, A.W.: Program Logics - for Certified Compilers. Cambridge University Press (2014)
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D., Chapman, R., Cohen, E., Hillebrand, M., Jacobs, B., Leino, K.R.M., Monahan, R., Piessens, F.,
Polikarpova, N., Ridge, T., Smans, J., Tobies, S., Tuerk, T., Ulbrich, M., Weiß, B.: The 1st verified
software competition: Experience report (VSComp). In: Proceedings of the Symposium on Formal
Methods (FM), LNCS. Springer-Verlag (2011)

93. Kosmatov, N., Signoles, J.: A lesson on runtime assertion checking with Frama-C. In: Proceedings of
the Conference on Runtime Verification (RV), LNCS, vol. 8174, pp. 386–399. Springer-Verlag (2013)
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