On the Termination of Borrow Checking in
Featherweight Rust

Etienne Payet' David J. Pearce® Fausto Spoto®

LIM, Université de La Réunion, France
Victoria University of Wellington, New Zealand

Dipartimento di Informatica, Universita di Verona, Italy

@WhileyDave


@WhileyDave

Rust: History

‘A systems programming language that runs blazingly
fast, prevents segmentation faults, and guarantees thread
safety”

rust—lang.org

“I made a prototype, then my employer threw millions of dollars
at it and hired dozens of researchers and programmers (and
tireless interns, hi!) and a giant community of thousands of
volunteers showed up and then the book arrived.”

—QGraydon Hoare, 2018

@ Designed by Graydon Hoare at Mozilla around 2006
@ Automatic memory management without garbage collection
@ Influenced by Cyclone and C++ smart pointers, amongst others


rust-lang.org

Rust: Ownership

fn f(x: Vec<i32>) —> Vec<i32> {
let v = x;

return x;

[IEID S [IEID)
EEEEE



Rust: Borrowing

fn is nat(x : &i32) —> bool ({
if «x >= 0 { return true; }
else { return false;}

fn £f() —> (132,bool) {
let x = 0;
let v = 1s_nat (&x);
return (x,V);

@ Borrowing enables controlled breakages of ownership invariant

@ Borrowing give access without responsibility for memory
management



Rust: Borrow Checking

fn £() —> 132 {
let mut x = 1;
let v = &x;
let z = &mut x;
return x + xy + *xz;

@

EHE1ES

@ Multiple immutable borrows can coexist for same location

@ At most one mutable borrow can exist for a location



Rust: Single Writer, Multiple Readers

let mut x = vec![1,2,3];
let v = &x[0];

//

x.push (4) ;

Xx.push (5) ;

@ Can take reference of array element!




Featherweight Rust



Featherweight Rust: Syntax

t = {t }l Vo= €
let mut x =t C
w=t £®, £°
box t
&lmut] w
W T .= €
W int
\Y% &mut w
&w
OT
W= X
*W




Featherweight Rust: Example x [e]—{0

{ X | @®+—0
_l“
let mut x = box 0; ) m
Y |®1
{
let mut y = &mut x; ;
*y = box 1;
a X | @+—1 1
_l“
let mut z = X; v [e] m
31
x | @4 1

e 8

@ Lifetimes form partial order and following nesting (hence 1 > m)




Featherweight Rust: Semantics & Typing

(S1pt] — Sopto )t

F1|—<t:T>(lT—IF2



Featherweight Rust: Soundness

Al B X lint

\

Se|Yy -~ Y |&x
5t |¢<—T1®| Z2-------- Z int




Contribution



Featherweight Rust: LVal Typing

Definition (LVal Typing)

An lval w is said to be typed with respect to an environment I', denoted
'+ w: (T)", according to the following rules:

MNx)=(T)" (T-LVVAR) N=w: (@OT)"

(T-LvBOX)
MNEx:(T)" [ xw: (T)"

M w: (&mut] @) TEu: (T)™
M oskw s (| ], T5) e

(T-LvBOR)

@ Not well founded!

@ Examples: I' = {x — (&))"}, T = {x — (&y)", v — (&x)"}, €tc.



Featherweight Rust: Observation

Whilst cyclic typing environments exist, they do not arise when
checking well typed programs using the typing rules of FR.

@ Hence, just need to prove this intuition holds!



Featherweight Rust: Linearity

Linearizable

A typing is linearizable it each variable maps to a type that only
contains variables of strictly lower rank.

@ I'={x—(&y)", y— (int)"}is linearizable.
@ I'={x—(&x*xy)", y—(&z)", z— (int )"} is linearizable.

@ I'={x—(&y)", y— (&x)"} is not linearizable.



Conclusion

@ Featherweight Rust (FR) is a lightweight formalism of Rust.

@ We discovered a source of non-termination within the calculus.

@ We identified a sufficient condition which ensures borrow
checking for FR terminates on well typed programs.

@ This is a necessary step towards mechanisation of the calculus.



