
On the Termination of Borrow Checking in
Featherweight Rust

Étienne Payet1 David J. Pearce2 Fausto Spoto3

LIM, Université de La Réunion, France

Victoria University of Wellington, New Zealand

Dipartimento di Informatica, Università di Verona, Italy

@WhileyDave

@WhileyDave

Rust: History

“A systems programming language that runs blazingly
fast, prevents segmentation faults, and guarantees thread
safety”

rust-lang.org

“I made a prototype, then my employer threw millions of dollars
at it and hired dozens of researchers and programmers (and
tireless interns, hi!) and a giant community of thousands of
volunteers showed up and then the book arrived.”

–Graydon Hoare, 2018

Designed by Graydon Hoare at Mozilla around 2006
Automatic memory management without garbage collection
Influenced by Cyclone and C++ smart pointers, amongst others

rust-lang.org

Rust: Ownership

fn f(x: Vec<i32>) -> Vec<i32> {

let y = x;

return x;

}

x x y

x

y

8

8

8 83 3

3

3

Rust: Borrowing

fn is_nat(x : &i32) -> bool {

if *x >= 0 { return true; }

else { return false;}
}

fn f() -> (i32,bool) {

let x = 0;

let y = is_nat(&x);

return (x,y);

}

Borrowing enables controlled breakages of ownership invariant

Borrowing give access without responsibility for memory
management

Rust: Borrow Checking

fn f() -> i32 {

let mut x = 1;

let y = &x;

let z = &mut x;

return x + *y + *z;

}

z

x

x

x

y z

zy

y

1

1

1

Multiple immutable borrows can coexist for same location

At most one mutable borrow can exist for a location

Rust: Single Writer, Multiple Readers

let mut x = vec![1,2,3];
let y = &x[0];

//
x.push(4);

x.push(5);

Can take reference of array element!

x

x y

yx

y

4

5

1 2

8

4

5

3

2 3

3

41

1 2 3 4

4

Featherweight Rust

Featherweight Rust: Syntax

t := { t }l

let mut x = t

w = t

box t

&[mut] w

w

ŵ

v

w := x

∗w

v := ϵ

c

ℓ•, ℓ◦

T := ϵ

int

&mut w

&w

□T

Featherweight Rust: Example

{

let mut x = box 0;

{

let mut y = &mut x;

*y = box 1;

}m

let mut z = x̂;

}l

x
l

x

z
1

l

x

y

1 l

x

y

0
l

0

m

m

Lifetimes form partial order and following nesting (hence l ⪰ m)

Featherweight Rust: Semantics & Typing

⟨ S1 ▷ t1 −→ S2 ▷ t2 ⟩l

Γ1 ⊢ ⟨ t : T ⟩lσ ⊣ Γ2

Featherweight Rust: Soundness

S ∼ Γ

z

S

5

5

Γ

z

y

x x

y

int

int

&x

Contribution

Featherweight Rust: LVal Typing

Definition (LVal Typing)

An lval w is said to be typed with respect to an environment Γ , denoted
Γ ⊢ w : ⟨T̃⟩m, according to the following rules:

Γ(x) = ⟨T⟩m

Γ ⊢ x : ⟨T⟩m
(T-LVVAR)

Γ ⊢ w : ⟨□T⟩m

Γ ⊢ ∗w : ⟨T⟩m
(T-LVBOX)

Γ ⊢ w : ⟨&[mut] u⟩n Γ ⊢ u : ⟨T⟩m

Γ ⊢ ∗w : ⟨
⊔
iTi⟩⊓imi

(T-LVBOR)

Not well founded!

Examples: Γ = {x 7→ ⟨&x⟩n}, Γ = {x 7→ ⟨&y⟩n,y 7→ ⟨&x⟩n}, etc.

Featherweight Rust: Observation

Whilst cyclic typing environments exist, they do not arise when
checking well typed programs using the typing rules of FR.

Hence, just need to prove this intuition holds!

Featherweight Rust: Linearity

Linearizable
A typing is linearizable if each variable maps to a type that only
contains variables of strictly lower rank.

Γ = {x 7→⟨&y⟩n,y 7→⟨int⟩n} is linearizable.

Γ = {x 7→⟨& ∗y⟩n,y 7→⟨&z⟩n,z 7→⟨int⟩n} is linearizable.

Γ = {x 7→⟨&y⟩n,y 7→⟨&x⟩n} is not linearizable.

Conclusion

Featherweight Rust (FR) is a lightweight formalism of Rust.

We discovered a source of non-termination within the calculus.

We identified a sufficient condition which ensures borrow
checking for FR terminates on well typed programs.

This is a necessary step towards mechanisation of the calculus.

