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Abstract. A distinguished feature of the Rust programming language is
its ability to deallocate dynamically-allocated data structures as soon as
they go out of scope, without relying on a garbage collector. At the same
time, Rust lets programmers create references, called borrows, to data
structures. A static borrow checker enforces that borrows can only be
used in a controlled way, so that automatic deallocation does not intro-
duce dangling references. Featherweight Rust provides a formalisation for
a subset of Rust where borrow checking is encoded using flow typing [40].
However, we have identified a source of non-termination within the calcu-
lus which arises when typing environments contain cycles between vari-
ables. In fact, it turns out that well-typed programs cannot lead to such
environments — but this was not immediately obvious from the presen-
tation. This paper defines a simplification of Featherweight Rust, more
amenable to formal proofs. Then it develops a sufficient condition that
forbids cycles and, hence, guarantees termination. Furthermore, it proves
that this condition is, in fact, maintained by Featherweight Rust for well-
typed programs.
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1 Introduction

The Rust programming language is seeing widespread use in areas such as sys-
tem programming [1,6,27,9], blockchain systems [15,36], smart contracts [2,57]
and more [7,3]. A key feature of Rust is its ability to automatically deallocate dy-
namically allocated data when it goes out of scope. This differs from most other
programming languages, that either: require programmers to free data structures
explicitly (e.g., C/C++); or, rely on garbage collection to free unreachable data
(e.g., Java, C#, etc). The former approach is error prone (e.g., use-after-free
? Work supported by the SafePKT subproject of the LEDGER MVP Building Pro-
gramme of the European Commission. Goal of the project is the analysis of Rust
code used in the PKT blockchain (https://pkt.cash).
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or free-after-free errors), whilst the latter is safe but costly (garbage collection
consumes resources and data may not be released in a timely fashion).

In Rust, each data structure is owned by a variable [46]. Once that variable
goes out of scope, the data is freed as well. Rust also allows data to be lent
temporarily (e.g., as a function parameter) using borrows, which can be seen as
pointers in traditional programming languages (but without ownership). Since
borrows are access paths into data structures, the type checker of Rust must
enforce strict rules on their creation and lifetime. For example, a location cannot
be mutated as long as a borrow to it exists. To support this, data is divided into
two categories: that which can be copied (e.g., primitives); and that which must
be moved (e.g., mutable borrows). For the latter, assignments result in a transfer
of ownership from rightvalue to leftvalue. The Rust compiler performs borrow
checking to statically check that borrows are used safely (ie. that automatic
deallocation does not create dangling pointers, that multithreaded code does
not generate race conditions, etc).

Featherweight Rust (FR) formalises a subset of Rust and includes a proof
of correctness for borrow checking [40]. In particular, borrow checking is for-
malised as a flow-sensitive type system, whose types include primitives (such as
int), dynamically allocated data structures (collectively represented by a boxing
operator) and borrows of leftvalues, both for reading (immutable borrows) and
writing (mutable borrows). The type system rules are given by structural induc-
tion on the syntax of the Rust source code, and are hence well-founded. However,
they use, internally, a procedure to type leftvalues. Since borrows include other
leftvalues, we have discovered this procedure may enter an infinite loop and, in
such case, the borrow checker would not terminate.

Contribution. This paper provides a sufficient condition which ensures that the
borrow checker for Featherweight Rust terminates [40]. Our insight is that, for
well-typed programs, this condition already holds for typing environments cre-
ated during borrow checking. Hence, this is not a bug in Featherweight Rust
per se, but rather an important condition which was left implicit. Our approach
shows that data structures are linearizable at run time and, hence, that our
condition holds for the specific kind of type environments the borrow checker
builds during execution. This result is important in order to increase confidence
in the borrow checker of Rust. Moreover, it provides a notion of well-foundness
for the recursion used in the borrow checker, that future work can exploit in
order to prove other properties by induction. For example, this is a necessary
step towards a mechanical proof of Featherweight Rust.

2 Overview

This section illustrates various aspects of Rust related to memory allocation and
borrowing, and provides an initial connection with Featherweight Rust (FR). A
more detailed introduction to Rust can be found elsewhere [46,47].



Rust deallocates the data owned by a variable as soon as that variable goes
out of scope. Consider the following, where the Box::new(13) allocates a new box
(i.e. location) on the heap which contains the integer 13:

1 fn deallocate1() -> i32 { // accepted by the borrow checker
2 let x = Box::new(13);
3 return 17;
4 }

Local variable x goes out of scope at the end of the function, hence Rust deallo-
cates the box there, automatically. Assignments move the ownership of a value
to their leftvalue. Consider the following:

1 fn deallocate2() { // rejected by the borrow checker
2 let x = Box::new(13);
3 {
4 let y = x;
5 }
6 println!("{}", x);
7 }

The assignment moves ownership of the box from x to y. Since y goes out of
scope when the inner block ends, the box is deallocated there. Consequently,
the print statement is trying to use deallocated data, ie. it is trying to access
a dangling pointer. Correctly, the borrow checker of Rust rejects this. Consider
the following function now:

1 fn ok1() -> Box<i32> { // accepted by the borrow checker
2 let x = Box::new(13);
3 return x;
4 }

Here, ownership of the box is transferred from x to the return value, and sub-
sequently to the caller of the function. When variable x reaches the end of its
scope it no longer owns a value and, hence, Rust does not deallocate anything
inside ok1.

Things become more complicated if borrows of data structures exist. For
instance, the following function tries to return a borrow of a data structure that
has been already deallocated:

1 fn dangling() -> &Box<i32> { // rejected by the borrow checker
2 let i = Box::new(13);
3 let result = &i;
4 return result;
5 }

Local variable i owns the box and, when it goes out of scope at the end of the
function, the box is deallocated. Variable result takes an immutable borrow of i
(roughly a pointer to i without ownership). Thus, when the box is deallocated,
result becomes a dangling pointer which cannot safely be returned. Again,



Rust rejects this function. Roughly, the borrow checker for FR [40] computes
the following typing (or type environment) at the end of the function:

{i→ � int, result→ &i}

For simplicity, FR uses int to collectively represent integer types in Rust
(e.g., i32, i64, etc). Likewise, �T corresponds with Box<T> and provides the
only form of dynamically allocated data in FR. Finally, &w (resp. &mut w),
where w is a leftvalue, is the type of an immutable (resp. mutable) borrow.
Furthermore, since the borrow checker allows arbitrary leftvalues here (ie. not
just variables), we can have types such as &∗∗y.

Mutable borrows are a sort of temporary ownership of a value. As a con-
sequence, that value can be modified only through the borrow, for the whole
duration of the borrow. Any other attempt to modify the value is rejected. Con-
sider for instance the following function:

1 fn writes_to_borrowed() { // rejected by the borrow checker
2 let v = 13;
3 let w = 17;
4 let mut y = &v;
5 let x = &y;
6 y = &w;
7 println!("{}{}{}{}", x, y, v, w);
8 }

Here, the y=&w statement is trying to modify the leftvalue y that, however, has
been borrowed at the previous line. Correctly, the borrow checker rejects this
function. It computes the following typing just before the y=&w statement:

{v → int, w → int, y → &v, x→ &y}

from where it is apparent that y is borrowed and, therefore, the subsequent
assignment y=&w is rejected.

Borrows in previous examples are immutable: the borrowed value can be read
from them, but cannot be modified from them. Borrows can also be mutable,
meaning that they allow one to modify the borrowed value, with the dereference
operator *. In this sense, a mutable borrow takes full responsibility about the
borrowed value, for its whole lifetime. When a mutable borrow to a value exists,
that value cannot be written nor read from any other path. Consider for instance
the following function:

1 fn reads_mutably_borrowed() { // rejected by the borrow checker
2 let mut z = 13;
3 let y = &mut z;
4 let x = z;
5 println!("{}{}{}", x, y, z);
6 }



The statement x=z tries to read z, that has been mutably borrowed at the previ-
ous line. Hence, the borrow checker rejects this function. It computes the typing

{z → int, y → &mut z}

just before x=z, from where it is apparent that z is mutably borrowed there.
Furthermore, if line 4 above was replaced with let x=&z, the program would still
be rejected.

3 Preliminaries

This section provides a formal, simplified presentation of Featherweight Rust
(FR) [40]. This retains the key features of FR relevant to our discussion but, for
brevity, omits other aspects. Roughly speaking, the main simplifications are:

– Compatibility. The original formulation of FR supports a notion of partial
type. This allows the “shadow” of a variable’s type to be retained in the
environment after it has been moved, such that subsequent re-assignments
can be checked for compatibility. Since this is not important here, we reduce
these shadow types to a single “dangling” type.

– Borrows. The original formulation of FR models borrows using sets of left-
values. This allows FR to be easily extended with control-flow constructs, but
is not strictly necessary for the core calculus. Since this makes our presenta-
tion more complex without adding anything significant, we restrict borrows
to a single leftvalue.

– Misc.We have transformed some definitions, originally given as typing rules,
into functions (such as type and move later). This makes them more compact
and simplifies proofs involving them.

Definition 1 (LVals). We assume a set of variables Vars. A context κ ⊆ Vars
is a finite set of variables in scope. The set LVκ of leftvalues over κ is:

w ::= x | ∗w,where x ∈ κ.

The root of a leftvalue is then defined as:

root(x) = x if x ∈ Vars

root(∗w) = root(w).

Definition 2 (Expressions). The set of expressions e is defined as follows
where i ranges over integer literals:

e ::= i | w | &w | &mut w | box e

Definition 3 (Terms). We assume a set Lifetimes of lifetimes l which decorate
blocks of code. The set of terms t is defined as (where x ∈ Vars and l ∈ Lifetimes):

t ::= w = e | let mut x = e | { t1 ; . . . ; tn }l



Intuitively, variables declared in a block with lifetime l have lifetime l and are
deallocated at the end of the block. Lifetimes are important for the borrow
checker to ensure borrows do not outlive their referents and become dangling.
The following illustrates a simple (invalid) program:

{ let mut x = 0; let mut p = &x; { let mut y = 1; p = &y; }m }l

This program creates a dangling reference when the inner block completes and,
hence, is rejected by the borrow checker.

The types used in FR are a simplification of those found in Rust, and include
only primitive types (such as int) or structures dynamically allocated in memory
(collectively represented by a box), but can also refer to a borrow or mutable
borrow of a leftvalue.

Definition 4 (Types). The set of types over a context κ is defined as follows
(where w ∈ LVκ):

Tκ ::= int | &w | &mut w | � Tκ | dangling

Here, type dangling is given to a variable whose value has been moved, that
is, assigned to another owner.4 Consequently, the value exists but cannot be
accessed from that variable anymore.

Definition 5 (Declared Types). The set of declared types, T l, over κ asso-
ciates types with lifetimes. We define |T l| = T and lifetime(T l) = l.

Rust distinguishes types with copy semantics and types with move seman-
tics. Values whose type has copy semantics are copied upon reading, while val-
ues whose type has move semantics are moved instead, in the sense that their
original container loses the ownership to the value. Only mutable borrows and
dynamically allocated data (ie. boxes) have move semantics.

Definition 6 (Copy and Move). Let T ∈ Tκ. Then T has move semantics,
and we write move(T ), if and only if T = &mut w or T = �T ′ for some T ′. In
all other cases, T has copy semantics, and we write copy(T ).

Another useful notion is that of full types. They are types that do not contain
dangling. This notion is important because, as we will see in Sec. 4, only values
with full type can be borrowed in Rust.

Definition 7 (Full type). A type T ∈ Tκ is full if and only if dangling does
not occur inside T . We write it as full(T ).

We define now the typings, or type environments, that is, information about
the types of the variables in scope at a given program point, with their lifetime.
4 This is a simplification of the dangling(T ) type in [40], that embeds the shadow type
T of a value that has been moved away.



Definition 8 (Typing). Given a context κ, a typing τ over κ is a map from
each variable v ∈ κ to a type T and a lifetime l. We write this as τ(v) = T l.

The types used in a typing can include borrows and mutable borrows. The
basic idea of the borrow checker is that the root of the borrowed leftvalues
(mutable or not) can only be used in a restricted way [40].

Definition 9 (Read/Write Prohibited). Let κ be a context and τ a typing
over κ. Then w ∈ LVκ is read prohibited in τ , written as readProhibited(w, τ), if
root(w) occurs in a mutable borrow inside τ . Moreover, w is write prohibited in
τ , written as writeProhibited(w, τ), if root(w) occurs in a borrow or in a mutable
borrow inside τ .

A typing provides type and lifetime information for variables in scope, and
this naturally extends to leftvalues. The following is a translation5 of Def. 3.11
in [40]. It can be seen as a recursive algorithm for typing leftvalues and, as such,
it is heavily used in the borrow checker. The algorithm queries the typing when
the leftvalue is actually a variable, and dereferences borrows and boxes when
the leftvalue contains one or more * operations, further recurring in the case
of borrows. Types int and dangling cannot be dereferenced, hence the algorithm
fails on them.

Definition 10 (LVal Typing). Given a context κ, a typing τ over κ and w ∈
LVκ, the partial function type(w, τ) yields the type and lifetime of w in τ :

type(x, τ) = τ(x)

type(∗w, τ) =



undefined if type(w, τ) is undefined
undefined if |type(w, τ)| = dangling

undefined if |type(w, τ)| = int

type(w′, τ) if |type(w, τ)| = &w′

type(w′, τ) if |type(w, τ)| = &mut w′

T l if type(w, τ) = (�T )l.

Def. 10 is clearly recursive, both on the structure of w and on the leftvalues
contained in the borrows or mutable borrows that occur in the typing. In general,
that recursion is not well-founded. In algorithmic terms, this means that this
algorithm for typing leftvalues might not terminate. Consider for instance the
typing {x → &∗x}: the definition of type(∗x, τ) ends in an infinite loop. This
example can be arbitrarily complicated, through the use of more involved cycles
that pass through more variables. As a consequence, the natural question is to
understand when the recursion in Def. 10 is well-founded and if that is always
the case when it is used by the borrow checker of Featherweight Rust.

5 This definition is given as a type system in [40] and as a recursive function here.



4 Borrow Checking

The borrow checker is formalized as a flow-sensitive type system [39] whose rules
bind the typing τ before the evaluation of a term t to the typing τ ′ after that
evaluation. We write this as τ, l ` t a τ ′, where l is the enclosing lifetime of t
(ie. that of the enclosing block). On expressions, the typing rules provide the
inferred type T of the expression as well: τ, l ` e : T a τ ′.

4.1 Typing Expressions

T-Const. This rule applies to integer constants. Their evaluation yields a value
of type int and does not modify the typing:

τ, l ` i : int a τ

T-Copy. This rule applies to leftvalues whose type has copy semantics. Their eval-
uation yields their value, while the typing remains unchanged. The rule requires
that the leftvalue can be accessed for reading:

Tm = type(w, τ) copy(T ) ¬readProhibited(w, τ)
τ, l ` w : T a τ

T-Move. This rule applies to leftvalues whose type has move semantics. Their
evaluation yields their value, but the ownership of the value is moved away from
the leftvalue. Because of this, the typing gets modified, by letting the old con-
tainer of the value get the dangling type (i.e. so it cannot be used anymore). As
a consequence, reading, from a leftvalue, a value with move semantics amounts
to writing into its old container and requires write permission:

Tm = type(w, τ) move(T ) ¬writeProhibited(w, τ)
τ, l ` w : T a move(w, τ)

where the move function modifies the binding for the root of w:

move(w, τ) = τ [root(w) 7→ strike(w, τ(root(w)))]

with

strike(x, T l) = danglingl

strike(∗w, (�T )l) = (� |strike(w, T l)|)l.

The function strike is undefined otherwise. We note also there are no cases for
borrows since one cannot move out of a borrow in Rust.
T-ImmBorrow. The evaluation of a borrow expression requires the borrowed left-
value to be readable and have full type (only values with full type can be bor-
rowed in Rust):

full(|type(w, τ)|) ¬readProhibited(w, τ)
τ, l ` &w : &w a τ



T-MutBorrow. The evaluation of a mutable borrow expression requires the bor-
rowed leftvalue to be writable and have full type (only values with full type can
be borrowed in Rust). Moreover, Rust requires that the borrowed leftvalue never
traverses an immutable borrow:

full(|type(w, τ)|) ¬writeProhibited(w, τ) mutable(w, |τ(root(w))|, τ)
τ, l ` &mut w : &mut w a τ

where

mutable(x, T, τ) = true

mutable(∗w,�T, τ) = mutable(w, T, τ)

mutable(∗ ∗ · · · ∗︸ ︷︷ ︸
n

x,&mut w, τ) = mutable(∗ · · · ∗︸ ︷︷ ︸
n

w, |τ(root(w))|, τ).

T-Box. The evaluation of a box expression simply recurs on the boxed expression:

τ, l ` e : T a τ ′

τ, l ` box e : �T a τ ′

4.2 Typing Terms

T-Block. The execution of a block of statements simply recurs on each statement.
At the end, the variables declared inside the block get dropped away. We assume
that variables cannot be redefined inside a block, hence there is no risk of a name
clash.

τ, l ` t1 a τ1 . . . τn−1, l ` tn a τ ′

τ, l ` {t1; . . . ; tn}m a drop(m, τ ′)

where

drop(m, τ) = {x→ T l | x ∈ dom(τ), τ(x) = T l and l 6= m}.

T-Declare. The declaration of a fresh variable x evaluates its initialization ex-
pression e and binds x to the type of e, decorated with the lifetime of the block
of code where the declaration is evaluated:

x 6∈ dom(τ) τ, l ` e : T a τ ′

τ, l ` let mut x = e a τ ′[x→ T l]

T-Assign. The assignment of a value to a leftvalue w requires w to be writable.
In that case, the assigned expression is evaluated and assigned to w. This is
modelled through the write function below. Since w can be more complex than
a single variable, the assignment might actually update a variable in a mutable
borrow reachable from the root of w. This is reflected in the (quite complex)
definition of write, that we take from [40] where more details can be found:

τ, l ` e : T a τ ′ τ ′′ = write(τ ′,w, T ) ¬writeProhibited(w, τ ′′)
survives(T, lifetime(type(w, τ)), τ ′)

τ, l ` w = e a τ ′′



where
write(τ, ∗ · · · ∗︸ ︷︷ ︸

n

x, T ) = apply(x, update(τ, n, |τ(x)|, T ))

where

update(τ, 0, T ′, T ) = 〈τ, T 〉
update(τ, n+ 1,�T ′, T ) = expand(update(τ, n, T ′, T ))

update(τ, n+ 1,&mut w, T ) = 〈write(τ, ∗ · · · ∗︸ ︷︷ ︸
n

w, T ),&mut w〉

and

apply(y, 〈τ, T 〉) = τ [y → T l] where lifetime(τ(y)) = l

expand(〈τ, T 〉) = 〈τ,�T 〉.

It is important to observe that if write modifies a type, it is that of x or that of
variables inside the mutable borrows in τ .

Function survives(T,m, τ) determines if all leftvalues contained in the borrows
or mutable borrows inside the type T have a type whose lifetime is m or is larger
than m. Hence they survive to the end of the lifetime m. The motivation of this
contraint in rule T-Assign is to guarantee that, when a variable v can reach
another variable v′, the lifetime of v′ is equal or larger than the lifetime of
v. Otherwise, the deallocation of v′ (at the end of its lifetime) would leave a
dangling reference reachable from v.

Consider for instance the following illegal program.

{let mut x = box 0; let mut y = &mut ∗x; ∗x = 1}l

Let us apply the typing rules above starting from τ1 = {}.

– (T-Const) τ1, l ` 0 : int a τ1.
– (T-Box) τ1, l ` box 0 : � int a τ1.
– (T-Declare) As x 6∈ dom(τ1), for τ2 = τ1[x → (� int)l] = {x → (� int)l} we

have τ1, l ` let mut x = box 0 a τ2.
– (T-MutBorrow) By Def. 10, we have type(x, τ2) = τ2(x) = (� int)l, hence

type(∗x, τ2) = intl, so |type(∗x, τ2)| = int. Therefore, |type(∗x, τ)| is full be-
cause dangling does not occur in it. Moreover, ¬writeProhibited(∗x, τ2) holds
because root(∗x) = x does not occur in a borrow nor in a mutable borrow
inside τ2. Finally, mutable(∗x, |τ2(root(∗x))|, τ2) = mutable(∗x, |τ2(x)|, τ2) =
mutable(∗x,� int, τ2) = mutable(x, int, τ2) = true. Consequently, we have
τ2, l ` &mut ∗x : &mut ∗x a τ2.

– (T-Declare) As y 6∈ dom(τ2), for τ3 = τ2[y → (&mut ∗x)l], we have τ2, l `
let mut y = &mut ∗x a τ3.

– (T-Const) τ3, l ` 1 : int a τ3.
– (T-Assign) We have write(τ3, ∗x, int) = apply(x, update(τ3, 1, |τ3(x)|, int)) =

apply(x, update(τ3, 1,� int, int)). Moreover, we have update(τ3, 1,� int, int) =



expand(update(τ3, 0, int, int)) = expand(〈τ3, int〉) = 〈τ3,� int〉. Consequently,
write(τ3, ∗x, int) = apply(x, 〈τ3,� int〉) = τ3[x → (� int)l] = τ3. However,
¬writeProhibited(∗x, τ3) does not hold because root(∗x) = x occurs in the
mutable borrow &mut ∗x inside τ3. Therefore, (T-Assign) cannot be applied.

5 Termination

This section provides a sufficient condition for the termination of the typing
algorithm for leftvalues in Def. 10. It is based on the idea that the Rust type
system forces programmers to build linear data structures. This translates into
a notion of linearization for typings, meaning that they map variables in a way
that does not allow cycles: each variable is mapped into a type that only contains
variables of strictly lower ranks.

The same condition, with a similar proof, can be used to prove that the other
recursive functions used in the typing rules in Sec. 4 terminate, namely, mutable
and write. The proof is identical and we have chosen type as a representative.

Definition 11. A typing τ over a context κ is linearizable if there exists an
injective function φ : κ→ N such that, for every x ∈ κ, if v occurs in τ(x) then
φ(x) > φ(v). We say that φ(y) is the φ-rank of y, or just the rank of y when φ
is clear from the context.

As an example, suppose κ = {x, y} where τ = {x → &yl, y → intl}, then
φ = {x→ 1, y → 0} is a suitable linearisation. A linearizable typing induces an
ordering between leftvalues: either the number of dereferences decreases, or the
rank of their roots decreases.

Definition 12. Given a context κ and a linearizable typing τ over κ, the relation
> between leftvalues is the minimal relation such that

1. ∗w > w for every w ∈ LVκ, and
2. w1 > w2 if φ(root(w1)) > φ(root(w2)), for every w1,w2 ∈ LVκ.

Proposition 1. The relation > from Def. 12 is well-founded.

Proof. Assume by contradiction that > is not well-founded. Then there is an
infinite sequence of leftvalues s = w0 > w1 > · · · > wn > · · · . Since, in the
first rule of Def. 12, it is root(∗w) = root(w) and consequently φ(root(∗w)) =
φ(root(w)), we conclude that the rank of the root of the leftvalues decreases at
most |κ| times in s or remains constant. Hence, there is a finite k such that
φ(root(wk)) = φ(root(wk+i)) for all i ≥ 0. This means that, from k onwards,
only rule 1 of Def. 12 applies. But that rule strictly decreases the size of the
leftvalues and consequently cannot be applied indefinitely. This is incompatible
with the hypothesis that s is infinite. ut

Since > is well-founded, it can be used in proofs by induction, as below.



Proposition 2. If a typing τ over κ is linearizable, then the algorithm for com-
puting type in Def. 10 terminates.

Proof. We actually prove a stronger statement, namely that, given w ∈ LVκ:

1. type(w, τ) terminates;
2. if a variable v occurs in type(w, τ) then φ(root(w)) > φ(v).

We proceed by induction on w.

– The base case is when w is actually the variable x of lowest rank. By Def. 10,
it is type(x, τ) = τ(x) hence it terminates and no variable occurs in it,
since (Def. 11) the rank of those variables should be even lower, which is
impossible.

– Assume now that both 1 and 2 hold for all leftvalues w′′ such that w > w′′.
If w is a variable x, then type(x, τ) = τ(x) hence type(w, τ) terminates and
every variable v that occurs in τ(x) is such that φ(x) > φ(v) (Def. 11). Hence
both 1 and 2 hold for w as well. If, instead, w = ∗w′′ for a suitable w′′, then
w > w′′ (Def. 12) and by inductive hypothesis we know that 1 and 2 hold for
w′′. The computation of type(∗w′′, τ) first recurs on type(w′′, τ) (Def. 10).
• In the first, second and third case of Def. 10, also the computation of
type(∗w′′, τ) terminates and property 2 is vacuously true.

• In the sixth case of Def. 10, the computation of type(∗w′′, τ) terminates
and |type(w′′, τ)| = � |type(∗w′′, τ)|. Since w′′ and ∗w′′ have the same
root, condition 2 lifts from w′′ to ∗w′′.

• In the fourth and fifth case of Def. 10, by inductive hypothesis we know
that 2 holds for w′′ and consequently the root of w′ in Def. 10 has
lower rank than the root of w′′. That is, w′′ > w′. By inductive hy-
pothesis, both 1 and 2 hold for w′. Hence type(w′, τ) terminates and
type(∗w′′, τ) terminates and yields type(w′, τ). Every variable that oc-
curs in type(w′, τ) has lower rank than root(w′′) = root(w). Therefore,
both 1 and 2 hold for w also in this case.

ut

6 Preservation of Linearizability

This section proves that the rules from Sec. 4 preserve linearizability: when
applied from a linearizable typing τ , they can only lead to a linearizable typing
τ ′. By Prop. 2, this means that the recursion used for typing leftvalues in those
rules is well-founded, hence a borrow checker that implements those typing rules
terminates (assuming that it starts from the empty, linearizable typing). The
proof proceeds by rule induction.

Some rules from Sec. 4 obviously preserve linearizability, since they do not
modify the typing (for them, τ = τ ′). This is the case of rules T-Const, T-Copy,
T-ImmBorrow and T-MutBorrow. Rule T-Box preserves linearizability by a simple
application of rule induction.



For rule T-Move, it is τ ′ = move(w, τ). The intuition is that strike can only
make the set of variables in the right-hand side of the typing smaller. Therefore,
it can never make τ ′ non-linearizable. This is proved below.

Lemma 1. If T-Move is applied from a linearizable typing τ and leads to a
typing τ ′, then also τ ′ is linearizable.

Proof. By definition of move, the only difference between τ and τ ′ is at r =
root(w). The variables that occur in τ ′(r) are included in those that occur in
τ(r) (strike can only strike away part of the type τ(r)). Hence the same function
φ that exists for τ (Def. 11) shows that τ ′ is linearizable. ut

Rule T-Block is used at the end of a block of code, where the set S of local
variables declared in the block goes out of scope. It removes the type bindings
for the variables in S from the initial typing τ , through function drop. Therefore,
T-Block preserves linearizability, by rule induction and by the following result,
whose intuition is that the removal of bindings from a typing can never make it
non-linearizable.

Lemma 2. If drop is applied from a linearizable typing τ and leads to a typing
τ ′, then also τ ′ is linearizable.

Proof. The difference between τ and τ ′ is that τ ′ is missing some bindings for
some variables that have been projected away. Therefore, the same function φ
that exists for τ (Def. 11) can be used to show that τ ′ is linearizable. ut

Rule T-Declare models the declaration of a new variable x, bound to an
expression e. The evaluation of e leads to a typing τ ′ that, by rule induction, is
linearizable. As a final step, this rule enlarges τ ′ with a binding for x. Since x
is fresh (x 6∈ dom(τ)), variable x does not occur in the right-hand side of that
binding. Namely, the rule leads to a new typing τ ′′ = τ ′[x → T l] where T l is
the type of e, such that x does not occur in T . Therefore, the next result entails
that T-Declare preserves linearizability.

Lemma 3. Let τ be a linearizable typing for the context κ; let x 6∈ κ, T ∈ Tκ
(hence x does not occur in T ) and l be a lifetime. Then τ ′ = τ [x → T l] is
linearizable as well.

Proof. Consider the function φ that shows that τ is linearizable (Def. 11). Let
us extend φ into an injective function φ′ that gives x the highest rank:

φ′ = φ

[
x→ 1 + max

y∈κ
φ(y)

]
.

Given y ∈ κ, it is φ′(y) = φ(y) > φ(v) if there is v that occurs in τ(y) = τ ′(y).
Since x is fresh, v is distinct from x and we conclude that φ′(y) > φ′(v) if v occurs
in τ ′(y). Since x does not occur in T , it is φ′(x) = 1+maxy∈κ φ(y) > φ(v) = φ′(v)
if v occurs in T l = τ ′(x). ut



Rule T-Assign computes the type T of the value of the assigned expression
e, which leads to a typing τ ′. By rule induction, τ ′ is linearizable. Then the
rule writes that value into a leftvalue w. It performs this by computing τ ′′ =
write(τ ′,w, T ). The following result shows that τ ′′ is linearizable as well.

Lemma 4. Let τ be a linearizable typing for the context κ; let w ∈ LVκ and
T ∈ Tκ. Let τ ′ = write(τ,w, T ) be the application of function write in rule T-
Assign, used there to assign the type T to w. Then τ ′ is linearizable as well.

Proof. The function writemodifies a set of variables v1, . . . , vn in τ to compute τ ′.
The type of the other variables remains unchanged from τ to τ ′. Since the type
system guarantees that borrowed variables are not modified [40], this means
that v1, . . . , vn do not occur in the borrows in τ . Moreover, the variables in
the borrows in T do not contain v1, . . . , vn, because such variables are either
x = root(w), and the rule T-Assign forbids the presence of x in the borrows in
T (¬writeProhibited in rule T-Assign); or they are inside mutable borrows in τ
(last case of update), in which case they would be mutably borrowed and the
type system would have forbidden to read mutably borrowed variables in order
to compute the type T (see rule T-MutBorrow). This means that such v1, . . . , vn
only occur in the left-hand side of the bindings of τ ′. Consider now the function
φ that shows that τ is linearizable (Def. 11). Let us extend φ into an injective
function φ′ that gives v1, . . . , vn the highest ranks:

φ′ = φ

[
vi → i+ max

y∈κ\{v1,...,vn}
φ(y)

∣∣∣∣ 1 ≤ i ≤ n] .
For every y ∈ κ \ {v1, . . . , vn}, it is φ′(y) = φ(x) > φ(v) = φ′(v) if v occurs in
τ(y) = τ ′(y). Moreover, by construction, φ′(vi) > φ(v) = φ′(v) if v occurs in
τ ′(vi). That is, φ′ is linearizable as well. ut

7 Related Work

Reed provided an early formalisation of Rust called “Patina” which shares some
similarities with FR [43]. For example, it employs a flow-sensitive type system for
characterising borrow checking which operates over a “shadow” heap. However,
the scope was significantly larger and, as such, soundness was not established.
Likewise, Wang et al. presented a formal, executable operational semantics for
Rust called KRust [51]. This was defined in K — a rewrite-based executable se-
mantic framework particularly suited at developing operational semantics [45].
A large subset of Rust was defined in this way and partially validated against the
official Rust test suite. Another example is that of Weiss et al., who presented
an unpublished system called Oxide which bears striking similarity with FR [54].
Oxide was also inspired by Featherweight Java to produce a relatively lean for-
malisation of Rust. Again, it includes a far larger subset of Rust than FR (perhaps
making it more middleweight than featherweight). There are also differences, as



Oxide doesn’t model boxes explicitly and has no clear means to model heap-
allocated memory. The comprehensive work of Jung et al. provides a machine-
checked formalisation for a realistic subset of Rust [18]. This includes various no-
tions of concurrency and extends to libraries using unsafe features by identifying
library-specific verification conditions which must be satisfied to ensure overall
safety. However, concessions were understandably necessary given the enormity
of this formalisation task (which, in fact, amounts to roughly 17.5KLOC of
Coq). For example, the system presented does not resemble the surface syntax
of Rust but, rather, is more akin to the Mid-level Intermediate Representation
(MIR) used within the Rust compiler. Underpinning this development is Iris —
a framework for high-order concurrent separation logic [20,22,21]. This enables,
for example, a notion of borrow propositions which correspond with borrowing in
Rust. Later work also adapted RustBelt to account for relaxed memory opera-
tions and, in the process, uncovered a previously unknown data race in Arc [10].
Separately, Jung et al. explored compiler optimisations in the context of unsafe
code [19]. This is challenging because, within unsafe code, the usual guarantees
provided by Rust may not hold (eg., multiple mutable borrows of the same loca-
tion can exist). The proposed system, Stacked Borrows, provides an operational
semantics for memory accesses in Rust. This introduces a strong notion of unde-
fined behaviour such that a compiler is permitted to ignore the possibility of such
programs when applying optimisations (roughly in line with how C compilers
handle undefined behaviour [35]).

The potential hazards of unsafe code have been a considerable focus of aca-
demic work and, indeed, numerous bugs and security advisories have already
been uncovered in real-world programs [5,56]. Large-scale studies indicate the
potential effects of unsafe code can propagate widely [14] and that, whilst unsafe
code is typically small and self-contained, it is most often used for interoper-
ability with external systems [4]. As such, interest has been growing in using
state-of-the-art verification tools here. For example, Rudra employs a straight-
forward static analysis to scan for bug patterns related to error handling [5].
Nevertheless, the tool identified 74 new CVE’s (including two in the standard
library). In a similar vein, MirChecker employs a mixed-domain static anal-
ysis to track both numeric and symbolic values and operates directly on Rust’s
Mid-level Intermediate Representation (MIR) [30]. Amongst other things, for
this example, this tool can detect integer overflows and use-after free errors in
unsafe code. Another good example is SMACK [8,11] which translates LLVM IR
to Boogie/Z3 and was recently extended to Rust [7]. CRUST [48] is similar, but
uses CBMC [24] as the backend. CRUST specifically focuses on memory safety
violations (such as multiple mutable references to the same data). An interesting
feature is support for automatically deriving “proof drivers” using a technique
reminiscent of that for test case generation [38]. KLEE employs symbolic exe-
cution and was also extended to support Rust [31,32]. Unlike CRUST this tool
considers a larger number of errors, including arithmetic overflow and buffer
overruns (ie., not just those related to memory unsafety). Prusti exploits auto-
mated theorem proving as the core technique, building on Viper [3]. This makes



Prusti more comparable with tools such as Dafny [26,25] and Whiley [41,49,42]
which require additional programmer annotations to verify memory-safety prop-
erties (eg. adding specifications to clarify method side-effects, etc). However,
Prusti exploits aliasing information inherent in Rust programs to avoid much of
this. Instead, programmers can focus on specifying properties of interest, such as
the absence of arithmetic overflow or buffer overruns. Unfortunately, Prusti does
not consider unsafe code (though it presumably could be managed with further
specification). Other relevant tools here include Miri [37,19] (a partially symbolic
interpreter for MIR), RustHorn [34] (a specialised verifier based on Constrained
Horn Clauses) and Rupair (a tool for detecting buffer overflows) [16]. We also
note verification techniques developed to tackle specific features of Rust, such as
closures [55] and trait objects [50]. Several works have also focused on dynamic
approaches which typically limit the effect unsafe code can have. For example,
XRust partitions the heap such that memory accessed in unsafe code is isolated
from that of safe code [33]. Similarly, Galeed preserves the memory safety guar-
antees of Rust in using (unsafe) C++ code [44]. Again, this works by isolating
the heap accessible in Rust from that accessible within C++. Wang et al. also
employ segregated heaps for Rust/C++ applications within the secure enclave
capability offered by Intel SGX [52,53].

Finally, researchers have been exploring the use of Rust’s type system for
statically enforcing strong guarantees. For example, Levy et al. report on ex-
periences developing an Embedded OS in Rust [29]. They argued that “At first
examination, Rust seems perfectly suited for this task”. Unfortunately, they were
hindered by ownership in Rust preventing otherwise safe resource sharing. For
example, an interrupt handler could not retain a mutable borrow of a shared re-
source (e.g., a network stack). Such situations are not safe in general. However, in
their particular setting this was safe due to guarantees provided by the OS and,
to workaround, they instead relied on unsafe code. In subsequent work, they
further reduced this unsafe code to a single trusted primitive, TakeCell [27,28].
This is similar to Cell but instead of copying values out as Cell does (which
can introduce overhead), it provides a mechanism for code to execute “within”
the cell with, effectively, zero overhead. As such, it provides a form of mutual
exclusion. Similarly, Jespersen et al. describe a library for implementing session
types in Rust which was an adaptation of communication patterns in Servo [17].
Session types require a linear usage of channels which naturally fits with the
ownership in Rust and, as such, afforded some safety guarantees [23]. It is also
interesting to note that Rust is the primary language used to develop Mozilla’s
experimental rendering engine, Servo, and accounts for some 800KLOC. Ander-
son et al. examined how the use of Rust here addresses many common security
issues [1]. For example, the use of uninitialised memory has led to problems in
Firefox. They argue many aspects of Rust (e.g., good interoperation with C)
make it well suited here, but found situations where its ownership model was
problematic, such as for data structures which do not assume a single owner “in
order to provide multiple traversal APIs without favoring the performance of one
over the other”. In a similar vein, Emre et al. consider the problem of automati-



cally translating C programs into safer Rust programs [13]. Whilst noting many
challenges, their aim, amongst other things, was to minimise the use of unsafe
code and mut annotations. Finally, Dewey et al. focus on the integrity of the
Rust type checker itself as this underlies many of the safety guarantees provided
by Rust [12]. By leveraging techniques from constraint logic programming, they
managed to fuzz test the Rust compiler using over 900M automatically generated
programs and, in the process, uncovered numerous bugs.

8 Conclusion

This paper has provided a proof of termination for the borrow checker of Feath-
erweight Rust. As a consequence, it supports the use of that framework for the
specification and analysis of the behaviour of Rust programs. The proof is based
on the particular property of Rust, that imposes a strict discipline to program-
mers, so that only linearizable data strcutures can be constructed at run time.
In this sense, the proof sheds more light on the reason of such design choice of
the language.
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