
Towards Compilation of an
Imperative Language for

FPGAs
Baptiste Pauget, Alex Potanin and David J. Pearce

School of Engineering and Computer Science
Victoria University of Wellington

@WhileyDave
http://whiley.org

@WhileyDave
http://whiley.org

FPGAS: Overview

“When it comes to power efficiency (performance per watt),
however, both CPUs and GPUs significantly lag behind
FPGAs” – Bacon et al.

“A key element to obtaining high-performance on FPGAs is to
use as many slices as possible for parallel computation.
This can be achieved by pipelining the blocks, trading
latency for throughput; by data-parallelism, where data-paths
are replicated; or a combination of both” –Brodtkorb et al.

FPGAs: What are they?

I
/
O

I
/
O

I
/
O

I
/
O

I/O I/O I/OI/OI/O

CLBCLB CLBCLB

CLBCLBCLBCLB

CLBCLBCLBCLB

Typically will have millions of blocks

FPGAs: Configurable Logic Blocks (CLBs)

mux

FF

mux out

LUT

FA

mux

cout

LUT
d1

d3

d4

cin

clk

sel1

sel2

d2

Look Up Tables. With 3 bits, can implement single gate

Storage. D-type flip flops provide 1 bit storage

Full Adder. Provides 1 bit addition with carry

Multiplexors. Allow for different configurations

FPGAs: Building Blocks

Ripple Carry Adder

c2

a2 b2

c3

a3 b3

c1

a1 b1

c0

a0 b0

d0d1d2d3

FA FA FA FA

Register

clk

q3

d3

q2

d2

q1

d1

q0

d0

FF FFFFFF

Different implementations with various trade offs available

FPGAs: Register Pipelining

+
+

*

3

Datapath width needs to be determined

Max clock frequency determined by minimum gate delay

Can clock left-most circuit faster than right-most

FPGAs: Pipelining & Balancing

+

Combining different data paths requires balancing them

Q) How to compile for an FPGA?

Conditionals

function diff(int x, int y) → (int z):

if x > y:

return x - y

else:
return y - x

x y

z

function diff(int x, int y) → (int z):

stage
if x > y:

return x - y

else:
return y - x

z

x yclk

Balancing

function diff(int x, int y) → (int z):

stage
if x > y:

int tmp = x - y

stage
return tmp

else:
return y - x

x y

z

clk

Placement of registers must be balanced

Otherwise, data values produced at different rates

Data Parallelism

type vec is (i8[] vs) where |vs| == 4

function add(vec xs, vec ys) → (vec zs):
i8 i = 0
vec rs = [0,0,0,0]
while i < 4:

rs[i] = xs[i] + ys[i]
i = i + 1

return rs

xs ys

rs

+ + + +

Relies on compiler’s ability to extract data parallelism

Task Parallelism

function count(int n) → (int r):

int i = 0

//
while i <= n:

i = i + 1

//
return i

1

n

done

startclk 0

r

Cannot know a priori how many iterations and allow for stalls

LOOP
Data

In

Data

Out
done

data

busy

done

data

busy

CLK

Data Types & Invariants

type i8 is (int x) where x >= -128 && x <= 127

type Point is { i8 x, i8 y }

type string is (i8[] s) where |s| < 10

280 4 12 20

type ni8 is (i8|null)

10 8

Testing

Papilio One 500K which utilises Xilinx Spartan 3

Used in conjunction with LogicStart MegaWing

http://whiley.org

@WhileyDave
http://github.com/Whiley

http://whiley.org
@WhileyDave
http://github.com/Whiley

