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Abstract
Field-Programmable Gate Arrays (FPGA’s) have been around
since the early 1980s and have now achieved relatively wide-
spread use. For example, FPGAs are routinely used for high-
performance computing, financial applications, seismic mod-
elling, DNA sequence alignment, software defined network-
ing and, occasionally, are even found in smartphones. And
yet, despite their success, there still remains something of a
gap between programming languages and circuit designs for
an FPGA. We consider the compilation of an imperative pro-
gramming language, Whiley, to VHDL for use on an FPGA.
A key challenge lies in splitting an arbitrary function into a
series of pipeline stages, as necessary to expose as much task
parallelism as possible. To do this, we introduce a language
construct which gives the programmer control over how the
pipeline is constructed.

CCS Concepts • Hardware → Hardware description lan-
guages and compilation; Reconfigurable logic applications;
• Software and its engineering → Imperative languages;

Keywords Field-Programmable Gate Arrays, Compilers, Hard-
ware Description Languages

ACM Reference Format:
Baptiste Pauget, David J. Pearce, and Alex Potanin. 2018. Towards
Compilation of an Imperative Language for FPGAs. In Proceed-
ings of the 10th ACM SIGPLAN International Workshop on Virtual
Machines and Intermediate Languages (VMIL ’18), November 4,
2018, Boston, MA, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3281287.3281291

1 Introduction
Field-Programmable Gate Arrays (FGPAs) can no longer
be considered a “new” technology. Since their introduction
in the early 1980’s by Xilinx they have finally reached the
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mass market. FPGAs are used in a variety of arenas such
as HPC acceleration [14], seismic modelling [31], encryp-
tion [1, 28], financial applications [33, 44], DNA sequence
alignment [15, 35], software-defined networking [30, 41], and
are even found in smartphones (e.g. Samsung Galaxy S5
and iPhone 7). FPGAs provide a middle-ground between
Application-Specific Integrated Circuits (ASICs) and general
purpose CPUs. Compared with a CPU, an FPGA offers the
performance benefits from a gate-level abstraction [5] and
can provide higher throughput with lower power usage than a
CPU or GPU [43, 44]. Bacon et al. note the following [5]:

“When it comes to power efficiency (performance
per watt), however, both CPUs and GPUs signifi-
cantly lag behind FPGAs”

When compared with traditional ASIC manufacturing pro-
cesses, FPGAs offer greater flexibility as, in some sense,
hardware becomes more like software. This is even more
apparent today since modern FPGAs can be reconfigured (or
partially reconfigured) in a matter of milliseconds.

Roughly speaking, an FPGA is made up of a large num-
ber of configurable logical blocks (CLBs). Each logic block
typically consists of some number of lookup tables (LUTs),
flip-flops, and full-adders. Modern FPGAs, such as Xilinx’s
Virtex-7 series, are manufactured at the nanometer scale (e.g.
28nm), operate in the 500Mhz frequency range and provide
millions of logic blocks. They may also contain other compo-
nents, such as block RAMs (BRAMs), Digital Signal Process-
ing slices (DSPs), communication interfaces (e.g. Ethernet,
PCI), and processor cores (e.g. ARM) [46]. The design pro-
cess for an FPGA typically revolves around the use of Hard-
ware Description Languages (HDLs) such as VHDL [24]
or Verilog [25]. These languages offer relatively low-level
abstractions and, as such, are ideally suited to thinking in
terms of low-level building blocks such as gates, registers and
multiplexers [5]. However, they offer few high-level abstrac-
tions and this makes developing for FPGAs costly and time
consuming [12].

We are interested in compiling programs written for an im-
perative programming language, Whiley, for an FPGA [40].
Whiley is unusual in providing support for function speci-
fications (i.e. pre-/post-conditions) which can be verified at
compile-time. Whiley follows in a long lineage of languages,
such as ESC/Java [19], Spec# [8], Dafny [32], Why3 [18],
VeriFast [27], and SPARK/Ada [7]. Such languages, of course,
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are used to verify properties of software systems. From this,
a natural question arises: can they verify properties of hard-
ware systems? This provides the general motivation for our
work (and, indeed, shares similarity with aspects of Deep-
Spec [2, 11]). However, it raises an immediate challenge: how
do we compile imperative languages, such as Whiley, for
FPGAs?

The Problem. Compiling high-level languages for an FPGA
is, of course, not a new problem. Many so-called “C-to-gates”
systems exist for compiling subsets of C for FPGAs, such
as Stream-C [21], Handle-C [10], Autopilot [47] and more.
Other approaches implement libraries or Domain Specific
Languages (DSLs) for generating circuit designs from pro-
gram code, such as ASC [36, 37], JHDL [9] and more. And
yet, we find these systems remain unsatisfactory. Either they
are too “gate-oriented” or overly restrictive in terms of sup-
ported language features. Part of the challenge is that it re-
mains unclear what it even means to compile a program for an
FPGA. Certainly, FPGAs are well suited for particular kinds
of computation. Perhaps the most common paradigm is that
of hardware acceleration, whereby a loop nest — or kernel —
is converted into a data pipeline on the FPGA. Brodtkorb et
al. make the following statement in this regard [12]:

“A key element to obtaining high-performance
on FPGAs is to use as many slices as possible for
parallel computation. This can be achieved by
pipelining the blocks, trading latency for through-
put; by data-parallelism, where data-paths are
replicated; or a combination of both”

This gives insight into the difference between programming
for a CPU versus for an FPGA. Specifically, when program-
ming for an FPGA we must utilise as much silicon as possible
to maximise performance. Thus, we cannot view a function
as an entity to execute sequentially; rather, we must view it
as something to be broken up into a pipeline.

The Approach. Compiling programs written in a high-level
language for an FPGA presents two primary challenges: (1)
extracting latent data parallelism; (2) enabling task paral-
lelism. In this paper, we focus on the latter. More specifically,
how do we split an arbitrary function into a series of pipeline
stages? This is important to ensure as much silicon as possi-
ble is utilised at any given moment. And yet, at the same time,
there is no explicit information embedded in the program
source to guide us. Therefore, our approach is to provide such
information. The contributions of this paper are as follows:

• We present a novel approach to compiling imperative
languages for an FPGA. This is based around a lan-
guage primitive (stage) which allows fine-grained
control over the generated pipeline.

• We have developed a prototype implementation which
compiles programs in the Whiley language into VHDL
which can then be synthesised for an FPGA.
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Figure 1. A simplistic architectural view of an FPGA.
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Figure 2. A simplistic view of a CLB.

2 Background
In this section, we provide some background on FPGAs and
a short introduction to the Whiley language.

2.1 Field-Programmable Gate Arrays
An FPGA consists, roughly speaking, of an array of Con-
figurable Logic Blocks surrounded by I/O pads and a pro-
grammable interconnect network which, typically, constitutes
most of the area [17]. Figure 1 provides a simplistic illustra-
tion following a traditional “island-style” layout.

Configurable Logic Blocks (CLBs). Roughly speaking, a
CLB contains various components, normally including some
lookup tables (LUTs), storage elements (e.g. D-type flip-
flops), and other machinery such as carry logic, multiplexers,
etc (the exact details differ between devices).

Figure 2 illustrates an example CLB made up from two
three-bit lookup tables (LUT), one full adder (FA), one D-
type flip flop (FF) and three multiplexers (MUX). We can, for
example, implement a four-bit LUT by combining the two
LUTs together and bypassing the adder and the flip flop. Or,
we could implement a simple ripple-carry adder by chaining
several CLBs together (i.e. by connecting carry out to succes-
sive carry in, etc), making the LUTs sensitive only to d1 and,
again, bypassing the flip flop. Finally, we could implement
one-bit of a register by again making the LUTs sensitive only
to d1, and bypassing the adder.
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Building Blocks. A CLB can implement any of the classical
gates (e.g. nand-, nor-gates, etc) or act as a flip-flop, multi-
plexer or adder. As such, the basic building blocks of digital
electronics are available. A four-bit ripple-carry adder can be
constructed by chaining four CLBs together as follows:

d3

FAFA FA FA
c2

a2 b2

c3

a3 b3

c1

a1 b1

c0

a0 b0

d0d1d2

This is about the simplest possible implementation of an
adder and trades performance for a minimal number of gates.
The time taken for the result to propagate through the adder
once the inputs are set (latency) is proportional to the bit-
width. In this case, it is four times the gate delay for an adder
in our CLB implementation. Other, faster, implementations
are possible, such as the carry lookahead and carry skip
adders which reduce the delay at the expense of more gates.

The implementations of other arithmetic operators follow
in roughly the same fashion and, likewise, different choices
are available with different trade-offs. We note that multipli-
cation is more expensive in terms of both gates and latency
compared with an adder, and division even more so. In con-
trast, bitwise operators have constant latency determined by
the gate delay across a CLB.

Aside from the basic arithmetic operators, the next most
important building block is an N-bit register. The following
illustrates a simple four-bit register:

clk

FF

q3

d3

FF

q0

d0

FF

q2

d2

FF

q1

d1

Unlike for arithmetic operators, a register is clocked. When
the clock changes (usually either on a rising-edge or falling-
edge signal), the current state of the inputs is fixed on the
outputs follow this until the next clock. Registers are import
as they offer precise timing determined by the clock.

Timing. In the construction of digital circuits, timing is of
course critically important. Consider the following circuits:

+
+

*
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The circuit on the left reads from two N -bit registers, passes
their values through an N -bit adder, and writes the result into
another N -bit register. The datapath on the right is more
complex, first adding the inputs then multiplying the result
by 3. The width of the datapaths (i.e. the value of N ) is not
specifically important here (though must be statically known).
Assuming the input and output registers are clocked together

then the maximum clock frequency is determined by the
minimum gate delay between the input and output registers.
Let’s assume (as seems likely) that the gate delay for the right
circuit is greater than the left circuit. Thus, the maximum
frequency for clocking the right circuit is lower than for the
left. Further, if both are part of some (larger) circuit and
clocked together then, clearly, we must conservatively choose
the lower clock rate.

Our circuits above help highlight the distinction between
combinatorial (or time-independent) and sequential logic. In
the former, the outputs are a real-time function of the inputs
(subject to latency). In the latter, the outputs change only
on clock signals, rather than in real-time. Thus, each of our
circuits taken as a whole is sequential whilst their internals
sandwiched between registers are combinatorial.

Register Balancing. The final piece of the jigsaw relates to
the problem of combining sequential circuits with different
cycle latency’s (i.e. clock cycles from when an input is re-
ceived to when the corresponding output is produced). For
example, consider the following high-level circuit:

+

Here, assume the unspecified blocks between registers rep-
resent arbitrary chunks of combinatorial logic. Furthermore,
we desire that each output produced corresponds to inputs
which arrived at the same time. To ensure this happens, we
have added an additional register after the combinatorial block
on the right-hand side to balance the numbers on each path.
This simply ensures that values on the right-hand side remain
in sync with their corresponding values on the left-hand side.

At this point, we have now covered the necessary back-
ground on digital circuit design required for the remainder.
As such, we now turn our focus to the Whiley language.

2.2 Whiley
The Whiley programming language has been developed from
the ground up to enable compile-time verification of pro-
grams [40]. The Whiley Compiler (WyC) attempts to ensure
that every function in a program meets its specification. When
it succeeds in this endeavour, we know that: 1) all function
post-conditions are met (assuming their pre-conditions held
on entry); 2) all invocations meet their respective function’s
pre-condition; 3) runtime errors such as divide-by-zero, out-
of-bounds accesses and null-pointer dereferences are impossi-
ble. Note, however, such programs may still loop indefinitely
and/or exhaust available resources (e.g. RAM).
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Specifications. Whiley allows explicit pre- and post-conditions
to be given for functions. For example, the following function
accepts a positive integer and returns a natural number:

1 function decrement(int x) -> (int y)
2 // Parameter x must be greater than zero
3 requires x > 0
4 // Return must be greater or equal to zero
5 ensures y >= 0:
6 //
7 return x - 1

Here, decrement() includes requires and ensures
clauses which correspond (respectively) to its precondition
and postcondition. In this context, y represents the return
value and may be used only within the ensures clause.

The Whiley compiler reasons by exploring control-flow
paths. For example, it easily verifies the following:

1 function max(int x, int y) -> (int z)
2 // Must return either x or y
3 ensures x == z || y == z
4 // Return must be as large as x and y
5 ensures x <= z && y <= z:
6 //
7 if x > y:
8 return x
9 else:

10 return y

Here, multiple ensures clauses are given which are con-
joined to form the function’s postcondition. We find that
allowing multiple ensures clauses helps readability and,
likewise, multiple requires clauses are permitted as well.

Data Type Invariants. Type invariants over data can also be
explicitly defined:

1 // A natural number is an integer greater-than-or-equal-to zero
2 type nat is (int n) where n >= 0
3 // A positive number is an integer greater-than zero
4 type pos is (int p) where p > 0

Here, the type declaration includes a where clause con-
straining the permitted values. The declared variable (e. g.,
n or p) represents an arbitrary value of the given type. Thus,
nat defines the type of natural numbers. Likewise, pos gives
the type of positive integers. Constrained types are helpful for
ensuring specifications remain as readable as possible. For
example, we can update decrement() as follows:

1 function decrement(pos x) -> (nat n):
2 //
3 return x - 1

Loop Invariants. Whiley supports loop invariants as neces-
sary for reasoning about loops. The following illustrates:

1 function sum(int[] xs) -> (nat r)
2 // Every item in xs is greater or equal to zero
3 requires all { i in 0..|xs| | xs[i] >= 0 }:
4 //
5 int s = 0
6 nat i = 0
7 while i < |xs| where s >= 0:
8 s = s + xs[i]
9 i = i + 1

10 return s

Here, a bounded quantifier enforces that sum() accepts
an array of natural numbers (which could equally have been
expressed as type nat[]). As expected, summing an array of
natural numbers should yield a natural number (recall arith-
metic does not overflow). The loop invariant helps the com-
piler generate a sufficiently powerful verification condition to
statically verify that sum() meets its specification.

Flow Typing & Unions. An unusual feature of Whiley is the
use of a flow typing system (see e. g., [38, 45]) coupled with
union types (see e. g., [6, 26]). To illustrate, we consider null
values. These have been a significant source of error in lan-
guages like Java and C#. The issue is that, in such languages,
one can treat nullable references as though they are non-null
references (Hoare calls this his billion dollar mistake [22]).
Whilst many approaches have been proposed [16, 34], flow
typing provide an elegant solution:

1 // Return index of first occurrence of c in str, or null if none
2 function index(string s, char c)->int|null:
3 ...

Here, index() returns the first index of a character in the
string, or null if there is none. The type int|null is a union
type, meaning it is either an int or null. Furthermore, to
use the result, one must first check whether it is an int using
the is operator (similar to instanceof in Java):

1 ...
2 int|null idx = index(...)
3 if idx is int:
4 ... // idx has type int
5 else:
6 ... // idx has type null

This first ensures idx is an int before using it in the true
branch and Whiley’s flow type system automatically retypes
idx on the true (resp. false) branch to have type int (resp.
null). The use of union types here to manage null values
is closely related to the use of option types in languages like
Haskell, Scala and, more recently, Java 8.
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3 Pipelining Computation
The inherent problem when compiling for an FPGA is to
determine how and when to perform operations in parallel. In
short, if one does not expose parallelism in some way then the
benefits from using an FPGA are likely to be limited. Most
existing high-level synthesis systems (e.g. Stream-C [21],
Handle-C [10], etc) provide explicit constructs for specifying
parallelism. On an FPGA (or indeed in any digital circuit)
the concept of parallelism has two dimensions. We can think
of these as roughly similar to the usual notions of data- and
task-parallelism.

3.1 Data Parallelism
Data parallelism is a natural fit for FPGAs which excel at per-
forming multiple operations at the same time. For example:

1 type vec is (i8[] vs) where |vs| == 4
2

3 function add(vec xs, vec ys) -> (vec zs):
4 i8 i = 0
5 vec rs = [0,0,0,0]
6 while i < 4:
7 rs[i] = xs[i] + ys[i]
8 i = i + 1
9 return rs

Here, vec is defined as an array of four bytes, with add()

as a function for adding two vecs. We can parallelise this loop
in different ways. For example, we could employ a simple
data-parallel implementation:

rs

+ + ++

xs ys

Although perhaps an optimal implementation, this relies
on our compiler’s ability to statically determine the number
of loop iterations and, furthermore, that there are no real
loop-carried dependencies.

3.2 Task Parallelism
Roughly speaking, the length of the longest path through a
block of combinatorial logic determines the maximum clock
frequency. This is because we cannot clock registers faster
than signals can propagate through the combinatorial blocks.
Large combinatorial blocks and slow clock rates means rel-
atively poor utilisation because, at any given moment, most
of a block does not contribute to its output. The standard
approach is to use pipelining, which has the added benefit of

increasing the rate at which data items are produced. A rough
pipeline looks like this:

Data

In

Data

Out

CLK

data data

Here, each stage contains registers as necessary to hold
state between clock cycles. Since combinatorial blocks are
smaller the clock rate can be higher and, furthermore, since
values are produced every clock we have better utilisation. Of
course, the clock rate is still limited by the maximum length
through any particular block. Therefore, ideally, we desire
roughly even sized combinatorial blocks.

An important assumption made above is that each block
requires exactly one clock cycle to complete. In fact, this need
not be the case. For example, consider again our loop from
§3.1 and suppose information about the loop bounds was not
available. Then the add() function might be compiled into a
pipeline roughly like this:

LOOP
Data

In

Data

Out
done

data

busy

done

data

busy

CLK

At this point, things are certainly more complex. Since
the middle stage may take an unknown number of clock
cycles, we need to be able to block stages before it. Likewise,
downstream stages need to stall until data is available.1

Thus, the challenge for compiling to an FPGA is that we
have one source-level representation of our program but mul-
tiple possible implementations. Whilst this is already true
to some extent when targeting a normal CPU, the effect is
more profound on an FPGA. For example, we might try to
increase CLB utilisation (hence, throughput) by introducing
additional pipeline stages, or by repositioning registers for a
better balance between stages, etc. Since this is a daunting
analysis for any compiler to perform, we prefer instead for
the programmer to determine this.

Approach. We adopt a novel approach to compiling impera-
tive code for an FPGA which gives fine-grained control over
the placement of registers. This allows the programmer to
tune the amount of pipelining employed to suite his/her needs.
There are several facets:

• Instruction Parallelism. Our compiler automatically
identifies instruction-level parallelism by translating
functions into a data-flow graph representation (e.g.
similar to that done elsewhere [3, 36]).

• Data Parallelism. Our compiler assumes that any data-
parallelism present in the target function has already
been extracted (e.g. by a previous compiler stage). That
is, any loops with statically known bounds are assumed

1In fact, in our implementation we introduce queues to reduce the upstream
impact of a long running stage.
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to have already been unrolled. This is a simplifying
assumption as loop analysis is not our focus.

• Explicit Staging. An explicit statement is added to
Whiley with which the programmer can signal the
placement of registers. We refer to this as the stage
statement (though, for simplicity, our prototype imple-
mentation overloads the existing skip statement).

• Register Balancing. Our compiler performs register
balancing to ensure that, whatever the placement of
stage statements, values propagate through the pipeline
in sync (i.e. intermediate values generated from the
same inputs are propagated together — recall §2.1).

• Pipeline Stalls. Our compiler supports the compilation
of arbitrary loops. Such loops are assumed to terminate,
though may have an unknown number of iterations.
Since progress through the pipeline may stall waiting
for a given loop to terminate, control-signals are added
(as above) to dictate when data is available, etc.

This approach provides a novel mechanism for controlling
compilation for the FPGAs. We note, however, that it does
not allow control along all dimensions. For example, it pro-
vides no means of dictating what underlying implementation
to use for a given operator. Likewise, instruction-level paral-
lelism is identified automatically by our static analysis, and
the programmer has limited control over this.

4 Implementation
We now detail our prototype implementation for compiling
Whiley programs to VHDL for synthesis onto an FPGA.
This utilises the general approach outlined in the previous
section. The key novelty lies in the introduction of a new
language construct (stage) for staging computation. The
Whiley2VHDLCompiler is an open source plugin available
from github.com/BaptP/Whiley2VHDLCompiler.

4.1 Architecture
Figure 3 provides an overview of the information flow through
the Whiley Compiler. Whiley source files are converted into
(binary) wyil files; in turn, these are converted into binary
class files (for execution on the JVM) or, using the exten-
sion presented here, to VHDL files. The Whiley Intermediate
Language (WyIL) is essentially a binary form of the Whiley
source with additional information embedded (such as fully
resolved names, etc). Generated VHDL files can be synthe-
sised into bit files for uploading to an FPGA using, for exam-
ple, the Xilinx ISE toolsuite. Likewise, they can be simulated
using other third-party tools, such as GHDL.

4.2 Control Flow
To enable control over the manner in which arbitrary code
is pipelined, we introduce a new language-level construct
(stage). This simply identifies a cut point in the control-flow
graph where registers should be inserted. We now present

some examples to illustrate the main ideas. Consider the
following function:

1 function diff(int x, int y) -> (int z):
2 if x > y:
3 return x - y
4 else:
5 return y - x

Our compiler produces a combinatorial circuit for the above:

z

x y

To generate a sequential circuit we need to introduce one
or more pipeline stages, such as in the following:

1 function diff(int x, int y) -> (int z):
2 stage
3 if x > y:
4 return x - y
5 else:
6 return y - x

This now generates the following sequential circuit con-
taining (effectively) one pipeline stage:

clk

z

x y

This implementation has the advantage that we can now
clock data values through the pipeline and, to accommodate
this, a clock signal is required. An important issue is the
handling of register balancing. For example, consider this
variation on the above:

1 function diff(int x, int y) -> (int z):
2 stage
3 if x > y:
4 int tmp = x - y
5 stage
6 return tmp
7 else:
8 return y - x

This now generates the following sequential circuit con-
taining (effectively) two pipeline stages:

6



Whiley−2−Java
Compiler (WyJC)

Whiley−2−VHDL
Compiler

(WyC)
Whiley Compiler Whiley Intermediate

Language (WyIL)

Figure 3. Illustrating the compilation pipeline.

x y

z

clk

The original Whiley source code dictated a register in the
true branch only. However, our compiler automatically per-
forms register balancing to ensure that intermediate values
generated from the same inputs always arrive together.

Loops. Unfortunately, supporting general loops is much more
involved (recall that loops which can be are already fully
unrolled). For example, consider this very simple loop:

1 function count(int n) -> (int r):
2 int i = 0
3 //
4 while i <= n:
5 i = i + 1
6 //
7 return i

One of the key challenges is that we cannot know a priori
how many iterations the loop will take. Furthermore, we
cannot implement the loop using purely combinatorial circuits
as the potential for race conditions can lead to spurious or
incorrect outputs. Instead, we translate this as follows:

r

1

n

done

startclk 0

This is more complex and, frankly, less elegant than our
translation of condition statements. Two registers have been

introduced to maintain the values of i and n as the loop
proceeds.2

In addition to the expected inputs and outputs above we
also have a new input, start, and a new output, done. The
latter is relatively straightforward. Since the loop may execute
an unknown number of times, it must signal when its complete
and the output value r is available. For a similar reason we
also require the start signal. The key here is that we need
to know when to start the next loop. More specifically, when
data is available from the previous stage in the pipeline. In
addition, logic is required to maintain the busy status of
the loop. The fundamental issue is that, whilst the loop is
executing, no more values can be passed into the pipeline.
That is, all input values are stalled until the loop is complete.

Our loop implementation above is limited to executing
one set of inputs at a time. In other words, we have lost the
task parallelism present in our previous examples. This is
somewhat undesirable since it limits the benefits from using
an FPGA. However, we can still benefit from pipelining by
using the stage statement. For example if we had two loops,
one after the other, we could insert a stage between them.

Timing Analysis. In order to ensure registers are properly
balanced, our implementation performs a rudimentary timing
analysis. To do this, we simply enumerate all paths through
the data-flow graph and, for each node, determine: the num-
ber of registers encountered on this path; and, the maximum
number of registers encountered on any path. Using this infor-
mation, we can identify where to insert registers for balancing.

4.3 Data Representation
The compilation of Whiley data types is relatively straight-
forward, though some issues arise as they were not designed
with the finite constraints of an FPGA in mind. In particular,
all data types on an FPGA must have statically-known bounds
on the number of bits they occupy.

Integers. The representation of integer datatypes is relatively
straightforward as these are directly supported in VHDL. One
challenge is that integers in Whiley are unbounded which,

2Note, technically speaking, we could have avoided a register for n, but our
compiler does not perform the necessary analysis to determine it’s a loop
constant.
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although useful for verification, is something of a hindrance
here. However, an arbitrary number of finite datatypes can be
supported through the use of type invariants. The following
illustrates:

1 type i8 is (int x)
2 where x >= -128 && x <= 127

This defines a signed integer within the range −128 . . . 127
which can be encoded in one byte using a twos-complement
representation. We can specify arbitrary bounds here and rely
on the compiler to determine the minimal representation (e.g.
using bitwidth analysis [13, 20, 39, 42]).

Records. These are relatively easy to represent since they
have a finite number of fields and, hence, have finite represen-
tation if their fields do. For example:

1 type Point is { i8 x, i8 y }

This type can be encoded easily enough in two bytes. Fur-
thermore, since records in Whiley have value semantics, as-
signing a variable of type Point to another simply results in
a bitwise copy.

Arrays. These can also be represented provided they have
statically known lengths. For example:

1 type string is (i8[] s) where |s| < 10

This defines a string to be a sequence of at most ten
bytes. To encode an array we require all elements have fi-
nite representation and, additionally, we must determine the
minimal representation for the length variable. Thus we can
encode a string like so:

280 4 12 20

Here, the minimal representation for the length is deter-
mined as a four-bit nibble. Thus, we begin to see the flexibility
offered by an FPGA in terms of data representation. Further-
more, we begin to see the benefits of type invariants. Since
the length is at most ten, we know that not every combination
of bits is possible in the length variable. Thus, in principle,
our compiler can exploit this knowledge to further optimise
the design in a way that is difficult or impossible for e.g. a
general-purpose VHDL compiler.

Unions. These represent something of a challenge as we must
not only encode the payload itself, but also an appropriate tag.
Consider this simple union:

1 type ni8 is (i8|null)

This defines ni8 as a union of a byte and null. As such,
we determine the worst-case payload size by examining each

Figure 4. The Papilio One 500K

case and the number of bits required to distinguish cases.
Thus, we can encode an ni8 as follows:

10 8

Here, the maximum payload size is one byte since i8 has
the largest bitwidth of any case. Furthermore, there are only
two cases and, hence, only one bit is required for the tag.

Others. Aside from the relatively standard data types dis-
cussed above, Whiley supports a number of other types which
are not easily encoded. This includes references, function
pointers, recursive types and open records. In addition, the
primitive type any does not have a finite representation. The
following illustrates a recursive type:

1 type LinkedList is null | Link
2 type Link is { LinkedList next, i8 data }

In principle this could be encoded onto an FPGA if its
maximum depth was bounded. Unfortunately, there is no
operator for this (unlike for arrays) and, hence, it is very
difficult for the compiler to determine a bound.

Another example is that of open records which, in some
ways, are similar to interfaces in Java:

1 type Item is { i8 kind, ... }

The “...” signals that this type is open (i.e. may include
zero or more additional fields). Thus, Item represents any
record type which has at least a field kind, and may have
arbitrarily many additional fields.

4.4 Testing.
To test our system, we compiled several small examples and
uploaded them onto an FPGA. The FPGA used was a Papilio
One 500K which is built around a Xilinx Spartan 3, along
with the LogicStart MegaWing (which provides buttons and
LEDs, etc). See Figure 4.

5 Related Work
We now consider related work and, we note, most approaches
are either focused around very restrictive subsets of C (e.g.
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Stream-C [21], Handle-C [10], Autopilot [47], etc) or using
libraries written in various languages (e.g. C++ [36], Java [9],
Scala [4], etc) which, when executed, generate circuit designs.

The Liquid Metal project perhaps provides one of the most
comparable efforts to this work [5]. Their primary motivation
was that FPGAs can “offer extremely high performance with
very low power compared to more general purpose designs”,
but that the skills currently required for programming FPGAs
are beyond regular developers [23]. The Lime programming
language was developed in an effort to bridge this gap [3].
Lime is a Java-based language with significant extensions fo-
cused on both GPU and FPGA accelerators. We find that there
are a number of similarities between their extensions and the
Whiley language. For example, Lime extends Java with im-
mutable value types (comparable to records in Whiley) which
the authors claim: “For compilation to hardware, Lime’s
value classes are essential since they can be freely moved
across a chip as a chunk of bits” [3]. Likewise, Lime includes
immutable array values (as does Whiley). Indeed, the authors
argue “... the goals of Lime require a classification of meth-
ods into those that are pure functions” and, again, we can
draw parallels with Whiley which has first-class support for
pure functions. The paradigm of computation promoted by
Lime remains that of hardware acceleration. In particular,
Lime provides a notion of tasks operating over data streams
which can be composed and compiled into hardware pipelines.
Thus, one cannot express general-purpose computation to be
compiled on the hardware.

Another relevant work is that of Kou and Palsberg who
were interested in bridging the gap between FPGAs and the
high-level abstractions offered by regular programming lan-
guages [29]. Their approach was to compile a regular object-
oriented language into a C subset which could then be syn-
thesised using Autopilot [47]. One of their key focuses was
the fact that existing synthesis tools for C (such as Autopi-
lot) exclude language features such as pointers and dynamic
memory, etc. Nevertheless, their system supports recursion-
free programs only and requires all memory requirements be
known beforehand. They refer to the standard method of com-
piling object-oriented programs to C as a horizontal object
layout (i.e. where classes become structs, etc). However,
instead of this, they adopt a so-called vertical object layout
which simplifies the handling of polymorphism.

Libraries as Generators. The ASC system of Mencer et al.
follows a lineage of tools which provide libraries on top of
standard programming languages [36, 37]. In this case, C++ is
used to good effect to provide an embedded domain-specific
language for generating FPGA accelerators. Specifically, the
user implements their kernel in C++ using those primitives
provided by the ASC library. They may also include addi-
tional client code which interacts with the kernel by read-
ing/writing data streams. Then, when the compiled program

is executed it generates a hardware netlist on-the-fly and up-
loads it to the FPGA. Alternatively, a gate-level simulator can
be run for debugging and testing. The primitives provided
by ASC are essentially generators for arithmetic operators
and comparators which support a reasonable range of imple-
mentations (e.g. two’s-complement versus sign-magnitude,
fast-carry versus constant-time adders, etc). The user has com-
plete control over which implementation is selected at any
point making this a relatively low-level solution. Regarding
the generated datapath, the user can choose to optimise for
throughput or latency. For example, optimising for through-
put results in ASC inserting registers at almost every point
(and, likewise, balancing each stage of the computation using
FIFO buffers to ensure operands arrive together). In contrast,
optimising for latency results in a purely combinatorial circuit.
Thus, whilst ASC supports fine-grained control over operator
implementations, it provides only coarse-grained control over
the datapath itself. This contrasts with our approach which
offers fine-grained control over the datapath, but not operator
implementations.

JHDL is another library for generating FPGA accelerators,
this time based on Java [9]. Again, simulation and circuit gen-
eration are easily interchangeable. The rough idea here is that,
when a circuit element is constructed, it can be regarded as
having been physically placed on the hardware. For languages
with destructors, the destruction of an object would then cor-
respond to its removal from the hardware. Since Java doesn’t
support destructors per se, a similar effect was achieved in
JHDL through a special purpose delete() method. The
library supports three fundamental base classes for use in
implementing a circuit. The first is the Combinatorial class
which represents a circuit that simply propagates inputs to
outputs. The second is the Synchronous class which is clocked
and produces new outputs on the clock. Finally, a Structural
class is supported for combinations of combinatorial and syn-
chronous circuits. An abstraction representing input/output
ports for buffering data to/from the device is also provided.
Thus, the Java control program writes bytes into the input
port and reads results from the output port.

A similar approach to JHDL is taken in Chisel which, in
this case, builds on Scala and generates Verilog [4]. One of
the advantages of Scala over Java is that Chisel can make
good use of operator overloading (like ASC does). Chisel
also performs bitwidth analysis on the internal dataflow graph
generated.

6 Conclusion
In this paper, we have considered the process of compiling
a simple imperative language with specifications and type
invariants for an FPGA. The benefit of type invariants is that
they provide a powerful means to express different finite rep-
resentations of data. Our implementation employs a language
primitive (i.e. stage) for dividing up the datapath into stages.
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This requires a simple timing analysis to ensure registers
are balanced. In addition, it automatically exploits task-level
parallelism by converting the input program into a dataflow
graph. Unbound loops present a challenge and further work
is needed to investigate optimal solutions. In the future, we
wish to exploit compile-time verification in Whiley to verify
properties of the generated hardware systems.

Acknowledgements. Thanks for John Grant for helpful com-
ments on an earlier draft of this paper.
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