
ByteCode 2011

Implementing a Language with Flow-Sensitive and
Structural Typing on the JVM

David J. Pearce1

School of Engineering and Computer Science
Victoria University of Wellington, NZ

James Noble2

School of Engineering and Computer Science
Victoria University of Wellington, NZ

Abstract

Dynamically typed languages are flexible and impose few burdens on the programmer. In contrast, static typing
leads to software that is more efficient and has fewer errors. However, static type systems traditionally require
every variable to have one type, and that relationships between types (e.g. subclassing) be declared explicitly.
The Whiley language aims to hit a sweet spot between dynamic and static typing. This is achieved through
structural subtyping and by typing variables in a flow-sensitive fashion. Whiley compiles to the JVM, and this
presents a number of challenges. In this paper, we discuss the implementation of Whiley’s type system on the
JVM.

Keywords: Flow-Sensitive, Structural Subtyping, Java, JVM

1 Introduction

Statically typed programming languages (e.g. Java, C#, C++, etc) lead to programs
which are more efficient and have fewer errors [11,2]. Static typing forces some
discipline on the programming process. For example, it ensures at least some doc-
umentation regarding acceptable function inputs is provided. In contrast, dynami-
cally typed languages are more flexible which helps reduce overheads and increase
productivity [37,47,34,7]. Furthermore, in recent times, there has been a significant
shift towards dynamically typed languages [38].

1 Email: djp@ecs.vuw.ac.nz
2 Email: kjx@ecs.vuw.ac.nz

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:djp@ecs.vuw.ac.nz
mailto:kjx@ecs.vuw.ac.nz

Pearce, Noble

Numerous attempts have been made to bridge the gap between static and dy-
namic languages. Scala [45], C#3.0 [6], OCaml [43] and, most recently, Java 7 all
employ local type inference (in some form) to reduce syntactic overhead. Tech-
niques such as gradual typing [46,50], soft typing [11] and hybrid typing [20] en-
able a transitory position where some parts of a program are statically typed, and
others are not. Alternatively, type inference can be used (in some situations) to re-
construct types “after the fact” for programs written in dynamic languages [3,23].

Whiley is a statically-typed language which, for the most part, has the look and
feel of a dynamic language. This is achieved with an extremely flexible type system
which utilises the following features:
• Flow-sensitive types, which are adopted from flow-sensitive program analysis

(e.g. [22,30,14]) and allow variables to have different types at different points.
• Structural Subtyping, where subtyping between data types is implict and based

on their structure.

Taken together, these offer several advantages over traditional nominal typing,
where types are named and subtyping relationships explicitly declared.

1.1 Contributions

The contributions of this paper are:

(i) We discuss the flow-sensitive and structural typing system used in the Whiley
language.

(ii) We detail our implementation of these features on the JVM, and identify a
number of challenges.

An open source implementation of the Whiley language is freely available from
http://whiley.org. Finally, a detailed formalisation of Whiley’s type sys-
tem, including some discussion of JVM implementation, can be found here [39].

2 Whiley

In this section, we present a series of examples showing Whiley’s key features. In
the following section, we’ll discuss their implementaiton in the JVM.

2.1 Implicit Declaration

Most contemporary statically typed languages require variables be explicitly de-
clared (FORTRAN is one exception here). Compared with dynamically typed lan-
guages, this is an extra burden for the programmer, particularly when a variable’s
type can be inferred from assigned expression(s). In Whiley, local variables are
declared by assignment:

2

http://whiley.org

Pearce, Noble

int average([int] items):
v = 0
for i in items:

v = v + items[i]
return v / |items|

Here, items is a list of ints, whilst |items| returns its length. The variable
v is used to accumulate the sum of all elements in the list. Variable v is declared
by the assignment from 0 and, since this has type int, v has type int after the
assignment.

2.2 Union Types

Nullable references have proved a significant source of error in languages such as
Java [29]. The issue is that, in such languages, one can treat nullable references
as though they are non-null references [40]. Many solutions have been proposed
which strictly distinguish these two forms using static type systems [18,17,41,35].

Whiley’s type system lends itself naturally to handling this problem because it
supports union types (see e.g. [5,31]). These allow variables to hold values from
different types, rather than just one type. The following illustrates:

null|int indexOf(string str, char c):
...

[string] split(string str, char c):
idx = indexOf(str,c)
if idx ∼= int:

// matched an occurrence
below = str[0..idx]
above = str[idx..]
return [below,above]

else:
return [str] // no occurrence

Here, indexOf() returns the first index of a character in the string, or null if
there is none. The type null|int is a union type, meaning it is either an int or
null.

In the above example, Whiley’s type system seamlessly ensures that null is
never dereferenced. This is because the type null|int cannot be treated as an
int. Instead, we must first perform a runtime type test to ensure it is an int.
Whiley automatically retypes idx to int when this is known to be true, thereby
avoiding any awkward and unnecessary syntax (e.g. a cast as required in [4,35]).

3

Pearce, Noble

2.3 Flow-Sensitive Typing

The following code shows the definition of a simple hierarchy of Shapes in Whiley,
and a function that returns the area of any of these three types of Shapes.

define Circle as {int x, int y, int radius}
define Square as {int x, int y, int dimension}
define Rectangle as {int x, int y,

int width, int height}

define Shape as Circle | Square | Rectangle

real area(Shape s):
if s ∼= Circle:

return PI * s.radius * s.radius
else if s ∼= Square:

return s.dimension * s.dimension
else:

return s.width * s.height

A Shape is a union type — either a Circle, Square or Rectangle
(which are all themselves record types). The code employs a runtime type test,
“s ∼= Circle”, to distinguish the different kinds of Shapes. This is similar
to Java’s instanceof or Eiffel’s reverse assignment. Unlike Java, Whiley re-
types s to be of type Circle on the true branch of the if statement, so there
is no need to cast s explicitly to Circle before accessing the Circle-specific
field radius. Similary, on the false branch, Whiley retypes s to the union type
Square|Rectangle, and then to Square or Rectangle within the next if.

Implementing these Shapes in most statically-typed languages would be more
cumbersome and more verbose. In modern object-oriented languages, like Java,
expressions must still be explicitly retyped. For example, after a test such as
s instanceof Circle, we must introduce a new variable, say c, with type
Circle as an alias for s, and use c whenever we wanted to access s as a circle.

2.4 Structural Subtyping

Statically typed languages, such as Java, employ nominal typing for recursive data
types. This results in rigid hierarchies which are often difficult to extend. In con-
trast, Whiley employs structural subtyping of records [10] to give greater flexibility.
For example, the following code defines a Border record:

define Border as {int x, int y, int width, int height}

Any instance of Border has identical structure to an instance of Rectangle.
Thus, wherever a Border is required, a Rectangle can be provided and vice-

4

Pearce, Noble

versa — even if the Border definition was written long after the Rectangle,
and even though Rectangle makes no mention of Border.

The focus on structural, rather than nominal, types in Whiley is also evident in
the way instances are created:

bool contains(int x, int y, Border b):
return b.x <= x && x < (b.x + b.width) &&

b.y <= y && y < (b.y + b.height)

bool example(int x, int y):
rect = {x: 1, y: 2, width: 10, height: 3}
return contains(x,y,rect)

Here, function example() creates a record instance with fields x, y, width and
height, and assigns each an initial value. Despite not being associated with a
name, such as Border or Rectangle, it can be freely passed into functions
expecting such types, since they have identical structure.

2.5 Value Semantics

In Whiley, all compound structures (e.g. lists, sets, and records) have value se-
mantics. This means they are passed and returned by-value (as in Pascal, or most
functional languages) — but unlike functional languages (and like Pascal) values
of compound types can be updated in place.

Value semantics implies that updates to the value of a variable can only affect
that variable, and the only way information can flow out of a procedure is through
that procedure’s return value. Furthermore, Whiley has no general, mutable heap
comparable to those found in object-oriented languages. Consider the following:

int f([int] xs):
ys = xs
ys[0] = 1
...

The semantics of Whiley dictate that, having assigned xs to ys as above, the sub-
sequent update to ys does not affect xs. Arguments are also passed by value,
hence xs is updated inside f() and this does not affect f’s caller. That is, changes
can only be communicated out of a function by explictly returning a value.

Whiley also provides strong guarantees regarding subtyping of primitive types
(i.e. integers and reals). In Whiley, ints and reals represent unbounded integers
and rationals, which ensures int ≤ real has true subset semantics (i.e. every
int can be represented by a real). This is not true for e.g. Java, where there
are int (resp. long) values which cannot be represented using float (resp.
double) [26, §5.1.2].

5

Pearce, Noble

2.6 Incremental Construction

A common pattern arises in statically typed languages when a structure is built up
piecemeal. Usually, the pieces are stored in local variables until all are available
and the structure can be finally created. In dynamic languages it is much more
common to assign pieces to the structure as they are created and, thus, at any given
point a partially complete version of the structure is available. This reduces syn-
tactic overhead, and also exposes opportunities for code reuse. For example, the
partial structure can be passed to functions that can operate on what is available. In
languages like Java, doing this requires creating a separate (intermediate) object.

In Whiley, structures can also be constructed piecemeal. For example:

BinOp parseBinaryExpression():
v = {} // empty record
v.lhs = parseExpression()
v.op = parseOperator()
v.rhs = parseExpression()
return v

After the first assignment, v is an empty record. Then, after the second it has type
{Expr lhs}, after the third it has type {Expr lhs, Op op}, and after the
fourth it has type {Expr lhs,Expr rhs,Op op}. This also illustrates the
benefits of Whiley’s value semantics with update: the value semantics ensure that
there can never be any alias to the value contained in v; while updates permit v to
be built imperatively, one update at a time.

2.7 Structural Updates

Static type systems normally require updates to compound types, such as list and
records, to respect the element or field type in question. Whiley’s value seman-
tics also enables flexible updates to structures without the aliasing problems that
typically arise in object-oriented languages. For example, assigning a float to
an element of an int array is not permitted in Java. To work around this, pro-
grammers typically either clone the structure in question, or work around the type
system using casting (or similar).

In Whiley, updates to lists and records are always permitted. For example:

define Point as {int x, int y}
define RealPoint as {real x, real y}

RealPoint normalise(Point p, int w, int h):
p.x = p.x / w
p.y = p.y / h
return p

6

Pearce, Noble

Here, the type of p is updated to {real x,int y} after p.x is assigned, and
{real x,real y} after p.y is assigned. Similarly, for lists we could write:

[real] normalise([int] items, int max):
for i in 0..|items|:

items[i] = items[i] / max
return items

Here, the type of items is updated to [real] by the assignment. Thus, Whiley’s
type system permits an in-place update from integer to real without requiring any
explicit casts, or other type system abuses (e.g. exploiting raw types, such as List,
in Java).

3 Implementation on the JVM

The Whiley language compiles down to Java bytecode, and runs on the JVM. In
this section, we outline how Whiley’s data types are represented on the JVM.

3.1 Numerics

Whiley represents numbers on the JVM in a similar fashion to Clojure [28]. More
specifically, ints and reals are represented using custom BigInteger and
BigRational classes which automatically resize to prevent overflow. Whiley
requires that integers are truly treated as subtypes of reals. For example:

real f(int x):
if x >= 10:

x = 9.99
return x

At the control-flow join after the if statement, x holds either an int or a real.
Since real values are implemented as BigRationals on the JVM, we must
coerce x from a BigInteger on the false branch.

3.2 Records

The implementation of Whiley’s record types must enable structural subtyping.
A simple approach (used in many dynamic languages), is to translate them as
HashMaps which map field names to values. This ensures that record objects
can be passed around freely, provided they have the required fields.

One issue with this approach, is that each field access requires a HashMap
lookup which, although relatively fast, does not compare well with Java (where
field accesses are constant time). Whiley’s semantics enable more efficient imple-
mentations. In particular, the type {int x} is a record containing exactly one

7

Pearce, Noble

field x. Thus, records can have a static layout to give constant time access [40].
For example, records can be implemented on the JVM using arrays of references,
rather than HashMaps. In this approach, every field corresponds to a slot in the
array whose index is determined by a lexicographic ordering of fields.

To implement records using a static layout requires the compiler to insert coer-
cions to support subtyping. Consider the following:

define R1 as {int x, int y}
define R2 as {int y}

R1 r1 = {x: 10, y: 20}
R2 r2 = r1

Let us assume our records are implemented using a static layout where fields are
ordered alphabetically. Thus, in R1, field x occupies the first slot, and field y the
second. Similarly, field y corresponds to the first slot of R2 and, hence, R1 is not
compatible with R2. Instead, we must convert an instance of R1 into an instance
of R2 by constructing a new array consisting of a single field, and populating that
with the second slot (i.e. field y). This conversion is safe because of Whiley’s value
semantics — that is, two variables’ values can never be aliased.

3.3 Collections

Whiley provides first-class lists, sets and maps which are translated on the JVM
into ArrayLists, HashSets and HashMaps respectively. Of course, all these
collection types must have value semantics in Whiley. Recall that, in the following,
updating ys does not update xs:

int f([int] xs):
ys = xs
ys[0] = 1
...

A naive translation of this code to the JVM would clone() the ArrayList
referred to by xs, and assign this to ys. This can result in a lot of unnecessary
copying of data and there are several simple strategies to reduce this cost:

(i) Use a CopyOnWriteArrayList to ensure that a full copy of the data is
only made when it is actually necessary.

(ii) Use an intraprocedural dataflow analysis to determine when a variable is no
longer used. For example, in the above, if xs is not live after the assignment
to ys then cloning it is unnecessary.

(iii) Exploit compiler inferred read-only modifiers for function parameters.
Such modifiers can be embedded into the JVM bytecode, and used to iden-
tify situations when an argument for an invocation does not need to be cloned.

8

Pearce, Noble

Currently, we employ only CopyOnWriteArrayLists to improve perfor-
mance, although we would like to further examine the benefits of those other ap-
proaches.

3.4 Runtime Type Tests

Implementing runtime type tests on the JVM represents something of a challenge.
Whilst many runtime type tests translate directly using appropriate instanceof
tests, this is not always the case:

int f(real x):
if x ∼= int:

return x
return 0

Although Whiley ints are implemented as Java BigIntegers, this test cannot
be translated to “e instanceof BigInteger”. This is because of Whiley’s
subtyping rules: xwill be implemented by an instance of BigRational on entry,
but because Whiley ints are subtypes of Whiley reals, the subtype check should
succeed if the actual real passed in is actually an integer. The test is therefore trans-
lated into a check to see whether the given BigRational instance corresponds
to an integer or not.

Union types also present a challenge because distinguishing the different cases
is not always straightforward. For example:

define data as [real] | [[int]]

int f(data d):
if d ∼= [[int]]:

return |d[0]|
return |d|

Since variable d is guaranteed to be a list of some sought, its type on entry is
translated to List on the JVM. Thus, Whiley cannot use an instanceof test on
d directly to distinguish the two cases. Instead, we must examine the first element
of the list and test this. Thus, if the first element of the list is itself a list, then the
true branch is taken 3 .

The following example presents another interesting challenge:

int f([real] d):
if d ∼= [int]:

return d[0]
return 0

3 Note that in the case of an empty list, then type test always holds

9

Pearce, Noble

To translate this test, we must loop over every element in the list and check whether
or not it is an integer. Furthermore, if this is the case, we must convert the list into
a list of BigInteger, rather than BigRational.

Finally, records present an interesting issue. Consider the following example:

define Rt as {int x, int y} | {int x, int z}

int unpackSecond(Rt r):
if r ∼= {int x,int y}:

return r.y
return r.z

Since variable r is guaranteed to be a record of some sort, its type on entry is
translated as Object[]. Thus, implementing the type test using instanceof
does not make sense, as this will not distinguish the two different kinds of record.
Instead, we must check whether r has fields x and y, or not. To support this, the
representation of records must also associate the corresponding field name with
each slot in the Object[] array. This is achieved by reserving the first slot of the
array as a reference to an array of field names, each of which identifies the name of
a remaining slot from the outer array.

Distinguishing between different record types can be optimised by reducing the
number of field presence checks. For example, in the above, there is little point
in checking for the presence of field x, since it is guaranteed in both cases. The
Whiley compiler generates the minimal number of field checks to be certain which
of the possible cases is present.

4 Related Work

In this section, we concentrate primarily on work relating to Whiley’s flow-sensitive
type system.

4.1 Dataflow Analysis

Flow-sensitive dataflow analysis has been used to infer various kinds of infor-
mation, including: flow-sensitive type qualifiers [21,22,12,17,27,13,1,41,4,35], in-
formation flow [30,44,36], typestates [49,19,8], bytecode verification [33,32] and
more.

Type qualifiers constrain the possible values a variable may hold. CQual is
a flow-sensitive qualifier inference supporting numerous type qualifiers, including
those for synchronisation and file I/O [21,22]. CQual does not account for the
effects of conditionals and, hence, retyping is impossible. The work of Chin et al.
is similar, but flow-insensitive [12,13] JQual extended these systems to Java, and
considered whole-program (flow-insensitive) inference [27]. AliasJava introduced

10

Pearce, Noble

several qualifiers for reasoning about object ownership [1]. The unique qualifier
indicates a variable holds the only reference to an object; similarly, owned is used
to confine an object to the scope of its enclosing “owner” object.

Fähndrich and Leino discuss a system for checking non-null qualifiers in the
context of C# [18]. Here, variables are annotated with NonNull to indicate they
cannot hold null. Non-null qualifiers are interesting because they require vari-
ables be retyped after conditionals (i.e. retyping v from Nullable to NonNull
after v!=null). Fähndrich and Leino hint at the use of retyping, but focus pri-
marily on issues related to object constructors. Ekman et al. implemented this sys-
tem within the JustAdd compiler, although few details are given regarding variable
retyping [17]. Pominville et al. also briefly discuss a flow-sensitive non-null analy-
sis built using SOOT, which does retype variables after !=null checks [41]. The
JACK tool is similar, but focuses on bytecode verification instead [35]. This extends
the bytecode verifier with an extra level of indirection called type aliasing. This en-
ables the system to retype a variable x as @NonNull in the body a if(x!=null)
conditional. The algorithm is formalised using a flow-sensitive type system oper-
ating on Java bytecode. JavaCOP provides an expressive language for writing type
system extensions, including non-null types [4]. This system is flow-insensitive
and cannot account for the effects of conditionals; as a work around, the tool al-
lows assignment from a nullable variable x to a non-null variable if this is the first
statement after a x!=null conditional.

Information Flow Analysis is the problem is tracking the flow of information,
usually to restrict certain flows based for security reasons. The work of Hunt and
Sands is relevant here, since they adopt a flow-sensitive approach [30]. Their sys-
tem is presented in the context of a simple While language not dissimilar to ours,
although they do not account for the effect of conditionals. Russo et al. use an
extended version of this system to compare dynamic and static approaches [44].
They demonstrate that a purely dynamic system will reject programs that are con-
sidered type-safe under the Hunt and Sands system. JFlow extends Java with stat-
ically checked flow annotations which are flow-insensitive [36]. Finally, Chugh
et al. developed a constraint-based (flow-insensitive) information flow analysis of
JavaScript [15].

Typestate Analysis focuses on flow-sensitive reasoning about the state of ob-
jects, normally to enforce temporal safety properties. Typestates are finite-state au-
tomatons which can encode usage rules for common APIs (e.g. a file is never read
before being opened), and were pioneered by Strom and Yellin [48,49]. Fink et
al. present an interprocedural, flow-sensitive typestate verification system which is
staged to reduce overhead [19]. Bodden et al. develop an interprocedural typestate
analysis which is flow-sensitive at the intra-procedural level [9]. This is a hybrid
system which attempts to eliminate all failure points statically, but uses dynamic
checks when necessary. This was later extended to include a backward propagation
step that improves precision [8].

11

Pearce, Noble

Java Bytecode Verification requires a flow-sensitive typing algorithm [33].
Since locals and stack locations are untyped in Java Bytecode, it must infer their
types to ensure type safety. Like Whiley, the verifier updates the type of a vari-
able after an assignment, and combines types at control-flow join points using a
least upper bound operator. However, it does not update the type of a variable af-
ter an instanceof test. Furthermore, the Java class hierarchy does not form a
join semi-lattice. To deal with this, the bytecode verifier uses a simplified least up-
per bound operator which ignores interfaces altogether, instead relying on runtime
checks to catch type errors (see e.g. [32]). However, several works on formalis-
ing the bytecode verifier have chosen to resolve this issue with intersection types
instead (see e.g. [25,42]).

Gagnon et al. present a technique for converting Java Bytecode into an inter-
mediate representation with a single static type for each variable [24]. Key to this
is the ability to infer static types for the local variables and stack locations used in
the bytecode. Since local variables are untyped in Java bytecode, this is not always
possible as they can — and often do — have different types at different points; in
such situations, a variable is split as necessary into multiple variables each with a
different type.

Dubochet and Odersky [16] describe how structural types are implemented in
Scala in some detail, and compare reflexive and generative approaches to imple-
menting methods calls on structural types. They recognise that structural types
always impose a penalty on current JVMs, but describe how both techniques gen-
erally provide sufficient performance in practice — about seven times slower than
Java interface calls in the worse case.

5 Conclusion

The Whiley language implements a flow-sensitive and structural type system on the
JVM. This permits variables to be declared implicitly, have multiple types within
a function, and be retyped after runtime type tests. The result is a statically-typed
language which, for the most part, has the look and feel of a dynamic language. In
this paper, we have discussed various details relating to Whiley’s implementation
on the JVM. Finally, an open source implementation of the Whiley language is
freely available from http://whiley.org.

References

[1] J. Aldrich, V. Kostadinov, and C. Chambers. Alias Annotations for Program Understanding. In Proc.
OOPSLA, pages 311–330, 2002.

[2] D. Ancona, M. Ancona, A. Cuni, and N. D. Matsakis. RPython: a step towards reconciling dynamically
and statically typed OO languages. In Proc. DLS, pages 53–64. ACM Press, 2007.

12

http://whiley.org

Pearce, Noble

[3] C. Anderson, P. Giannini, and S. Drossopoulou. Towards type inference for javascript. In Proc. ECOOP,
volume 3586 of LNCS, pages 428–452. Springer-Verlag, 2005.

[4] C. Andreae, J. Noble, S. Markstrum, and T. Millstein. A framework for implementing pluggable type
systems. In Proc. OOPSLA, pages 57–74. ACM Press, 2006.

[5] F. Barbanera and M. Dezani-CianCaglini. Intersection and union types. In Proc. of TACS, volume 526 of
LNCS, pages 651–674, 1991.

[6] G. Bierman, E. Meijer, and M. Torgersen. Lost in translation: formalizing proposed extensions to C#. In
Proc. OOPSLA, pages 479–498, 2007.

[7] B. Bloom, J. Field, N. Nystrom, J. Östlund, G. Richards, R. Strnisa, J. Vitek, and T. Wrigstad. Thorn:
robust, concurrent, extensible scripting on the JVM. In Proc. OOPSLA, pages 117–136, 2009.

[8] E. Bodden. Efficient hybrid typestate analysis by determining continuation-equivalent states. In Proc.
ICSE, pages 5–14, 2010.

[9] E. Bodden, P. Lam, and L. J. Hendren. Finding programming errors earlier by evaluating runtime monitors
ahead-of-time. In Proc. ESEC/FSE, pages 36–47. ACM Press, 2008.

[10] L. Cardelli. Structural subtyping and the notion of power type. In Proc. POPL, pages 70–79. ACM Press,
1988.

[11] R. Cartwright and M. Fagan. Soft typing. In Proc. PLDI, pages 278–292. ACM Press, 1991.

[12] B. Chin, S. Markstrum, and T. Millstein. Semantic type qualifiers. In Proc. PLDI, pages 85–95. ACM
Press, 2005.

[13] B. Chin, S. Markstrum, T. Millstein, and J. Palsberg. Inference of user-defined type qualifiers and qualifier
rules. In Proc. ESOP, 2006.

[14] J.-D. Choi, M. Burke, and P. Carini. Efficient flow-sensitive interprocedural computation of pointer-
induced aliases and side effects. In Proc. POPL, pages 232–245. ACM Press, 1993.

[15] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner. Staged information flow for javascript. In Proc. PLDI,
pages 50–62, 2009.

[16] G. Dubochet and M. Odersky. Compiling structural types on the JVM. In ECOOP 2009 Workshop
on Implementation, Compilation, Optimization of Object-Oriented Languages, Programs and Systems
(ICLOOPS), 2009.

[17] T. Ekman and G. Hedin. Pluggable checking and inferencing of non-null types for Java. JOT, 6(9):455–
475, 2007.

[18] M. Fähndrich and K. R. M. Leino. Declaring and checking non-null types in an object-oriented language.
In Proc. OOPSLA, pages 302–312. ACM Press, 2003.

[19] S. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay. Effective typestate verification in the presence
of aliasing. ACM TOSEM, 17(2):1–9, 2008.

[20] C. Flanagan. Hybrid type checking. In Proc. POPL, pages 245–256. ACM Press, 2006.

[21] J. S. Foster, M. Fähndrich, and A. Aiken. A theory of type qualifiers. In Proc. PLDI, pages 192–203.
ACM Press, 1999.

[22] J. S. Foster, T. Terauchi, and A. Aiken. Flow-sensitive type qualifiers. In Proc. PLDI, pages 1–12. ACM
Press, 2002.

[23] M. Furr, J.-H. An, J. Foster, and M. Hicks. Static type inference for Ruby. In Proc. SAC, pages 1859–
1866. ACM Press, 2009.

[24] E. Gagnon, L. Hendren, and G. Marceau. Efficient inference of static types for java bytecode. In Proc.
SAS, pages 199–219, 2000.

[25] A. Goldberg. A specification of java loading and bytecode verification. In Proc. CCS, pages 49–58, 1998.

[26] J. Gosling, G. S. B. Joy, and G. Bracha. The Java Language Specification, 3rd Edition. Prentice Hall,
2005.

13

Pearce, Noble

[27] D. Greenfieldboyce and J. S. Foster. Type qualifier inference for java. In Proc. OOPSLA, pages 321–336.
ACM Press, 2007.

[28] S. Halloway. Programming Clojure. Pragmatic Programmers, 2009.

[29] T. Hoare. Null references: The billion dollar mistake, presentation at qcon, 2009.

[30] S. Hunt and D. Sands. On flow-sensitive security types. In Proc. POPL, pages 79–90. ACM Press, 2006.

[31] A. Igarashi and H. Nagira. Union types for object-oriented programming. JOT, 6(2), 2007.

[32] X. Leroy. Java bytecode verification: algorithms and formalizations. Journal of Automated Reasoning,
30(3/4):235–269, 2003.

[33] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison Wesley, second edition,
1999.

[34] R. P. Loui. In praise of scripting: Real programming pragmatism. IEEE Computer, 41(7):22–26, 2008.

[35] C. Male, D. J. Pearce, A. Potanin, and C. Dymnikov. Java bytecode verification for @NonNull types. In
Proc. CC, pages 229–244, 2008.

[36] A. C. Myers. JFlow: Practical mostly-static information flow control. In Proc. POPL, pages 228–241,
1999.

[37] J. K. Ousterhout. Scripting: Higher-level programming for the 21st century. IEEE Computer, 31(3):23–
30, 1998.

[38] L. D. Paulson. Developers shift to dynamic programming languages. IEEE Computer, 40(2):12–15,
2007.

[39] D. J. Pearce and J. Noble. Flow-sensitive types for whiley. Technical Report ECSTR10-23, Victoria
University of Wellington, 2010.

[40] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.

[41] P. Pominville, F. Qian, R. Vallée-Rai, L. Hendren, and C. Verbrugge. A framework for optimizing Java
using attributes. In Proc. CC, pages 334–554, 2001.

[42] C. Pusch. Proving the soundness of a java bytecode verifier specification in isabelle/hol. In Proc. TACAS,
pages 89–103, 1999.

[43] D. Remy and J. Vouillon. Objective ML: An effective object-oriented extension to ML. Theory and
Practice of Object Systems, 4(1):27–50, 1998.

[44] A. Russo and A. Sabelfeld. Dynamic vs. static flow-sensitive security analysis. In Proc. CSF, pages
186–199, 2010.

[45] The scala programming language. http://lamp.epfl.ch/scala/.

[46] J. Siek and W. Taha. Gradual typing for objects. In Proc. ECOOP, volume 4609 of LNCS, pages 151–175.
Springer-Verlag, 2007.

[47] D. Spinellis. Java makes scripting languages irrelevant? IEEE Software, 22(3):70–71, 2005.

[48] R. Strom and S. Yemini. Typestate: A programming language concept for enhancing software reliability.
IEEE TSE, 12(1):157–171, 1986.

[49] R. E. Strom and D. M. Yellin. Extending typestate checking using conditional liveness analysis.
IEEE TSE, 19(5):478–485, 1993.

[50] T. Wrigstad, F. Z. Nardelli, S. Lebresne, J. Östlund, and J. Vitek. Integrating typed and untyped code in a
scripting language. In Proc. POPL, pages 377–388. ACM Press, 2010.

14

	Introduction
	Contributions

	Whiley
	Implicit Declaration
	Union Types
	Flow-Sensitive Typing
	Structural Subtyping
	Value Semantics
	Incremental Construction
	Structural Updates

	Implementation on the JVM
	Numerics
	Records
	Collections
	Runtime Type Tests

	Related Work
	Dataflow Analysis

	Conclusion
	References

