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1. INTRODUCTION

Pointer analysis is the problem of determining statically what the pointer variables
in a program may target. Consider the following C program:

void foo() {

int *p,*q,a,b;

p = &a;

if(...) q = p;

else q = &b;

/* point P1 */

...

}

Here a pointer analysis concludes that, during any execution of the program,
the following will hold at P1: p points-to a and q points-to a or b. We write
p 7→{a} ∧ q 7→{a, b} to state this formally, where {a} and {a, b} are the target sets
of p and q respectively. A solution is sound if the target set obtained for each vari-
able contains all its actual runtime targets. Thus, q 7→ {a} is an unsound solution
for the above because q can also point to b. A solution is imprecise if an inferred
target set is larger than necessary and the superfluous targets are called spurious.
So, for the above example, an imprecise (but sound) solution for p is p 7→ {a, b}.
In general, obtaining a perfectly precise and sound solution is undecidable [Landi
1992b; Ramalingam 1994] and, in practice, even relatively imprecise information
is expensive. The applications of pointer analysis are many, but perhaps the most
important uses today are in Compilers and Software Engineering.

Compilers. Modern superscalar and VLIW processors require sufficient Instruc-
tion Level Parallelism (ILP) to reach peak utilisation. For this reason, exposing
ILP through instruction scheduling and register allocation is a crucial role of the
compiler. This task is complicated by the presence of instructions which indirectly
reference memory, since their data dependencies are not known. For languages such
as C/C++, this problem is particularly acute because pointer variables (the main
source of indirect memory references) can target practically every memory loca-
tion without restriction. Therefore, to achieve maximum pipeline throughput, the
compiler must rely on pointer analysis to disambiguate indirect memory references.

Automatic parallelisation is another example of how the compiler can achieve a
speedup by exposing parallelism within the program. This type of transformation
is performed at a higher level than those for ILP and, hence, larger gains are
possible. Indeed, much success has been achieved through automatic parallelisation
of numerical FORTRAN programs (e.g. [Padua et al. 1980; Wolfe 1982; Padua and
Wolfe 1986; McKinley 1994; So et al. 1998]). However, similar results have yet
to be seen on programs written in C/C++ or Java. The main reason for this is
simply that, without precise information about pointer targets, compilers for these
languages cannot perform automatic parallelisation safely.

Finally, pointer analysis finds many other important uses within the compiler. In
particular, it often enables traditional optimisations (e.g. common sub-expression
elimination) to be applied at places which would otherwise be deemed unsafe.
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Software Engineering. Reliability of large software systems is a difficult prob-
lem facing software engineering. Subtle programming errors, which go undetected
during testing, can have disastrous consequences. An historic example is the 1988
worm which caused havoc by infecting large parts of the internet [Eichin and Rochlis
1989]. The worm replicated by exploiting a buffer overrun vulnerability in the
fingerd daemon, which existed through programming error. This type of mistake
is usually associated with the misuse of pointers and accounts for the majority of
security holes in modern software [Wagner et al. 2000]. One approach to tackling
these problems is to construct tools which either aid program understanding or,
in some way, check for programming error. Examples of the former include pro-
gram slicers (e.g. [Reps and Turnidge 1996; Ball and Horwitz 1993; Harman et al.
2003; Binkley 1998]), static debuggers (e.g. [Bourdoncle 1993a; Flanagan 1997])
and software visualisers (e.g. [Jones et al. 2002; Systä et al. 2000; Myers 1986;
Reiss 1997]). Examples of tools which check for programming error can usually be
divided into two camps: static analysis tools (e.g. [Dor et al. 2003; Flanagan et al.
2002; Blanchet et al. 2002; 2003; Wagner et al. 2000]) and model checkers (e.g.
[The Vis Group 1996; Godefroid 1997; Alur et al. 1998; Holzmann 1997; Henzinger
et al. 2003]). The former generally operate on programs directly, whilst the latter
operate on abstract models of programs. In languages such as C/C++ and Java,
pointer analysis is invariably found in all these tools where it forms a foundation
for other analyses.

The focus of this work is on developing efficient algorithms for field-sensitive
pointer analysis of C. The basic idea is that the precision of a pointer analysis can
be improved by distinguishing the fields of struct variables. Almost all previous
pointer analyses for C fail to do this properly for a variety of reasons: either they
treat fields of a struct variable as one (e.g. [Fähndrich et al. 1998; Hasti and
Horwitz 1998; Hind and Pioli 1998; Shapiro and Horwitz 1997]); or, they distin-
guish fields, but lose the ability to differentiate separate instances of a struct (e.g.
[Heintze and Tardieu 2001b; Andersen 1994; Ghiya et al. 2001]); or, they are unable
to analyse all but the simplest of programs (e.g. [Wilson and Lam 1995; Emami
et al. 1994; Landi 1992a]). The main contributions of this work are:

(1) An extension to the language of set-constraints, which elegantly formalises a
field-sensitive pointer analysis for the C language. As a byproduct, function
pointers are supported for free with this mechanism.

(2) For the first time, an O(v4) bound on the time needed for field-sensitive pointer
analysis of C is obtained, where v is the number of nodes in the constraint graph.

(3) The largest experimental investigation into the trade-offs in time and precision
of field-insensitive and -sensitive analyses for C. Our benchmark suite contains
11 common C programs, ranging in size from 15,000 to 200,000 lines of code.

(4) The identification of several previously unknown problems with a similar ap-
proach, known as field-based pointer analysis, when applied to the analysis of
C programs.
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Our technique is not the first field-sensitive, constraint-based pointer analysis for
C — previous work has covered this (see [Yong et al. 1999; Chandra and Reps
1999a]). Our claim then, is that we go beyond their initial treatment by consider-
ing efficient implementation and some important algorithmic issues not adequately
addressed before. In particular, our technique is designed specifically to work with
the points-to or solution sets implemented as integer sets. This permits the use of
data structures supporting efficient set union, such as bit vectors or sorted arrays,
which are necessary for scalable pointer analysis. Furthermore, we are the first to
obtain a complexity bound on the time needed to solve this problem. In doing this,
we find that the field-sensitive pointer analysis problem is fundamentally harder for
C than for Java. Indeed, while several previous field-sensitive pointer analyses for
Java are known (see e.g. [Rountev et al. 2001; Lhoták and Hendren 2003; Whaley
and Lam 2002]), these turn out to be insufficient when analysing C.

2. CONSTRAINT-BASED POINTER ANALYSIS

In this paper, we consider pointer analyses which are formulated using a general
approach to program analysis known as set constraints (or sometimes inclusion con-
straints). Set-constraint systems are not new and can be traced back to [Reynolds
1969; Jones and Muchnick 1981]. Through the work of Heintze, Aiken and others,
they have recently become a well established approach to program analysis (e.g.
[Heintze 1994; Aiken 1999; 1994; Aiken and Wimmers 1993; 1992]). Applications in
this field include control-flow analysis (e.g. [Heintze and McAllester 1997b; 1997a]),
debugging (e.g. [Wagner et al. 2000; Flanagan 1997]) and more. The first example
of a pointer analysis formulated using set constraints was that of Andersen [Ander-
sen 1994] and, since then, many have followed (e.g. [Foster et al. 1997; Fähndrich
et al. 1998; Heintze and Tardieu 2001b; Ghiya et al. 2001; Rountev et al. 2001;
Lhoták and Hendren 2003; Pearce et al. 2004b]). Set constraints are not the only
way of performing pointer analysis and other techniques, particularly abstract in-
terpretation (e.g. [Emami et al. 1994; Wilson and Lam 1995; Landi 1992a; Hind
et al. 1999]) and unification (e.g. [Steensgaard 1996; Das 2000; Das et al. 2001]),
are popular. Understanding the differences between these different approaches is
not easy, although a common view holds that abstract interpretation is precise but
slow, while unification is fast but imprecise. Set constraints lie somewhere in the
middle — they are more precise than unification, but still capable of analysing pro-
grams with a hundred thousand lines of code or more (e.g. [Fähndrich et al. 1998;
Heintze and Tardieu 2001b; Lhoták and Hendren 2003; Pearce et al. 2004b]).

We now present our set-constraint formulation of the pointer analysis problem,
which is based upon the following language:

p ⊇ q | p ⊇ {q} | p ⊇ ∗q | ∗p ⊇ q

Here, p and q are constraint variables and ∗ is the usual dereference operator. We
can think of each constraint variable as containing the set of variables it points
to. Thus, p ⊇ {x} states p may point to x. Those involving “∗” are referred to as
complex constraints. Those knowledgeable about set constraints will notice a lack of
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[trans]
p ⊇ {q} r ⊇ p

r ⊇ {q}
[deref1]

p ⊇ ∗q q ⊇ {r}
p ⊇ r [deref2]

∗p ⊇ q p ⊇ {r}
r ⊇ q

Fig. 1. An inference system for pointer analysis

general constructors and projection. Essentially, we have simplified the traditional
set-constraint system by specialising it to our problem domain.

To perform the analysis we first translate the source program into the set-
constraint language, by mapping each source variable to a unique constraint variable
and converting assignments to constraints. Then, we solve the constraints to find
a least solution, which can be formalised as deriving all possible facts under the
inference system of Figure 1. An example program, along with its translation and
derived solution, is shown in Figure 2. Regarding the hardness of this problem, it
is well-known that a set of t constraints can be solved in O(t3) time [Melski and
Reps 1997; Heintze 1994]. For completeness, we provide a similar proof here:

Lemma 2.1. A set of t constraints can be solved in O(t3) time under the infer-
ence system of Figure 1.

Proof. This result stems from two facts: firstly, the total number of trivial
constraints generated (i.e. those of the form p ⊇ {q}) is bounded by O(v2), where
v is the number of variables; secondly, at most O(v2) simple constraints (i.e. those
of the form p ⊇ q) are possible. From these it follows that, in the worse case,
the trans rule must be applied O(v3) times, since at most v trivial constraints can
be propagated across each simple constraint. Note, the deref rules need only be
applied O(tv) times, since each dereferenced variable has O(v) targets and there are
O(t) complex constraints. Since v is O(t), we obtain an O(t3) bound on worst-case
solving time.

3. SOLVING THE ANALYSIS

Thus far, we have said the aim is to derive all possible facts using the inference
system of Figure 1. To do this efficiently, we formulate the constraints as a directed
graph, where each variable is represented by a unique node and each constraint
p ⊇ q by an edge p←q. In addition, we associate with each variable n a set Sol(n),
into which the points-to solution for n is accumulated. Thus, for the example of
Figure 2 we obtain the following graph:

p

v

s

r

f

{}

{} {}

{}

{}

{ x , y } { p }

q t
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int *f(int *v) { return v; } (1) f• ⊇ v

void g() {

int x,y,*p,*q,**r,**s,**t;

s=&p; (2) s ⊇ {p}

if(...) {

p=&x; (3) p ⊇ {x}
r=s; (4) r ⊇ s
t=r; (5) t ⊇ r
} else {

p=&y; (6) p ⊇ {y}
t=s; (7) t ⊇ s
}

q=f(*t); (8) v ⊇ ∗t
(9) q ⊇ f•

f(q); (10) v ⊇ q
}

(12) r ⊇ {p} (trans, 2 + 4)
(13) t ⊇ {p} (trans, 5 + 12)
(14) v ⊇ p (deref1, 8 + 13)
(15) v ⊇ {x} (trans, 3 + 14)
(16) v ⊇ {y} (trans, 6 + 14)
(17) f• ⊇ {x} (trans, 1 + 15)
(18) f• ⊇ {y} (trans, 1 + 16)
(19) q ⊇ {x} (trans, 9 + 17)
(20) q ⊇ {y} (trans, 9 + 18)

Fig. 2. An example illustrating how a simple program is translated into constraints and then
solved. The initial constraint set (shown above the line) is generated directly from the program
source. The inference rules of Figure 1 are then applied to obtain the complete derivation shown
below the line. We assume for simplicity that variable names are unique, which can easily be
achieved in practice by augmenting with the name of the enclosing method. Also, f• represents
the return value of f . The final solution for each variable is the smallest set satisfying the fully
derived constraint system. Thus, in the example, constraints 19+20 imply the smallest solution for
q is {x, y}. Therefore, our analysis concludes q 7→{x, y} holds at all points in the program. The key
point here is that we must derive all facts in order to make a sound conclusion. This is because
we cannot be sure that the solution for a given variable is complete until all facts are known. A
number of demand-driven systems have also been proposed (e.g. [Fähndrich et al. 2000; Heintze
and Tardieu 2001a; Vivien and Rinard 2001; Sridharan et al. 2005; Saha and Ramakrishnan 2005;
Kodumal and Aiken 2005]) which can often avoid deriving all facts (although not in the worst-
case). For the purposes of this work, however, we take the more traditional approach of assuming
that all facts must be derived and note that it would be interesting future work to extend our
analysis to be demand driven.
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In the above, we have placed Sol(n) for each variable n below its corresponding
node. This initially contains x iff n ⊇ {x} is in the initial constraint set. The dashed
edge, known as a complex edge, represents the complex constraint v ⊇ ∗t, with the
circle indicating which end is dereferenced. At this point, the constraints can be
solved by repeatedly selecting a (non-complex) edge x→y and merging Sol(x) into
Sol(y) until no change is observed. This is often referred to as converging or reach-
ing a fixpoint. During this process, new edges arising from the complex constraints
must be added to the graph. To see why, recall that our example contained the
complex constraint v⊇∗t. We know that, initially Sol(t) = ∅, but at some point
during the analysis Sol(t) ⊇ {p}. Clearly then, there is a dependence from p to
v and this could not have been known at graph construction time. Therefore, the
edge p→ v must be added as the solution for t becomes available. Thus, solving
the above constraint graph gives:

p

v

s

r

f

{ x , y } { p }

{ x , y }

{ x , y }

{ p }

{ p }{ x , y }

q t

Thus, a new edge has been added because of the constraint v⊇∗t. When reading
the constraint graph, we can determine what edges will be added by examining the
solution at the circle end of a complex edge: edges will be added between the nodes
in that solution and the node at the other end of the complex edge.

A useful observation is that nodes in the same cycle (when ignoring complex
edges) always end up with the same solution [Fähndrich et al. 1998; Heintze and
Tardieu 2001b]. So, in our example, nodes v, f• and q have the same final solution.
Therefore, we can simplify the graph by collapsing them into a single representa-
tive, giving:

s

rZ

{ x , y } { p }

{ p }

{ p }{ x , y }

{ x , y }

t

p
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The gain from this simplification comes from time saved by not propagating
targets between internal nodes. However, identifying these cycles is complicated by
the dynamic nature of the graph as edges added during solving may introduce new
cycles. Therefore, to exploit all such simplification opportunities we must be able
to efficiently determine when a newly added edge introduces a cycle.

In a similar vein, a technique we refer to as subsumed node compaction can also
help simplify the constraint graph. The idea, originally suggested by Rountev and
Chandra [Rountev and Chandra 2000], is illustrated by the following:

{ a,e } { a,b }

{ a }

{ }

w x

y

z

Here, x, y, z must have the same solution and, hence, can be collapsed into one.
Note, we assume here that y and z have not had their address taken and are not
targeted by a constraint such as y ⊇ ∗p. Rountev and Chandra provided a linear
time algorithm for detecting such opportunities in the constraint graph. Note, un-
like with cycle detection, new opportunities for applying this optimisation cannot
arise during the analysis.

The approach to solving set constraints we have presented is sometimes called
Standard Form (SF) [Aiken and Wimmers 1993]. An alternative to this, known
as Inductive Form (IF), is often described in the literature as a sparser and more
efficient representation [Su et al. 2000; Rountev et al. 2001]. In general, we find
there is little evidence to support this claim that IF is more efficient than SF: the
only experimental study is [Fähndrich et al. 1998]. This appears to show that
inductive form has an advantage over standard form. Unfortunately, this result
remains inconclusive because the cycle detection algorithm used did not identify
and collapse all cycles for efficiency reasons. Thus, it happens that under inductive
form the algorithm consistently collapses more cycles, giving it an apparent advan-
tage. However, we have since developed more efficient cycle detection algorithms
which can collapse all cycles under standard form, thereby eliminating this distinc-
tion between them [Pearce et al. 2003; 2004b]. Therefore, we cannot draw concrete
conclusions about the relative efficiency of either approach and, in general, equal
success has been achieved (e.g. [Heintze and Tardieu 2001b; Lhoták and Hendren
2003] versus [Rountev et al. 2001; Fähndrich et al. 1998]). For the purposes of
this paper, we are concerned only with Standard Form and, in the remainder, it is
assumed.
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3.1 Field-Sensitivity

So far, we have not indicated how struct variables should be handled by our anal-
ysis and there are three approaches: field-insensitive, where field information is
discarded by modelling each aggregate with a single constraint variable; field-based,
where one constraint variable models all instances of a field; and finally, field-
sensitive, where a unique variable models each field of an aggregate. The following
example aims to clarify this:

typedef struct { int *f1; int *f2; } aggr;

aggr a,b; (field-insensitive) (field-based) (field-sensitive)

int *c,d,e,f;

a.f1 = &d; a ⊇ {d} f1 ⊇ {d} af1 ⊇ {d}
a.f2 = &f; a ⊇ {f} f2 ⊇ {f} af2 ⊇ {f}
b.f1 = &e; b ⊇ {e} f1 ⊇ {e} bf1 ⊇ {e}
c = a.f1; c ⊇ a c ⊇ f1 c ⊇ af1

Conclude c 7→{d, f} c 7→{d, e} c 7→{d}

Here, the field-insensitive and field-based solutions are imprecise in different ways.
In general, their relative precision depends upon the program in question. For ex-
ample, analysing a program with many aggregates of the same type would likely be
better done with a field-insensitive analysis. This is because the field-based analysis
will combine the solution for each instance of a given field into one, thereby losing
a lot of information. In contrast, if the program has a small number of aggregates
with a large number of fields then the opposite will be true. By comparison, the
field-sensitive approach does not suffer such problems and obtains the best precision
in either situation.

Most previous set constraint-based pointer analyses are either field-insensitive
(e.g. [Foster et al. 2000; Hasti and Horwitz 1998; Hind and Pioli 2000; Fähndrich
et al. 1998]) or field-based (e.g. [Andersen 1994; Heintze and Tardieu 2001b; Ghiya
et al. 2001]). Algorithms for field-sensitive analysis are harder to develop and imple-
ment, which may explain why they have received less attention. Furthermore, the
majority of those which have been developed are for the analysis of Java [Rountev
et al. 2001; Liang et al. 2001; Whaley and Lam 2002; Lhoták and Hendren 2003].
For C, only three field-sensitive pointer analyses are known [Yong et al. 1999; Chan-
dra and Reps 1999a; Johnson and Wagner 2004] and this might stem from the fact
that, as will be shown in Section 4, it is a fundamentally harder problem than for
Java.

3.2 Indirect Function Calls

In the literature, function pointers are either dealt with in ad hoc ways (e.g. [Heintze
and Tardieu 2001b; Lhoták and Hendren 2003]) or through the lam constructor (e.g.
[Foster et al. 2000; 1997]). The latter uses a special rule for function application:
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[func]

∗p(w1, . . . , wn)
p ⊇ { lamv(v1, . . . , vn) }

∀1≤ i≤n. vi ⊇ wi

which is used to resolve indirect function calls in the following manner:

int *f(int *r) { return r; } (1) f• ⊇ r

int *(*p)(int*) = &f; (2) p ⊇ { lamf (r) }
int *q = ... ; (3) q ⊇ { . . . }
p(q); (4) ∗p(q)

(5) r ⊇ q (func, 2+4)
(6) . . .

Here, we see that constraints are introduced on-the-fly between the actual pa-
rameters and their caller values. The main issue here is the implementation of lam.
Certainly, we don’t wish to sacrifice the ability to implement solutions as integer
sets. One approach is to place the lam constructs into a table, so they are identified
by index. Thus, if care is taken to avoid clashes with the variable identifiers, the
two element types can co-exist in the same solution set. However, this is inelegant
as we must litter our algorithm with special type checks. For example, when deal-
ing with ∗p ⊇ q, we must check for lam values in Sol(p). In the next section, we
present a simple and elegant solution for dealing with indirect function calls which
forms part of our mechanism for field-sensitivity.

4. EXTENDING THE BASIC MODEL

We now present our approach to modelling indirect function calls and, in the fol-
lowing section, we will build upon this to obtain a field-sensitive analysis.

An important assumption of our approach is that each constraint variable is iden-
tified by a unique integer from {0 . . . n − 1}, where n is the number of constraint
variables. Thus, the solution sets can be represented by integer sets and this has
several advantages: firstly, the sets themselves can be stored in an array indexed
by variable identifier for fast lookup; secondly, common data structures for imple-
menting the solution sets (e.g. bit vectors, sorted arrays and balanced trees) are
most naturally suited to holding integers. For example, bit vector elements are ac-
cessed by index. Thus, when storing integers (from a finite range), element lookup
is fast because the (integer) element can directly index the vector. Storing anything
else requires mapping elements to indices — adding an extra level of indirection.
Arrays and trees benefit on both element lookup and set union since they can use
the machine’s internal (integer) comparison instruction, rather than a comparator
method which will likely be more expensive.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.
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[deref4]

p ⊇ ∗(q+k) q ⊇ {r}
idx(s) = idx(r)+k

idx(s) ≤ end(r)
p ⊇ s [deref5]

∗(p+k) ⊇ q p ⊇ {r}
idx(s) = idx(r)+k

idx(s) ≤ end(r)
s ⊇ q

Fig. 3. Extended Inference Rules.

The crucial observation is that using integer identifiers allows us to reference a
variable by an offset from another. Thus, we introduce the following forms:

p ⊇ ∗(q+k) | ∗(p+k) ⊇ q

Here k is an arbitrary constant and ∗(p+k) means “load Sol(p) into a temporary
set, add k to each element and dereference as before”. To understand this more
clearly, consider two variables x and y indexed by 2 and 3 respectively. If p 7→{x}
then ∗(p+1) ⊇ q evaluates to ∗({x}+1) ⊇ q, which is really ∗({2}+1)⊇ q, and
applying the addition gives ∗({2+1}) ⊇ q ≡ ∗({3}) ⊇ q ≡ ∗({y}) ⊇ q ≡ y ⊇ q. Of
course, when k=0, these new forms are equivalent to those of the original language.
The corresponding inference rules are given in Figure 3, where idx maps variables
to their index. For now, ignore the use of end(·) — we return to discuss it later.

Now, for each function f(p0, . . . , pi) in the program whose address has been taken
(either via the & operator or by direct assignment to a variable), we create i+1
consecutively indexed constraint variables to represent p0 . . . pi:

x y z 0
p p

1
p
2

p
3

p
4

p
5

f

0 1 2 3 4 5 6 7 8 9

Here, x, y and z represent some other variables allocated before those of f . The
key point is that each parameter of f can be accessed as an offset from p0 and,
thus, we model the address of f by that of p0. Figure 4 aims to clarify this.

The purpose of using end(·) in the inference rules is to prevent unwanted value
flow in the case of a function pointer that has the wrong type for a function it
points to. The following illustrates this:

void f(int *q) { ... } idx(q) = 0, end(q) = 0
int g(int *a,int *b) { idx(a) = 1, end(a) = 2

idx(b) = 2, end(b) = 2
void (*p)(int *,int*); idx(p) = 3, end(p) = 3
p = (void(*)(int*,int*)) &f; p ⊇ {q}
*p(a,b); ∗(p+0) ⊇ a

} ∗(p+1) ⊇ b

For each variable, end(·) determines where the enclosing block of consecutively
allocated variables ends. Without constraints on end(·), the inference rules of
Figure 3 would derive a⊇ b from ∗(p+1)⊇ b above as idx(a) = idx(q)+1. While
it remains unclear how best to model this, it certainly does not make sense to
propagate information into the parameters of g(). Therefore, we provide end(·)
information to prevent this. Furthermore, while the above example results from

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.



12 · D.J. Pearce, P.H.J. Kelly and C. Hankin

void f(int **q, int *r) { (1,2) idx(q) = 0, idx(r) = 1
*q = r; (3) ∗q⊇r
}

void g(...) {

void (*p)(int**, int*); (4,5) idx(p) = 2, idx(a) = 3
int *a,*b,c; (6,7) idx(b) = 4, idx(c) = 5
p = &f; (8) p ⊇ {q}
b = &c; (9) b ⊇ {c}
p(&a,b); (10) t ⊇ {a}

(11) ∗(p+0)⊇ t
} (12) ∗(p+1)⊇ b

(13) q ⊇ t (deref5, 8+11+1)
(14) q ⊇ {a} (trans, 10+13)
(15) r ⊇ b (deref5, 1+2+8+12)
(16) r ⊇ {c} (trans, 9+15)
(17) a ⊇ r (deref2, 3+14)
(18) a ⊇ {c} (trans, 16+17)

Fig. 4. This example illustrates how the analysis deals with parameter passing through function
pointers. Constraint 8 is the key as &f is translated into q — the first parameter of f — allowing
us access to r through the offset notation in (11) above. In fact, return values can be modelled
using this mechanism if we allocate the corresponding variable (e.g. f•) to the slot following the
last parameter. Thus, we can always determine the offset of the return value from the type of
the function pointer being dereferenced. Note, allocating the return slot before the parameter
slot(s) causes problems when the function is incorrectly typed. This commonly occurs in C, when
a function has multiple prototypes of which some incorrectly assign a void return type. The
problem is that code which uses the function through an incorrect prototype will still compile and
run correctly (so long as the return value is not needed). However, our analysis would fail (if return
slot was allocated first) for calls to the function in the presence of an invalid prototype. This is

because the first argument of that call will be written into the first parameter slot, which is actually
the return value! Of course, this can be overcome by simply allocating a return slot for all functions
regardless of their return type; however, this will not work for the field-sensitive formulation of
Section 4.1, where multiple slots may be required for functions which return aggregates by value.

programming error, similar examples can be constructed which arise solely from the
inaccuracies inherent in flow- and context-insensitive analysis. Note, attempting to
read a return value where none exists is also prevented by the end(·) information.
This is because the return slot(s) are considered part of the block of consecutively
allocated variables for a function definition (see Figure 4 for more on return slots).

Finally, the C language supports functions with variable length argument lists
(varags). These can be supported quite easily (albeit conservatively) by providing
a special constraint variable at the end of the parameter block (before the return
value) for a function to capture those extra parameters passed to that function.
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4.1 Field-Sensitive Pointer Analysis

In this section, we further extend the language of set-constraints to support field-
sensitive pointer analysis of C. Our formulation can be regarded as an instance of
the general framework for field-sensitive pointer analysis of C by Yong et al. [Yong
et al. 1999]. In fact, it is equivalent to the most precise analysis of portable (as
defined under the ISO/ANSI standard) C programs their system can describe and
we consider here some important algorithmic issues which they did not address.

For Java, there are also several existing extensions to the set-constraint language
which support field-sensitive analysis [Rountev et al. 2001; Liang et al. 2001; Wha-
ley and Lam 2002; Lhoták and Hendren 2003]. However, Java presents a simpler
problem than C in this respect, since it does not permit the address of a field to
be taken. Indeed, it turns out the language of the previous section is sufficient for
field-sensitive analysis of Java. This works by using blocks of constraint variables,
as we did for functions, to represent aggregates. For example, in the following, a
block of two constraint variables (one for each field) is used to represent “aggr a”:

typedef struct { int *f1; int *f2; } aggr;

aggr a,*b; idx(a.f1)=0, idx(a.f2)=1, idx(b)=2
int *p,**q,c; idx(p)=3, idx(q)=4, idx(c)=5
b = &a b ⊇ {a.f1}
b->f2 = &c; ∗(b+1) ⊇ t, t ⊇ {c}
p = b->f2; p ⊇ ∗(b+1)

Here, the address of a is modelled by the address of its first field. In this way,
the fields of a can be accessed via b without problem.

To analyse C, however, we must also be able to translate “q=&(b->f2);”. This
is a problem since we want to load the index of a.f2 into Sol(q), but there is no
mechanism for this. Therefore, we extend the language to permit the translation:
q ⊇ b+1, meaning load Sol(b) into a temporary, add 1 to each element and merge
into Sol(q). Note the inference rule in Figure 5. This form can be represented by
turning the constraint graph into a weighted multigraph, where weight determines

increment — so p ⊇ q+k gives q
k
→ p. One difficulty with this new form is the

Positive Weight Cycle (PWC) problem. For example:

aggr a,*p; void *q;

q = &a; q ⊇ {a}
p = q; p ⊇ q

q = &(p->f2); q ⊇ p+1
/* now use q as int* */ +1

{ }{ a }

q p

This is legal and well-defined C code. Here, the cycle arises from flow-insensitivity,
but other forms of imprecision can also cause them. Figure 6 provides a (somewhat
contrived) example of a positive-weight cycle arising from imprecision in the heap
model. So, it seems that any formulation of a field-sensitive analysis for C will
necessarily have to deal with positive weight cycles. This is supported by the work
of Chandra and Reps, who encounter the same issue with a similar field-sensitive
analysis [Chandra and Reps 1999a; 1999b]. In general, the problem is that cycles
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[add]

p ⊇ q+k q ⊇ {r}
idx(s) = idx(r)+k

idx(s) ≤ end(r)
p ⊇ {s}

Fig. 5. An inference rule for constraints of the form p ⊇ q+k

typedef struct { int *f1; int *f2; } aggr;

void *f(int s) { return malloc(s); } (1) f• ⊇ {HEAP0}

aggr **p,*a; int **q,*b;

p = (aggr **) f(sizeof(aggr *)); (2) p ⊇ f•
q = (int **) f(sizeof(int *)); (3) q ⊇ f•
*p = ... ; (4) ∗p ⊇ . . .
a = *p; (5) a ⊇ ∗p
b = &a->f2; (6) b ⊇ a + 1
*q = b; (7) ∗q ⊇ b

(8) p ⊇ {HEAP0} (trans, 1+2)
(9) q ⊇ {HEAP0} (trans, 1+3)
(10) a ⊇ HEAP0 (deref2, 5+8)
(11) HEAP0 ⊇ b (deref1, 7+9)

qp

a b a b

f f

{ HEAP0 }

{}{}

{}

+1
{ HEAP0 } { HEAP0 }

{ HEAP0 }

{} {}

{}{}

{}

+1

HEAP0

qp

HEAP0

Fig. 6. An example illustrating how a positive-weight cycle can arise from imprecision in the heap
model. We have included both the constraint derivation and the corresponding graph represen-
tation for clarity. The key observation is that a malloc wrapper (i.e. f(int)) is used to allocate
storage. This means that, since a static heap model is being used where all objects returned by
a particular call to malloc are represented by one constraint variable, the local variables p and q

end up containing the same target constraint variable (i.e. HEAP0 ). Therefore, HEAP0 actually
represents two distinct heap objects in the program and we have carefully used this to construct
a positive-weight cycle involving HEAP0, a and i. A static heap model is the most common heap
model since the alternative, a dynamic heap model, can be very costly [Nystrom et al. 2004b].
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describe infinite derivations. To overcome this, we use end() information, as with
function pointers, so that a variable is only incremented within its enclosing block.

Another problem with weighted edges is that cycle elimination is now unsafe,
since nodes in a cycle need no longer share the same solution. To tackle this, we
observe that a cycle can be collapsed when there is a zero weighted path between
all nodes and intra-cycle weighted edges are preserved as self loops. The following
example demonstrates this, where unlabelled edges are assumed to have zero weight:

+3

+3

An interesting question is whether or not code such as the following will produce
positive-weight cycles:

typedef struct link { int *data; struct link *next; } link

int *p = ...; link q = ...;

while(p != null) { p = p + 1; q = q->next; }

In fact, neither statement in the above loop results in a positive-weight cycle.
The statement involving q can be rewritten as “q = *(q+k)”, where k is the offset
of next, and corresponds to a constraint from Figure 3 (hence, it is not a positive-
weight cycle). The statement “p = p + 1” is harder to understand. One might
expect this to be translated into the constraint p ⊇ p+1 (which does represent a
positive-weight cycle). In fact, it is translated into p ⊇ p because only field-accesses
(i.e. expressions such as x.y and x->y) are translated into constraints of the form
p ⊇ q+k. This may seem problematic, if one considers that pointer arithmetic
could be used to simulate a field access. However, using pointer arithmetic to
access anything other than an array has undefined behaviour under the ISO/ANSI
standard (as does casting a struct to an array) [ISO90 1990, 6.3.6]. Furthermore,
as outlined in Section 5, we model array objects with a single constraint variable
and, hence, p ⊇ p is a safe translation for “p = p + 1”.

A further source of complication for our system is the difficulty in determining
how many fields a heap variable should have. This is especially true if a static heap
model is used, as highlighted in the following:

typedef struct {double d1; int *f2;} aggr1;

typedef struct {int *f1; int *f3;} aggr2;

void *f(int s) { return malloc(s); } f• ⊇ {HEAP0}
void *g(int s) { return malloc(s); } g• ⊇ {HEAP1}
aggr1 *p = f(sizeof(aggr1)); p ⊇ f•
aggr2 *q = f(sizeof(aggr2)); q ⊇ f•
int *x = f(100); x ⊇ f•
int *y = g(100); y ⊇ g•

Here, only one constraint variable is created to model every object allocated by
f(int) and this legitimately ends up representing multiple objects of different type
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(i.e. HEAP0 represents an aggr1 object and an array of ints). Indeed, it is often
impossible to determine the types that a heap variable will represent to tell whether
a heap variable will even be used to represent an aggregate.

This presents a problem as we need to determine which objects represent ag-
gregates in order to allocate the necessary blocks of constraint variables. Thus,
we either model heap variables field-insensitively (not ideal) or assume they al-
ways represent aggregates. Our choice is the latter, which raises a further problem:
which aggregate should a heap variable represent? A simple solution is to assume
it will be the largest struct in the program, since this ensures enough constraint
variables are allocated for every eventuality. Effectively then, each heap variable is
modelling the C union of all structs. So, in the above, HEAP0 and HEAP1 both
model aggr1 and aggr2 and are implemented with two constraint variables: the
first representing fields f1 and d1; the second f2 and f3. The observant reader will
have noticed something strange here: the first constraint variable models fields of
different sizes. This seems a problem as, for example, writing to d1 would invalidate
f1 and f3 on many platforms/architectures. In practice, however, this cannot be
exploited without using undefined C code, since it relies on implementation depen-
dent information regarding type size:

typedef struct {double d1; int *f2;} aggr1;

typedef struct {int *f1; int *f3;} aggr2;

aggr1 *p = malloc(sizeof(aggr1)); idx(HEAP0.F0)=0
idx(HEAP0.F1)=1

int a,*r; p ⊇ {HEAP0.F0}
aggr2 *q = (aggr2 *) p; q ⊇ p

q->f3 = &a; ∗(q+1) ⊇ t1, t1 ⊇ {a}
p->d1 = 1.0; /* clobbers q->f3 */ ∗(p+0) ⊇ t2, t2 ⊇ {?}
r = q->f3; r ⊇ ∗(q + 1)

Here, our analysis concludes r 7→ {a}, which is unsound on platforms where
sizeof(double) is larger that sizeof(int) because the assignment to p->d1 over-
writes part of q->f3. Note the special value “?”, used to indicate that a pointer may
target anything. In general, we are not concerned with this issue as our objective is
to model portable C programs only. Having said that, our system can support non-
portable programs by using actual (i.e. physical) offsets instead of field-numbers.
This requires some extension to our inference system to support situations (like the
above) where an assignment affects multiple fields at once. Indeed, Nystrom et al.
claim to have done just this, although they do not discuss exact details [Nystrom
et al. 2004b]. Finally, nested structs are easily dealt with by “inlining” them into
their enclosing struct, so that each nested field is modelled by a distinct constraint
variable.

4.2 Constraint Solving

We now present our algorithm, referred to as PW, for solving constraint sets from
our extended language. Pseudo-code for the algorithm is given in Figure 7 and,
essentially, it follows the procedure outlined in Section 3. That is, it repeatedly
propagates the solution of each node into its successors (referred to as visiting a
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foreach x ∈ V do ∆(x) = Sol(x);

while ∃x.∆(x) 6= ∅ do

// invoke cycle detection algorithm here to collapse all zero-weight cycles
foreach n ∈ V in topological order do

// VISIT n
if ∆(n) 6= ∅ then

δ = ∆(n);
∆(n) = ∅;

// STAGE 1: process all constraints involving ∗(n + k)
foreach c ∈ C(n) do case c of

∗(n + k) ⊇ w:
foreach i ∈ δ do

f = i + k; // field variable being accessed

if f ≤ end(i) ∧ w
0
→f /∈ E do

E = E ∪ {w
0
→f};

t = Sol(w) − Sol(f);
if t 6= ∅ then

∆(f) = ∆(f) ∪ t;
Sol(f) = Sol(f) ∪ t;

w ⊇ ∗(n + k):
foreach i ∈ δ do

f = i + k; // field variable being accessed

if f ≤ end(i) ∧ f
0
→w /∈ E do

E = E ∪ {f
0
→w};

t = Sol(f) − Sol(w);
if t 6= ∅ then

∆(w) = ∆(w) ∪ t;
Sol(w) = Sol(w) ∪ t;

// STAGE 2: propagate δ to successors

foreach n
k
→w ∈ E do

foreach i ∈ δ do

v = i + k;
if v ≤ end(i) ∧ v /∈ Sol(w) then

∆(w) = ∆(w) ∪ {v};
Sol(w) = Sol(w) ∪ {v};

Fig. 7. Algorithm PW, a worklist-style algorithm supporting field-sensitive pointer analysis with
function pointers. The algorithm assumes that Sol(p) has been initialised with all trivial con-
straints of the form p ⊇ {q}. The set C(n) contains all complex constraints involving “∗(n + k)”.
Notice that the code for collapsing cycles has been omitted for brevity. This simply collapses all
cycles which have a zero-weight path between their nodes (see Section 4.1 for more on this); it
has no other effect on the constraint graph. The algorithm uses a topological iteration strategy
to improve performance. Computing the topological sort necessary for this can often be done for
free by the cycle detector. Finally, the set ∆(n) holds the change in Sol(n) since the last time n
was visited. This ensures a node z is a member of δ for at most one visit of each node.
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node) until no change is observed. Normally, this is done using a worklist algorithm
which maintains a list (the worklist) of those nodes remaining to be visited. Every
node is initially on the worklist and the algorithm begins by removing a node n
and visiting it. In doing this, any (immediate) successor of n whose solution has
changed is placed back onto the worklist. This continues until the worklist is empty.

A well-known complication is that the order in which nodes are visited (i.e. taken
off the worklist) can greatly affect performance [Horwitz et al. 1987; Burke 1990;
Bourdoncle 1993b; Chen and Harrison 1994; Schön 1995; Fecht and Seidl 1996;
Nielson et al. 1999; Pearce et al. 2004b; Pearce 2005]. A good choice is to visit
nodes in topological order (also known as reverse postorder). For some types of
program analysis this approach is considered optimal (see [Horwitz et al. 1987;
Bourdoncle 1993b]). Unfortunately, this is not the case for the pointer analysis
problem being studied here [Pearce 2005]. Nevertheless, it remains an excellent
choice, especially considering that no better alternative is known. Therefore, this
strategy is used in PW although, to implement this efficiently, a worklist in the true
sense of the word is not actually used. Instead, all nodes are sorted topologically
at the beginning of each round and then visited in sequence. For each node n, the
algorithm first determines whether its solution has changed since it was last visited.
This is done by checking whether ∆(n), which records the change in n’s solution
between visits, is empty. If not, the algorithm processes all complex constraints
involving ∗(n + k) and propagates ∆(n) to all successors. Note, ∆(n) is loaded
into δ to ensure that ∆(n) can be cleared before propagation. This is necessary to
properly deal with (positive weight) self loops.

The use of ∆(·) is crucial to obtaining an optimal complexity bound on the run-
time of PW, because it ensures a node z is a member of δ for at most one visit
of each node. This technique has been previously referred to in the literature as
difference propagation [Fecht and Seidl 1998; Pearce et al. 2004b] and incremen-
tal sets [Lhoták and Hendren 2003; Berndl et al. 2003]. Another important point
about PW is that we have omitted details of which cycle detection algorithm to use.
The standard approach is to employ Tarjan’s well-known algorithm for detecting
strongly connected components (see [Tarjan 1972; Nuutila and Soisalon-Soininen
1994; Gabow 2000]). This algorithm always visits every node and traverses every
edge when called. However, as with difference propagation, it is only necessary to
examine those parts of the graph which have changed since the last round. There-
fore, several dynamic cycle detection algorithms have been proposed which aim to
perform an amount of work proportional to the size of the graph change (see e.g.
[Shmueli 1983; Fähndrich et al. 1998]). In fact, we have elsewhere developed the
fastest known solutions for this problem [Pearce et al. 2004b; Pearce 2005]. These
came out of our work on dynamic topological sort (see [Pearce and Kelly 2004; 2006])
and, it turns out, the two problems are closely related. In spite of the advantages of
these more advanced algorithms we choose, in the experimental comparison which
follows, to use Tarjan’s algorithm for detecting cycles. The reason for this is to sim-
plify our experimental results and to aid comparisons with previous works (which
did not have such cycle detection algorithms available to them). In fact, we find in
practice that Tarjan’s algorithm is surprisingly competitive (compared with these
alternatives) and experimental data looking at this can be found in [Pearce 2005].

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.



Efficient Field-Sensitive Pointer Analysis of C · 19

Lemma 4.1. Let D = (V, E, K, C) be a directed weighted constraint multigraph,
where K is the set of possible (integer) edge weights and C(n) contains all complex
constraints involving ∗(n + k) for any node n ∈ V , where k ∈ K. Algorithm PW
needs at most O(v4) time to solve D, where v = |V |.

Proof. Let E∗ be the set of edges in the solved multigraph. As edges are only
added by the algorithm, it follows that E ⊆ E∗. Furthermore, let E+

∗
(n) be the set

of outedges from n in E∗. Now, there are several key points to note:

(i) For any z, n ∈ V , z ∈ ∆(n) for at most one visit of n. This holds because:
firstly, after initialisation, z is only added to ∆(n) if z /∈ Sol(n); secondly, at no
point is z added to ∆(n) without it also being added to Sol(n); finally, ∆(n) is
cleared when n is visited and elements are never removed from Sol(n).

(ii) For any k ∈ K, it holds that k < |V |. This is because all elements propagated

across an edge x
k
→ y, where k ≥ |V |, will always fail the end() test. Therefore,

constraints with k ≥ |V | can be culled from the constraint set before solving,
since they have no effect. This means |E| (hence |E∗|) is O(v3) in the worst case,
rather than O(v2) (which is normal for non-multigraphs).

(iii) C(n) has at most O(v2) elements. For each constraint of the form w ⊇ ∗(n+k),
we know k ∈ K and w ∈ |V |. Therefore, there are |K| × |V | ≤ |V |2 possible in-
stances of it in C(n). Similar arguments hold for the other two complex constraint
forms, meaning |C(n)| ≤ 3 · |V |2.

We will now show that at most O(v4) time is spent executing each stage of the
main loop. Starting with stage 2 (as marked on Figure 7), it holds that the inner
loop body executes at most v · |E+

∗
(n)| times for each node n. This follows from (i)

above which implies that
∑

i=0 |δi| ≤ |V |, where δi represents δ on the ith visit of
n. Thus, the total time spent executing stage 2 is O(v2 · |E+

∗
(n)|) ≡ O(v4).

For stage 1, it holds that the loop body of each case statement is executed at
most v · |C(n)| times per node. As before, this follows from (i) above. Now, for
each case the innermost if-body needs at most O(v) time to merge t into Sol(f) etc.
Furthermore, the if-body only executes when a new edge is added — meaning at
most O(v · |E+

∗
(n)|) time per node is spent executing the if-body itself. Therefore,

the total time spent executing each case in stage 1 is O(v · (|E+
∗

(n)|+ |C(n)|)) per
node which, following from (ii) and (iii) above, is O(v4) in the worst case.

Finally, it remains to show that the amount of time spent executing statements
outside the if-body (since we have already bounded those inside) is also O(v4). This
is easy enough, since the outer for-loop will only execute if there is some change
in the state of the multigraph. Furthermore, as ∆(n) can change at most v times
(point (i) above), there are at most O(v2) possible changes. In the worst case, each
change requires a complete iteration of the outer for-loop and, hence, the for-loop
body executes at most O(v3) times.

This proof has several implications for the implementation of PW. Specifically,
inserting an element into Sol(n) must take constant time and, thus, we implement
Sol(n) with a bit vector. Likewise, iterating ∆(n) must take O(|∆(n)|) time and,
thus, we implement ∆(n) with an array (note, this can be unsorted since the algo-
rithm guarantees no element is added to ∆(n) more than once). Also, δ follows the
implementation of ∆(n).
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An interesting question is what a worst-case input for algorithm PW looks like
and the following provides a simple example:

2Z

Z k

1ZY1

Y2

Yk

1X 2X kX

X1 Xk{      ...       }

X1 Xk{      ...       }

X1 Xk{      ...       }

{   }

{   }

{   }

1..k

Here, k = 1
3
v, the nodes X1 . . . Xk represent an aggregate variable and, although

not shown completely, every edge given by {Yi
l
→ Zj | 1 < i, j, l < k} is present.

Thus, there are O(v3) edges and the algorithm attempts to propagate O(v) elements
across them (although many will fail the end() test and/or already be present in
target solution set). Therefore, algorithm PW needs O(v4) time to solve this graph.

A subtle aspect of our complexity analysis is the choice to measure complexity
in terms of the number of constraint variables (i.e. v), rather than the number of
constraints. If instead we measure complexity in terms of t, the number of initial
constraints, then PW needs only O(t3) time in the worst case. While this may seem
surprising, it holds because constraints of the form q ⊇ x+k cannot be introduced
during solving.

Lemma 4.2. A set of t constraints can be solved in O(t3) time under the infer-
ence system of Figures 1, 3 and 5.

Proof. Let tt, ts and tc be (respectively) the initial number of trivial, simple
and complex constraints in the constraint set. Then, t = tt + ts + tc. Let v
be the number of constraint variables and k the number of possible constraint
weights. Now, we know k ≤ v ≤ 2 · t and that at most kv2 simple constraints are
possible. However, the deref rules can only generate v simple constraints from each
complex constraint (since only weightless constraints can be generated). Thus, up
to vtc simple constraints can be generated in total whilst solving the constraint
set. Furthermore, O(v) trivial constraints can be propagated across each simple
constraint and, hence, the trans rule can be applied O(v · (ts + vtc)) ⇒ O(t3)
times.

The O(t3) result tells us that the underlying hardness of constraint solving is the
same as for a standard field-insensitive analysis (recall from the end of Section 2,
that a standard insensitive analysis needs O(t3) as well), since t measures input
size for the solving algorithm. However, the O(v4) result reflects the fact that
our field-sensitive analysis has a much larger input domain than a standard field-
insensitive analysis (due to edge-weights). This means that, for a given program,
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many more constraints may be generated for our field-sensitive analysis than for
the field-insensitive analysis. This is important, since it tells us that field-sensitive
analysis for C may take considerably longer to solve for a given program (and this
is what we really care about).

5. EXPERIMENTAL STUDY

In this section, we provide empirical data over a range of benchmarks comparing
our field-insensitive and -sensitive systems. Table I provides information on our
benchmark suite. With two exceptions, all are available under open source licenses
and can be obtained online (e.g. http://www.gnu.org). Note that cc1 is the
C compiler component of gcc, while named is distributed in the BIND package.
While both 147.vortex and 126.gcc are not available under open source licences,
they form part of the SPEC95 benchmark suite and have been included to aid
comparison with previous work.

The SUIF 2.0 research compiler from Stanford [SUIF2 ] was deployed as the
frontend for generating constraint sets. In all cases, we were able to compile the
benchmarks with only superficial modifications, such as adding extra “#include”
directives for missing standard library headers or updating function prototypes with
the correct return type. The constraint generator operates on the full C language
and a few points must be made about this:

—Heap model. The static model discussed briefly in Section 4.1 was used. Recall
that this uses a single constraint variable to represent all heap objects created
from a particular call to malloc and other related heap allocation functions.

—Arrays. These are treated by ignoring the index expression and, hence, repre-
senting all elements of an array with one constraint variable.

—String Constants. A single constraint variable was used to represent all string con-
stants. In other words, we consider the right hand side of p="foo" and q="bar"

as referring to the same object.

—External Library Functions. These, almost entirely, came from the GNU C li-
brary and were modelled using hand crafted summary functions, capturing only
aspects relevant to pointer analysis.

—Variable Length Argument Lists. These were dealt with using the technique
outlined in Section 4, where a single constraint variable is used to represent
every possible parameter in the vararg list of a method.

Our experimental framework contained a direct implementation of algorithm PW
and its field-insensitive variant, henceforth referred to as PWFI. The latter was al-
most identical to PW, except those parts relating to field-sensitivity were removed.
Furthermore, our constraint generator produced field-sensitive constraints (see Fig-
ures 3 + 5) for PW, but field-insensitive constraints (see Figure 1) for PWFI. Cycle
detection and subsumed node compaction (recall Section 3) were always applied to
the initial constraint set, although projection merging (see [Su et al. 2000]) was not
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Constraints
Ver LOC Triv Simp Comp

uucp 1.06.1 15,501 / 10,255 798 3,047 1,512
make 3.79.1 22,366 / 15,401 1,417 4,592 2,428
gawk 3.1.0 27,526 / 19,640 2,354 8,180 4,589
147.vortex SPEC95 52,624 / 40,247 9,774 12,113 8,365
bash 2.05 70,913 / 50,947 3,400 12,693 5,295
sendmail 8.11.4 68,106 / 49,053 5,185 10,925 5,027
emacs 20.7 128,859 / 93,151 10,629 12,554 16,866
126.gcc SPEC95 193,752 / 132,435 7,410 38,716 25,232
cc1 (gcc) 2.95.1 271,053 / 188,535 15,096 59,176 36,684
named 9.2.0 109,001 / 75,599 17,645 30,613 35,428
ghostscript (gs) 6.51 215,605 / 159,853 20,449 52,307 68,029

Table I. Structural information on our benchmark suite. LOC measures lines of code, not including
those in header files. The first figure reports the total, while the second only non-comment, non-
blank lines. The constraint counts are from the initial (i.e. unsolved) constraint set and show
Trivial (p ⊇ {q}), Simple (p ⊇ q) and Complex (involving ‘*’). Note, these counts are for the field-
insensitive constraint sets only. Values for the field-sensitive constraint sets have been omitted for
brevity, since we find there is very little difference between the two.

as we found this degraded performance1. Note, our reported measurements do not
include the time needed for generating the initial constraint sets and performing
these simple optimisations. To implement Sol(n) and ∆(n), both implementations
used bit vectors and arrays respectively. They also employed the hash-based dupli-
cate set compaction scheme of Heintze and Tardieu to ensure identical solution sets
are shared [Heintze and Tardieu 2001b]. This turns out to be necessary for solv-
ing the largest benchmark (ghostscript), which without compaction needs well over
1GB of memory to complete. To validate our solvers we manually inspected the
output produced on a test suite of small programs and also by ensuring that each al-
gorithm produced the same output. The full source code for our solving algorithms
and constraint generator is available online at http://www.mcs.vuw.ac.nz/~djp.
Finally, our experimental machine was a 900Mhz Athlon with 1GB of main mem-
ory, running Mandrake 10.2. The executables were compiled using gcc 3.4.3, with
compiler switches “-O3” and “-fomit-frame-pointer”. Timing was performed us-
ing the gettimeofday function (which offers microsecond resolution on x86 Linux
platforms) and averaged over ten runs — this was sufficient to generate data with
a variation coefficient of ≤ 0.05, indicating low variance between runs. To re-
duce interference, experiments were performed with all non-essential system dae-
mons/services (e.g. X windows, crond) disabled and no other user-level programs
running. The code itself was in C++, making extensive use of the Standard Tem-
plate Library and Boost Library (version 1.30.2).

Table II provides a comparison of some interesting differences between the con-
straint sets generated for the field-sensitive analysis and those used for the insen-
sitive analysis. In particular, we see that the sensitive analysis always uses more
constraint variables, which is expected as each field is now modelled with a separate

1Projection merging was originally designed for use with inductive form, which we do not use.
Thus, we conclude that the technique is simply not suited for use with standard form.
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Constraint Variables
Total Addr Heap # PWC

uucp 3,319 / 5,208 199 / 1,929 20 / 940 1
make 4,786 / 6,933 259 / 2,396 69 / 1,794 0
gawk 7,303 / 10,140 333 / 3,137 96 / 2,496 0
147.vortex 11,929 / 16,019 2,201 / 5,943 21 / 2,310 0
bash 10,852 / 13,130 699 / 2,881 36 / 936 0
sendmail 10,276 / 12,428 682 / 2,726 13 / 546 1
emacs 17,972 / 38,181 3,844 / 23,618 172 / 12,900 0
126.gcc 27,895 / 50,654 1,113 / 23,774 231 / 22,407 0
cc1 43,888 / 76,383 1,492 / 33,856 258 / 31,992 1
named 34,778 / 47,230 4,278 / 15,764 24 / 1,704 1
gs 65,338 / 105,114 8,754 / 34,683 18 / 2,412 2

Table II. Data comparing the field-insensitive and -sensitive constraint sets. The breakdown of
constraint variables shows the total count, the number of address-taken and the number modelling
the heap. In all cases, the two values given apply to the insensitive and sensitive constraint sets
(in that order). #PWC reports the number of Positive Weight Cycles in the final (i.e. solved)
constraint graph.

variable. Another interesting point is that named and ghostscript have notice-
ably fewer constraint variables modelling the heap than others of similar size. In
fact, ghostscript uses a malloc wrapper (a custom memory allocator which wraps
malloc) called png_malloc. This explains the small heap variable count, since it
implies there will be fewer direct invocations of malloc. The named benchmark
does something similar, in that it uses a memory pool (based on methods such as
isc_buffer_allocate) to allocate memory in many cases. Finally, the “# PWC”
metric shows the number of positive weight cycles in the final graph. It is impor-
tant to realise that this count may be higher during solving, because some cycles
could end up being combined in the final graph. Note that, if at least one positive
weight cycle is created then “# PWC” will report a count greater than zero. This
is because cycle detection cannot eliminate positive weight cycles — it can only
reduce them to self loops.

Figure 8 looks at the effect of field-sensitivity on solving time. It shows clearly
that the field-sensitive analysis is more expensive to compute. Furthermore, with
the exception of emacs, those benchmarks which have positive weight cycles are
significantly more expensive, relatively speaking, than the others.

Comments: Figure 9 gives some indication why the field-sensitive analysis is
more costly as it shows a reasonably clear correlation between performance and
visit count. Recall that, for the field-sensitive analysis, there are generally more
constraint variables (recall Table II) and these correspond to nodes in the graph
which must be visited. However, Figure 10 indicates that, in many cases, the
cost of performing a set union is actually lower. This suggests that the increased
precision offered by field-sensitivity could actually lead to improved performance.
Indeed, this idea is not new and others have made such observations before (see e.g.
[Lhoták and Hendren 2003; Rountev et al. 2001; Whaley and Lam 2002; Heintze
and Tardieu 2001b]). An interesting point here is that (with the exception of gs)
average set size is always lower for benchmarks which don’t have positive weight
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Fig. 8. A chart of our experimental data investigating the effect of field-sensitivity on the perfor-

mance of algorithm PW. This is given relative to the field-insensitive implementation (PWFI) to
allow data for different benchmarks to be shown on the same chart. Below each benchmark, the
absolute time taken by PWFI is shown for reference (Table III provides absolute values for both
implementations). Benchmarks containing positive weight cycles are marked with an asterisk.
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Fig. 9. A chart of our experimental data investigating the effect of field-sensitivity on visit count
for algorithm PW. It shows the number of nodes visited by the field-insensitive (PWFI) and
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benchmarks containing positive weight cycles are marked with an asterisk.
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Benchmark Time Visit Avg Set Avg Deref
(s) Count Size Size

uucp PWFI 0.031 937.0 9.6 298.1
PW 0.17 5,916.0 15.6 125.1

make PWFI 0.075 1,271.0 22.2 341.2
PW 0.156 1,785.0 20.4 17.44

gawk PWFI 0.12 2,080.0 43.0 643.4
PW 0.26 2,796.0 32.3 22.72

147.vortex PWFI 0.31 5,412.0 19.2 384.1
PW 0.36 5,331.0 4.78 8.6

bash PWFI 0.5 3,479.0 130.0 544.0
PW 0.5 3,878.0 61.5 86.5

sendmail PWFI 0.31 2,959.0 90.7 498.8
PW 0.77 10,650.0 112.0 194.7

emacs PWFI 0.51 4,171.0 13.7 79.34
PW 2.1 6,904.0 5.18 5.41

126.gcc PWFI 1.18 12,972.0 17.2 1,044.0
PW 0.61 4,352.0 1.68 1.36

cc1 PWFI 7.56 23,723.0 47.0 3,069.0
PW 42.2 154,051.0 555.0 1,572.0

named PWFI 28.42 31,118.0 644.0 2,869.0
PW 95.4 61,973.0 1,590.0 2,172.0

gs PWFI 251.0 131,460.0 350.0 8,026.0
PW 2,130.0 186,757.0 29.8 7,387.0

Table III. Actual data values for the four metrics shown in Figures 8, 9, 10 and 11.

cycles, whilst it is always higher on those that do. This suggests that positive weight
cycles are a major expense and that eliminating them would be beneficial.

Figure 11 looks at the effect on precision of field-sensitivity but, before any dis-
cussion, we must first understand exactly what is being shown. The chart reports
the number of possible targets for a dereference site, averaged across all dereference
sites. This is called the “Average Deref” metric. It gives a more useful measure
of precision, compared with the average set size of all pointer variables, since only
dereference sites are of interest to client analyses. To facilitate a meaningful com-
parison (in terms of precision) between the sensitive and insensitive analyses we
must normalise the value. To understand why, consider a pointer p targeting the
first field of variable “struct {int f1; int f2;} a”. For the insensitive analysis,
we have the solution p⊇{a}, whilst the sensitive analysis gives p⊇ {a.f1}. Thus,
the two appear to offer the same level of precision, since their solution sets are
of equal size. However, this is misleading because the insensitive analysis actually
concludes that p may point to any field of a. Therefore, we normalise the insensitive
solution by counting each aggregate by the number of fields it contains. In other
words, we count p⊇{a} as though it was p⊇{a.f1, a.f2}.

The main observation from Figure 11 is that field-sensitivity gives more precise
results across the board. However, we again find there are significant differences
between those benchmarks which have positive weight cycles and those which do
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not. In particular, those without always show a significantly greater increase in
precision from field-sensitivity. Figures 12 and 13 break up the Average Deref
metric to show its distribution for each benchmark. They concur with our previous
findings that field-sensitivity increases precision, as a general shift is seen from
right-to-left, indicating that more dereference sites have fewer targets. We also
observe that a large proportion of dereference sites for the three largest benchmarks
have a thousand elements or more. And yet, the two similar sized benchmarks
emacs and 126.gcc (which don’t contain positive weight cycles) have much better
distributions. From this, we conclude that positive weight cycles are also a major
factor affecting the precision of field-sensitive pointer analysis.

Comments: An interesting observation regarding the Average Deref metric is
that it represents an upper bound on the imprecision of the field-insensitive anal-
ysis. This is because the normalisation procedure counts each heap object in a
points-to set as having the most fields of any struct in the program (see Section
4.1 for more on this). This represents a worst-case increase for the field-insensitive
analysis, since a particular heap object may only ever be accessed as some smaller
struct in practice. Of course, the Average Deref metric for the field-insensitive
analysis could never be lower than that of the field-sensitive analysis. Neverthe-
less, the difference between them could potentially be reduced by determining a
conservative set of types for each heap object. Figure 10 indicates this reduction
is unlikely to be significant in most cases, however, since it shows that even with-
out normalisation the field-insensitive set-sizes are often much greater than their
field-sensitive counterparts.

Finally, zero-sized sets for Average Deref arise from an artifact of our linker,
which attempts to mimic the GNU linker as closely as possible. The issue is that,
when a given object file is linked with the program, all functions contained therein
are included — even if not used. Therefore, most of the unreachable code arises
from our GNU C library model, where many functions are spread over a small
number of files.

6. RELATED WORK

Flow- and context-insensitive pointer analysis has been studied extensively in the
literature (see e.g. [Pearce et al. 2004b; Lhoták and Hendren 2003; Fähndrich
et al. 1998; Heintze and Tardieu 2001b; Rountev and Chandra 2000; Andersen
1994; Steensgaard 1996; Das 2000]). These works can, for the most part, be
placed into two camps: extensions of either Andersen’s [Andersen 1994] or Steens-
gaard’s [Steensgaard 1996] algorithm. The former use inclusion constraints (i.e.
set-constraints) and are more precise but slower, while the latter adopt unification
systems and sacrifice precision in favour of speed. Thus, new developments tend to
be focused either on speeding up Andersen’s algorithm (e.g. [Heintze and Tardieu
2001b; Fähndrich et al. 1998; Rountev and Chandra 2000; Pearce et al. 2004b])
or on improving the precision of Steensgaard’s (e.g. [Das 2000; Das et al. 2001;
Liang and Harrold 1999]). Furthermore, there have been numerous studies on the
relative precision of these two approaches (see e.g. [Liang et al. 2001; Foster et al.
2000; Hind and Pioli 2000; Shapiro and Horwitz 1997; Das 2000; Das et al. 2001],
with the results confirming that set-constraints offer useful improvements in pre-
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Fig. 12. Charts of our experimental data showing a breakdown of the average points-to set size
at dereference sites for each benchmark. Each bar indicates how many dereference sites (as a
percentage of the total) have points-to sets of size X, where X lies between the left boundary and
up to, but not including, the right boundary. For example, the second bar in each chart gives
the number of dereference sites with points-to sets containing exactly one element. Benchmarks
containing positive weight cycles are marked with an asterisk. Note, zero sized sets arise from
an artifact of our linker (see the discussion for more on this). The exact percentages for both
implementations are provided in Table IV.
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Fig. 13. More charts of our experimental data showing a breakdown of the average points-to set
size at dereference sites for each benchmark. Each bar indicates how many dereference sites (as
a percentage of the total) have points-to sets of size X, where X lies between the left boundary
and up to, but not including, the right boundary. For example, the second bar in each chart gives
the number of dereference sites with points-to sets containing exactly one element. Benchmarks
containing positive weight cycles are marked with an asterisk. Note, zero sized sets arise from
an artifact of our linker (see the discussion for more on this). The exact percentages for both
implementations are provided in Table IV.
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cision. Much work has also been done on context-sensitive analyses which, unlike
the analysis studied in this paper, consider a function separately for each calling
context (see e.g. [Wilson 1997; Chatterjee et al. 1999; Cheng and Hwu 2000; Fos-
ter et al. 2000; Fähndrich et al. 2000; Das et al. 2001; Liang et al. 2001; Whaley
and Lam 2004; Nystrom et al. 2004b]). While this can greatly improve precision,
it is equivalent to fully inlining each function before performing the analysis and
is, generally speaking, impractical for analysing large programs [Whaley and Lam
2004; Nystrom et al. 2004a]. Likewise, previous work has explored flow-sensitive
analyses which, by taking into account the order of program statements, can also
increase precision (see e.g. [Hasti and Horwitz 1998; Hind and Pioli 1998; Hind
et al. 1999]). We refer the reader to [Hind 2001] for a more thorough survey of
pointer analysis.

Several studies have looked at the relative merits of the three approaches to
modelling aggregates, with the conclusion that field-sensitive analyses are consid-
erably more precise than their field-based or field-insensitive counterparts [Yong
et al. 1999; Diwan et al. 1998; Liang et al. 2001; Rountev et al. 2001; Lhoták and
Hendren 2003]. However, it is important to realise that, since the problem dif-
fers between Java and C, it does not necessarily make sense to compare studies of
Java with those for C. For example, previous results show that of the three, field-
sensitive analyses are generally fastest when analysing Java [Lhoták and Hendren
2003; Rountev et al. 2001; Whaley and Lam 2002], but slowest when analysing C
[Yong et al. 1999; Pearce et al. 2004a]. The main reason for this is that in C we
can take the address of a field, whereas in Java we cannot. Thus, for C, using a
field-sensitive analysis increases the number of potential pointer targets (often dra-
matically), leading to an increase in average set size (as shown in Section 5). For
Java, however, the number of potential targets cannot go up with field-sensitivity
— thus, average set size can only go down. For the analysis of C programs, there
is little data available on the relative precision of the three methods. In [Yong
et al. 1999], a field-sensitive analysis is shown to offer twice the precision of an
insensitive analysis, although their benchmarks were much smaller than those used
in this work. Nevertheless, our results from Section 5 do concur with this to some
extent, although they also indicate the pay-off decreases with benchmark size. For
field-based analyses, Heintze and Tardieu [Heintze and Tardieu 2001b] present data
which appears to show a field-based analysis gives more precise results compared
with an insensitive one. However, their data is described as “preliminary” and,
in particular, we find their metric for comparison unsatisfactory because it has
not been properly normalised (see the discussion of Figure 11 for more on this).
Thus, the only real conclusion we draw from this work is that field-based analyses
are faster than their insensitive counterparts. Unfortunately, we must also caution
that we believe field-based analysis of C may be unsafe and this is discussed further
in Section 6.1.

For Java, several studies show field-sensitive analyses are faster and more precise
than the alternatives [Rountev et al. 2001; Lhoták and Hendren 2003; Whaley and
Lam 2002]. As mentioned already, average set size might be one explanation for
this. Another might be the proliferation of indirect function calls (due to virtual
functions) in Java. This is relevant because a less precise analysis will identify more

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.



Efficient Field-Sensitive Pointer Analysis of C · 31

Dereference Sites (% of normalised total)
0 1 2 3 10 100 1000+

uucp PWFI 18.0 18.0 2.5 1.5 2.5 58.0 0.0
PW 15.0 16.0 7.7 5.1 0.22 56.0 0.0

make PWFI 5.5 7.0 0.74 5.0 15.0 67.0 0.0
PW 5.7 19.0 6.3 4.1 65.0 0.0 0.0

gawk PWFI 6.2 7.7 6.3 4.2 26.0 0.92 49.0
PW 7.0 23.0 21.0 6.9 42.0 0.0 0.0

147.vortex PWFI 12.0 14.0 1.2 6.8 7.9 58.0 0.61
PW 13.0 19.0 2.6 56.0 8.6 1.0 0.0

bash PWFI 5.5 7.6 2.7 3.3 19.0 62.0 0.0
PW 5.5 24.0 6.1 2.9 5.7 56.0 0.0

sendmail PWFI 4.5 16.0 2.0 4.7 8.7 64.0 0.0
PW 4.4 22.0 3.7 4.3 4.4 61.0 0.0

emacs PWFI 24.0 17.0 27.0 2.7 7.9 21.0 0.53
PW 25.0 25.0 32.0 10.0 7.6 0.37 0.03

126.gcc PWFI 6.9 16.0 1.7 2.2 9.8 0.89 62.0
PW 33.0 28.0 25.0 13.0 0.44 0.004 0.0

cc1 PWFI 5.6 11.0 0.68 2.3 1.8 10.0 68.0
PW 6.6 19.0 3.5 4.4 0.5 0.0082 66.0

named PWFI 3.4 3.6 3.9 28.0 1.4 1.2 58.0
PW 5.1 8.4 1.3 28.0 2.2 2.7 52.0

gs PWFI 33.0 2.7 1.2 3.1 3.7 0.82 55.0
PW 35.0 7.2 3.0 2.1 0.25 0.3 52.0

Table IV. Actual percentages for the precision data shown in Figures 12 and 13. Each column
indicates how many dereference sites (as a percentage of the total) have points-to sets of size X,
where X lies between the column’s boundary and up to, but not including, the next boundary.

targets for an indirect call, thus introducing more constraints. Furthermore, these
constraints are considerably more expensive than those for dereferencing a data
pointer, since they cause non-trivial value flow. Unfortunately, the overall picture
is complicated by a study showing little difference in precision between a field-
based and field-sensitive analysis, with the latter also running slower [Liang et al.
2001]. They argue that this should be expected from the strong encapsulation sup-
ported by Java. Indeed, this has some merit, if we consider that most fields in Java
programs are read/written through get/set methods. Thus, context-insensitivity
combines all distinct accesses to a particular field, yielding the same effect as the
field-based approach. An example is given in Figure 14 and it seems that some
simple strategies (such as inlining these get/set methods) would be very beneficial
here. In fact, at least one analysis attempts something along these lines [Milanova
et al. 2002], with promising results. Still, it seems unclear why other studies (e.g.
[Lhoták and Hendren 2003]) of field-sensitivity have not encountered this problem
and we can only speculate that they use some hidden technique to overcome it.

We now return to consider the relationship between our system and the compa-
rable previous works. The most important of these, due to Yong et al. [Yong
et al. 1999], is a framework covering a spectrum of analyses from complete field-
insensitivity through various levels of field-sensitivity. The main difference from our
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class myclass {

private int *f1;

private int *f2;

public int *get(myclass *this) {

return this->f1; get• ⊇ ∗(getthis + idx(f1))
}

public void set(int *v, myclass *this) {

this->f1=v; ∗(setthis + idx(f1)) ⊇ v
}

};

myclass a,b;

int *c,d,e;

a.set(&d); v ⊇ {d}, setthis ⊇ {a}
b.set(&e); v ⊇ {e}, setthis ⊇ {b}
c = a.get(); getthis ⊇ {a}, c ⊇ get•

Conclude c 7→ {d, e}

Fig. 14. Illustrating how get/set methods affect field-sensitivity. Notice that the this variable
is passed explicitly to each member function, reflecting what actually happens in practice. By
combining information at function boundaries we are losing the advantages of field-sensitivity.

work is the approach taken to modelling field-addresses where, instead of integer
offsets, string concatenation is used. To understand what this means, consider the
following example which illustrates how fields are handled with their approach:

typedef struct { int *f1; int *f2; } aggr1;

aggr1 a,*b; int *p,c;

a.f2 = &c; (1) a.f2 ⊇ {c}
b = &a; (2) b ⊇ {a}
p = b->f2; (3) p ⊇ (∗b)||f2

(4) p ⊇ a.f2 (fdref1, 2 + 3)
(5) p ⊇ {c} (trans, 1 + 4)

Here, the || operator can be thought of essentially as string concatenation, such
that {a}||b⇒ a.b and (∗a)||b ⇒ c.b, if a⊇{c}. Hence, the corresponding inference
rules are:

[fdref1]
q ⊇ (∗p)||f p ⊇ {a}

q ⊇ a.f
[fdref2]

(∗p)||f ⊇ q p ⊇ {a}
a.f ⊇ q

Thus, we see that p⊇ (∗b)||x replaces p⊇ ∗(b+k) from our system. While this
difference appears trivial, there are hidden complications in dealing with certain
uses of casting — even when such uses are defined as portable within the ISO/ANSI
C standard. The relevant points from the standard can be summarised as follows:
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(1) A pointer to a structure also points to the first field of that structure [ISO90
1990, 6.5.2.1]. As a result, the first field of a structure must be at offset 0.

(2) Accessing a union member after the last store was to a different member
gives implementation-defined behaviour [ISO90 1990, 6.3.2.3]. Suppose we have
“union{int a;float b;} x”. Now, we can safely write and then read x.a,
but we cannot safely write to x.b and then read x.a.

(3) As an exception to the above, if a union contains several structures whose initial
members have compatible types, then it is permitted to access the common
initial sequence of any of them [ISO90 1990, 6.3.2.3]. Note, it is sufficient for
us to simply take compatible types to mean identical types, although the actual
definition is more subtle. To understand the meaning of this point, suppose we
have “union {T1 a;T2; b} x”, where T1 and T2 are two struct’s whose first
N members have identical types. Furthermore, suppose we assign to x.a. At
this point, we may read any of the first N members of x.b and, as expected,
they will have the same values as the first N members of x.a. This contrasts
with the previous rule, which stated we may only read from x.a.

The first point above is fairly straightforward and the following example demon-
strates that the string concatenation approach cannot model it correctly:

typedef struct { int *f1; int *f2; } aggr1;

String Concatenation Integer Offset

aggr1 a,*q=&a; (1) q ⊇ {a} (1) q ⊇ {a.f1}
int c,*p;

a.f1 = &c; (2) a.f1 ⊇ {c} (2) a.f1 ⊇ {c}
p = *((int*)q); (3) p ⊇ ∗q (3) p ⊇ ∗q

(4) p ⊇ a (deref1, 1+3) (4) p ⊇ a.f1 (deref1, 1+3)
(5) p ⊇ {c} (trans, 2+5)

What we see is that the string concatenation system is unable to correctly con-
clude p 7→ {c}, whereas our system has no trouble. The issue here arises from the
translation of “&a” into “a”, instead of “a.f1”. Unfortunately, the obvious solution
of using the latter translation to resolve this introduces a further problem:

aggr1 a,*q = &a; (1) q ⊇ {a.f1}
int *p,c;

a.f1 = &c; (2) a.f1 ⊇ {c}
p = q->f1 (3) p ⊇ (∗q)||f1

(4) p ⊇ a.f1.f1 (fdref1, 1+3)

Again, it is impossible to conclude p 7→ {c} from here. The real problem is
that individual locations can have multiple names (e.g. &a and &a.f1 above) and
a system based solely on unique strings cannot easily deal with this. Another
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typedef struct { int *f1; int *f2; } aggr1;

typedef struct { int *f3; int *f4; } aggr2;

String Concatenation Integer Offset

aggr1 a; (1) idx(a.f1) = 0
(2) idx(a.f2) = 1

aggr2 b; (3) idx(b.f3) = 2
(4) idx(b.f4) = 3

void *c; (5) idx(c) = 4
int d; (6) idx(d) = 5

b.f3 = &d (1) b.f3 ⊇ {d} (7) b.f3 ⊇ {d}
c = &b; (2) c ⊇ {b} (8) c ⊇ {b.f3}
a = (aggr1) *c; (3) a.f1 ⊇ (∗c)||f1 (9) a.f1 ⊇ ∗(c+0)

(4) a.f2 ⊇ (∗c)||f2 (10) a.f2 ⊇ ∗(c+1)

(5) a.f1 ⊇ b.f1 (fderef1, 2+3) (11) a.f1 ⊇ b.f3 (deref4, 3+8+9)
(6) a.f2 ⊇ b.f2 (fderef1, 2+4) (12) a.f2 ⊇ b.f4 (deref4, 3+4+8

+10)
(13) a.f2 ⊇ {d} (trans, 7+11)

Fig. 15. This example illustrates an issue with the string concatenation approach to field-
sensitivity. The problem arises because the type of “a” determines which field names are used
in the concatenation, leading to constraints involving non-existing variables b.f1 and b.f2. An
interesting point here is that, strictly speaking, this code has implementation-defined behaviour
under the ISO/ANSI C standard. This is because the two struct’s must be wrapped in a union
in order to be well-defined under the standard (see summary point 3 in Section 6). We have not
done this purely to simplify the example.

example where this issue arises is given in Figure 15, where a different aspect of
the ISO/ANSI standard is exploited (points 2 + 3 from the above summary). In
this case, it is the ability to access the common initial sequence of two structures
interchangeably which causes the trouble.

To overcome the issues involved with string concatenation, Yong et al. introduce
three functions, normalise, lookup and resolve, whose purpose is to bridge the gap
between different names representing the same location. This makes their system
significantly more complicated and less elegant than our approach, which avoids
these issues entirely. However, an important feature of their framework is the
ability to describe both portable and non-portable analyses. The latter can be
used to support commonly found, but undefined C coding practices which rely on
implementation-specific information, such as type size and alignment. In contrast,
our system as described cannot safely handle such practices. However, this could
be done with only minor modification (i.e. using actual offsets instead of field
numbers) and, in fact, Nystrom et al. claim to have done just this, although they
do not discuss exact details [Nystrom et al. 2004b].

Yong et al. do not discuss the positive weight cycle problem, perhaps because it
is only relevant to particular instances of their framework. Nevertheless, to obtain
an equivalent analysis to ours, this issue must be addressed. Indeed, as we have
mentioned, Chandra and Reps do so in their analysis, which they describe as an
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instance of the Yong et al. framework [Chandra and Reps 1999a; 1999b]. Their
solution is to adopt a worse-case assumption about pointers in positive weight cycles
(i.e. they point to every field of each target). Unfortunately, they do not provide
any experimental data which could be used to compare with our system.

Finally, CQual also employs a field-sensitive pointer analysis for C [Foster et al.
1999]. This tool checks user-defined type annotations (e.g. const, nonzero) in C
programs and can infer annotations when they are omitted. CQual was initially
field-insensitive, but this proved inadequate and it was later extended to be (par-
tially) field-sensitive [Johnson and Wagner 2004]. The approach taken is fairly con-
servative (especially with regard to assignment of struct variables) compared with
that developed here, and this can lead to it being rather more imprecise. It is also
unclear whether any attempt was made to make the approach sound with respect
to the ISO/ANSI standard. Unfortunately, no experimental data is available on
the benefits of using field-sensitivity within CQual which we could compare against
our system. Nevertheless, CQual provides an interesting and somewhat unusual
example of a client that stands to gain from the analysis we have developed.

6.1 Field-Based Pointer Analysis

At this point, we return to discuss the third technique for modelling aggregate
variables, known as the field-based approach. The reader may have found it strange
that this was omitted from our experimental study. The reason for this is that we
have identified several problem cases (discussed below) relating specifically to field-
based analysis of C. Previous works have failed to mention these before (see [Heintze
and Tardieu 2001b; Andersen 1994]) and, while solutions may be possible, we feel
that a more thorough examination is required.

Recall from Section 3.1, that under the field-based method, only one constraint
variable is provided to represent every instance of a particular field of an aggregate
type. To implement this type of analysis, it seems at first that our original inference
system from Figure 1 can be used. The idea is to simply change the way in which
C programs are translated into the constraint language:

typedef struct { int *f1; int *f2; } aggr;

aggr a,b; Field-based Field-insensitive
int c,d,*p;

a.f1 = &c; aggr.f1⊇{c} a⊇{c}
b.f1 = &d; aggr.f1⊇{d} b⊇{d}
p = a.f1; p⊇ aggr.f1 p⊇a

The aggr.f1 variable is provided to model every instance of the corresponding
field. Hopefully, it is easy enough to see that the field-based analysis will con-
clude p 7→ {c, d}, whilst the other gives the more precise p 7→ {c}. Unfortunately,
the following C code, whilst completely portable under the ISO/ANSI standard, is
handled incorrectly by this approach:
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aggr *p; int **q,*s,a; void *r

r=malloc(sizeof(aggr)); r ⊇ {HEAP0}
q = r; q ⊇ r

p = r; p ⊇ r

*q = &a; ∗q ⊇ t

t ⊇ {a}
s = p->f1; s ⊇ aggr.f1

{ HEAP0 }

HEAP0

aggr.f1

{ }

s

{ a }

t

p

{ }

r

q

Looking at the graph representation on the right, we can more easily understand
the problem. When r’s solution is propagated into q’s, a new edge will be added from
the temporary node t to HEAP0 (due to the constraint ∗q ⊇ t). However, s reads
from the special variable aggr.f1 (which represents the corresponding field across all
aggr instances), rather than from HEAP0. Thus, there will be no path from t to
s, when in practice there should be, and this leads to the unsound conclusion that
s 67→{a}. The problem stems from the fact that, under the ISO/ANSI standard, a
pointer to a struct can be used interchangeably with a pointer to its first field (see
summary point 1 on page 32). We have carefully constructed the above example to
exploit this, leading to two constraint variables (aggr.f1 and HEAP0) representing
the same physical object. To resolve this we must ensure updates to one are reflected
in the other. That is, we must coalesce the two variables together. A good point
to do this is when a struct pointer is assigned a value of a different type (e.g. at
the statement “p = r” above).

Another difficulty arises when the same object represents different struct’s. For
example:

typedef struct { int *f1; int *f2; double x;} aggr1;

typedef struct { int *f3; int *f4; int y;} aggr2;

typedef union { aggr1 a; aggr2 b; } aggr;

aggr x;

int c,d,*p;

x.a.f1 = &c; aggr1.f1⊇{c}
p = x.b.f3; p⊇ aggr2.f3

The problem here is that the field-based analysis does not conclude p 7→ {c}.
Again, this arises because two constraint variables (aggr1.f1 and aggr2.f3) rep-
resent the same physical object. As before, this can only be resolved by ensuring
updates to one are reflected in the other. A reasonable solution might be to co-
alesce constraint variables representing struct’s which appear in the same union.
Recall that, strictly speaking, the union is required for the above code to be consid-
ered properly ANSI compliant (see summary point 3 on page 33). If this were not
the case, field-based analysis of C would (most likely) be completely unworkable
because all struct’s could be used interchangeably with all others.

At this point, we remain uncertain whether all problem cases have been identified
or not. Therefore, we believe a more thorough examination of field-based pointer
analysis for C is required before it should be considered safe to use.
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7. CONCLUSION

We have presented a novel approach to field-sensitive pointer analysis of C. While
this is not the first solution to this problem, we argue it is the simplest and most
elegant and have provided numerous examples to support this. We have devel-
oped an algorithm which implements our ideas and provided a complexity analysis
which demonstrates, for the first time, that the problem of performing field-sensitive
pointer analysis for C can be solved in O(v4) worse-case time. We have performed
the largest experimental study to-date evaluating the trade-offs in performance ver-
sus precision of using field-sensitivity when analysing C programs. The results of
this, which are reported here, demonstrate that field-sensitivity can offer a signifi-
cant improvement in precision, albeit at some considerable computational cost.

While the overall conclusions of our experiments are positive, they also highlight
a significant issue — namely that positive weight cycles are a major hindrance to
efficient and precise field-sensitive analysis. Therefore, we feel that future work
should consider this issue further and, hopefully, a satisfactory solution will be
found. Another area of interest would be to investigate the effect on solving time of
using the difference propagation technique with the field-sensitive analysis, which
due to time constraints we have been unable to do.

Finally, we are pleased to say that Dan Berlin has independently integrated our
technique for field-sensitive pointer analysis into the latest release (version 4.1) of
the GNU Compiler GCC [Berlin 2005]. While his implementation differs a little
from what we have presented here (e.g. it is intra-procedural and does not employ
cycle detection), it is still the same fundamental algorithm underneath.
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