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ABSTRACT
The subject of this paper is flow- and context-insensitive
pointer analysis. We present a novel approach for precisely
modelling struct variables and indirect function calls. Our
method emphasises efficiency and simplicity and extends the
language of set-constraints. We experimentally evaluate the
precision cost trade-off using a benchmark suite of 7 common
C programs between 5,000 to 150,000 lines of code. Our
results indicate the field-sensitive analysis is more expensive
to compute, but yields significantly better precision.

Categories and Subject Descriptors
F.3.2 [Semantics of Programming Languages]: Pro-
gram Analysis

General Terms
Algorithms, Theory, Languages, Verification

Keywords
Set-Constraints, Pointer Analysis

1. INTRODUCTION
Pointer analysis is the problem of statically determining the
runtime targets of pointer variables in a program. We say
that a solution is sound if the inferred target set for each
variable contains all actual runtime targets for that vari-
able. A solution is imprecise if, for any variable, the in-
ferred target set is larger than necessary. Thus, the most
imprecise but sound solution has each variable pointing to
every other. Obtaining a perfect (i.e. flow- and context-
sensitive) solution, however, is undecidable in general [14]
and, in practice, obtaining even relatively imprecise infor-
mation (i.e. flow- and context-insensitive) is expensive [13].
The main contributions of this paper are:

1. A small extension to the language of set-constraints,
which elegantly formalises a field-sensitive pointer anal-
ysis for the C language. As a byproduct, function
pointers are supported for free with this mechanism.
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2. The largest experimental investigation to date into the
trade-offs in time and precision of field-insensitive and
-sensitive analyses for C.

In some sense, our formulation can be regarded as an in-
stance of the general framework for field-sensitive pointer
analysis by Yong et al. [28]. In particular, we argue it is
equivalent to the most precise, yet portable analysis their
system can describe. However, this work goes beyond their
initial treatment by considering efficient implementation and
some important algorithmic issues which were not addressed.

2. CONSTRAINT-BASED ANALYSIS
Set-constraints [1] were first used by Andersen for perform-
ing pointer analysis [2]. Since then, this approach has be-
come popular and, recently, was shown capable of analysing
million line programs [10, 15]. We use the following set-
constraint language to formulate our pointer analysis:

p ⊇ q | p ⊇ {q} | p ⊇ ∗q | ∗p ⊇ q | ∗p ⊇ {q}

Where p and q are constraint variables and ∗ is the derefer-
ence operator. We can think of each variable as containing
the set it points to. Thus, p ⊇ {x} states that p points to x.
Note, constraints involving “∗” are called complex. To per-
form the analysis we first translate the source program into
this language, by mapping each variable to a unique con-
straint variable and converting assignments to constraints.
Consider the following, where the solution (shown below the
line) is obtained using the rules of Figure 1:

int *f(int *p){return p;} (1) f∗ ⊇ fp

int g() { int x,y,*p,*q,**r,**s;

s=&p; (2) gs ⊇ {gp}
if(...) p=&x; (3) gp ⊇ {gx}
else p=&y; (4) gp ⊇ {gy}
r=s; (5) gr ⊇ gs

q=f(*r); (6) fp ⊇ ∗gr

} (7) gq ⊇ f∗

(8) gr ⊇ {gp} (trans, 2 + 5)
(9) fp ⊇ gp (deref

2
, 6 + 8)

(10) fp ⊇ {gx} (trans, 3 + 9)
(11) fp ⊇ {gy} (trans, 4 + 9)
(12) f∗ ⊇ {gx} (trans, 1 + 10)
(13) f∗ ⊇ {gy} (trans, 1 + 11)
(14) gq ⊇ {gx} (trans, 7 + 12)
(15) gq ⊇ {gy} (trans, 7 + 13)

Variable names are augmented with scope information to
ensure uniqueness. Also, f∗ represents the return value of f .



τ1 ⊇ {τ2} τ3 ⊇ τ1

τ3 ⊇ {τ2}
τ1 ⊇ ∗τ2 τ2 ⊇ {τ3}

τ1 ⊇ τ3

∗τ1 ⊇ τ2 τ1 ⊇ {τ3}
τ3 ⊇ τ2

∗τ1 ⊇ {τ2} τ1 ⊇ {τ3}
τ3 ⊇ {τ2}

[trans] [deref
1
] [deref

2
] [deref

3
]

Figure 1: An inference system for pointer analysis

From the derivation, we can build the target set of a variable
v from constraints of the form v ⊇ {x}. Thus, constraints
14+15 give q = {gx, gy}, meaning q may point to gx or gy

anywhere in the program. To ensure the solution is sound,
we must derive all facts. One feature of the system is that
control-flow and calling context are ignored. This is called
flow- and context-insensitivity and causes imprecision. But,
without these simplifications, our analysis would not scale
to large programs.

To perform the analysis efficiently we use a directed graph,
where each variable is represented by a unique node and each
constraint p ⊇ q by an edge p←q. For each node n we also
have a solution set, Sol(n), initialised from all constraints
of the form n⊇{x}. So, for the previous example, we have:

f*
gqfpgp

rggs

{}{gx,gy}

{gp} {}

{}{}

Here, each solution is placed below its node. The graph is
then solved by propagating the solution of each node into
all reachable successors. During this, complex constraints
involving n are evaluated as Sol(n) changes. For a constraint
∗n⊇ q, this is done by adding an edge v← q, ∀v ∈ Sol(n).
The final graph looks like:

f*
gqfpgp

gs rg

{gx,gy}

{gp}

{gx,gy} {gx,gy} {gx,gy}

{gp}

Notice the new edge, caused by constraint 6 (fp ⊇ ∗gr).
Various techniques for speeding up this computation have
been proposed in the literature and the reader is referred to
[19, 10, 15, 7, 24, 20]. One important consideration is that,
for efficiency reasons, it is desirable to implement Sol(n)
as an integer set. This permits the use of data structures
supporting efficient set union, such as bit vectors or sorted
arrays, and is achieved by indexing each variable.

There are two limitations to the system described so far:
it cannot handle aggregates or function pointers. For the for-
mer, three approaches are common: field-insensitive, where
field information is discarded by modelling an aggregate
with a single constraint variable; field-based, where all in-
stances of a particular field are modelled with one variable;
field-sensitive, where each instance of a field is modelled with
a separate variable. The following clarifies this:

typedef struct { int *f1; int *f2; } aggr;

aggr a,b; (insensitive) (based) (sensitive)
int *c,d,e,f;

a.f1 = &d; a ⊇ {d} f1 ⊇ {d} af1 ⊇ {d}
a.f2 = &f; a ⊇ {f} f2 ⊇ {f} af2 ⊇ {f}
b.f1 = &e; b ⊇ {e} f1 ⊇ {e} bf1 ⊇ {e}
c = a.f1; c ⊇ a c ⊇ f1 c ⊇ af1

The field-insensitive and field-based solutions are imprecise

in different ways, with their relative precision depending
upon the program in question. The focus of this paper is in
extending our system to be field-sensitive. In fact, there ex-
ist several field-sensitive pointer analyses for Java, which are
formulated using set constraints [21, 15, 17, 26]. However,
Java presents a simpler problem and we must go beyond
these to achieve our goal.

In the literature, function pointers are either dealt with
in ad hoc ways (e.g. [10, 15]) or through a special lam
constructor (e.g. [9, 8]). The latter gives something like:

int f(int *p) { return p; } f∗ ⊇ fp

int (*p)(int*) = &f p ⊇ { lamf (fp) }
int *q = ... q ⊇ { . . . }
p(q) ∗p(q)

with a corresponding rule for function application:

∗p(τ1, . . . , τn)
p ⊇ { lamv(v1, . . . , vn) }
∀1≤ i≤n. vi ⊇ τi

The main issue here is the implementation of lam. Cer-
tainly, we don’t wish to sacrifice the ability to implement
solutions as integer sets. One approach is to place the lam
constructs into a table, so they are identified by index. Thus,
if care is taken to avoid clashes with the variable identifiers,
the two element types can co-exist in the same solution set.
However, this is inelegant as we must litter our algorithm
with special type checks. For example, when dealing with
∗p ⊇ q, we must check for lam values in Sol(p). In the next
Section, we present a simple alternative, which forms part
of our field-sensitive formulation — meaning field-sensitive
analyses can model function pointers for free.

3. EXTENDING THE BASIC MODEL
The main observation behind our method is that, since vari-
ables are identified by integers, we can reference one as an
offset from another. Thus, we introduce the following forms:

p ⊇ ∗(q+k) | ∗(p+k) ⊇ q | ∗(p+k) ⊇ {q}

Here k is an arbitrary constant and ∗(p+k) means “load p
into a temporary set, add k to each element and dereference
as before”. When k=0, these forms are equivalent to those
of the original language. The corresponding inference rules
are given in Figure 2, where idx maps variables to their
index. Now, suppose in our source program there is some
function f , accepting x parameters. If the address of f has
been taken, we create a block of x consecutively indexed
variables, where the first represents the first parameter of
f and so on. Thus, we model the address of f using the
first index in the block, allowing us to reference the other
parameters as an offset. We can also model return values
using this mechanism by allocating another variable after
the last parameter. Thus, we can determine the offset of
the return value from the type of the function pointer being
dereferenced. The following aims to clarify this:



τ1 ⊇ ∗(τ2+k) τ2 ⊇ {τ3}
idx(τ4) = idx(τ3)+k

τ1 ⊇ τ4

∗(τ1+k) ⊇ τ2 τ1 ⊇ {τ3}
idx(τ4) = idx(τ3)+k

τ4 ⊇ τ2

∗(τ1+k) ⊇ {τ2} τ1 ⊇ {τ3}
idx(τ4) = idx(τ3)+k

τ4 ⊇ {τ2}

τ1 ⊇ τ2+k τ2 ⊇ {τ3}
idx(τ4) = idx(τ3)+k

τ1 ⊇ {τ4}

[deref
4
] [deref

5
] [deref

6
] [add]

Figure 2: Extended inference rules. Note, add is only needed for the second half of Section 3

void f(int**p,int*q) (1,2) idx(fp) = 0, idx(fq) = 1
{ *p = q; (3) ∗fp⊇fq

}

void g(...) { void (*p)(int**,int*);

int *a,*b,c; (4,5) idx(gp)=2, idx(ga)=3
(6,7) idx(gb)=4, idx(gc)=5

p = &f; (8) gp ⊇ {fp}
b = &c; (9) gb ⊇ {gc}
p(&a,b); (10) ∗(gp+0)⊇{ga}
} (11) ∗(gp+1)⊇ gb

(12) fp ⊇ {ga} (deref
6

8,10,1)
(13) fq ⊇ gb (deref

5
1,2,8,11)

(14) fq ⊇ {gc} (trans 9,13)
(15) ga ⊇ fq (deref

2
3,12)

(16) ga ⊇ {gc} (trans 14,15)

Thus, we see &f is translated as fp — its first parameter.
One difficulty is the use of invalid casts:

void f(int *p) { ... } idx(fp)=0
int g(int *a,int *b) { idx(ga)=1, idx(gb)=2
void (*p)(int*,int*); idx(gp)=3
p = (void(*)(int*,int*)) &f; gp ⊇ {fp}
*p(a,b); ∗(gp+0) ⊇ ga

} ∗(gp+1) ⊇ gb

Here, ∗(gp +1) ⊇ b derives ga ⊇ b as idx(ga) = idx(fp) + 1.
This is unfortunate, although it is unclear how to model
the above anyway. To prevent such unwanted propagation
we can extend our mechanism with end() information for
each variable. This determines where the enclosing block of
consecutively allocated variables ends and we only permit
offsets which remain within this. For example, in the above,
end(fp) = 0 and end(ga) = end(gb) = 2 and we can identify
the problem as idx(∗(gp+1)) > end(∗gp).

We now consider how this system can be made field-
sensitive, which we have already indicated is easier for Java
than C. So, what is the difference? The answer is that,
in C, we can take the address of a field. Indeed, it turns
out the language of the previous Section is enough for field-
sensitive analysis of Java. This is achieved by using blocks
of constraint variables, as we did for functions, to represent
aggregates. For example:

typedef struct { int *f1; int *f2; } aggr;

aggr a,*b; idx(af1)=0, idx(af2)=1, idx(b)=2
int *p,**q,c; idx(p)=3, idx(q)=4, idx(c)=5
b=&a b ⊇ {af1}
b->f2=&c; ∗(b+1) ⊇ {c}
p=b->f2; p ⊇ ∗(b+1)

But, how can we translate “q=&(b->f2);”? The problem is
that we want to load the index of af2 into Sol(q), but there is
no mechanism for this. So, we extend the language to permit
the translation: q ⊇ b+1, meaning load b into a temporary,
add 1 to each element and merge into q. Note the inference
rule in Figure 2. This form can be represented by turning the

constraint graph into a weighted multigraph, where weight
determines increment. However, this introduces the Positive
Weight Cycle (PWC) problem:

aggr a,*p; void *q;

q=&a; q ⊇ {a}
p=q; p ⊇ q
q=&p->f2; q ⊇ p+1
/* now use q as int* */

This is legal and well-defined C code. The cycle arises from
flow-insensitivity and, we argue, any such analysis must deal
with this. Note, cycles can also arise from an imprecise
model of the heap (see below). In general, the problem is
that cycles describe infinite derivations. To overcome this,
we use end() information, as with function pointers, so that
a variable is only incremented within its enclosing block.
Another problem with weighted edges is that cycle elimi-
nation is now unsafe. Eliminating cycles is a common op-
timisation for speeding up the analysis, which exploits the
fact that nodes in a cycle have the same solution [19, 10,
7]. Thus, each cycle is replaced by a single representative —
reducing the size and complexity of the graph. Returning
to our problem, we observe that cycles can be collapsed if
there is a zero weighted path between all nodes and intra-
cycle weighted edges are preserved as self loops.

The heap is a further source of complication. One ap-
proach, used by most pointer analyses, is to model all objects
returned by a particular call to malloc with one variable.
This has some implications, highlighted in the following:

typedef struct {double d1; int *f2;} aggr1;

typedef struct {int *f1; int *f3;} aggr2;

void *f(int s) {return malloc(s);} f∗ ⊇ {HEAP0}
void *g(int s) {return malloc(s);} g∗ ⊇ {HEAP1}
aggr1 *p = f(sizeof(aggr1)); p ⊇ f∗

aggr2 *q = f(sizeof(aggr2)); q ⊇ f∗

int *x = f(100); x ⊇ f∗

int *y = g(100); y ⊇ g∗

The issue is that we cannot, in general, determine which
heap variables will be used as aggregates. Indeed, the same
variable can be used as both aggregate and scalar (e.g. HEAP0
above). Thus, we either model heap variables field-insensitively
or assume they can be treated as aggregates. Our choice is
the latter, raising a further problem: how many fields should
each heap variable have? A simple solution is to give them
the same number as the largest struct in the program. Ef-
fectively, then, each heap variable is modelling the C union

of all structs. So, in the above, HEAP0 and HEAP1 both
model aggr1 and aggr2 and are implemented with two con-
straint variables: the first representing fields f1 and d1; the
second f2 and f3. The observant reader will have noticed
something strange here: the first constraint variable models
fields of different sizes. This seems a problem as, for exam-
ple, writing to d1 should invalidate f1 and f3. In practice,



Ver LOC Triv Simp Comp Vars # Heap # PWC

make 3.79 16164 1427 4417 1557 4773 / 6920 69 / 1794 0
gawk 3.1.0 19598 2263 7797 2265 7288 / 10125 96 / 2496 0
bash 2.05 55324 3594 12076 2659 10831 / 13109 36 / 936 0
emacs 20.7 93151 11715 10437 5135 17961 / 38170 172 / 12900 0
sendmail 8.11.4 49053 5444 9595 2286 10218 / 12869 13 / 949 1
named 9.2.0 75599 17848 28972 24088 34649 / 47101 24 / 1704 1
gs 6.51 159853 21653 44030 36431 63568 / 100209 17 / 1887 2

Table 1: LOC measures non-comment, non-blank lines. Initial constraints are Trivial (p ⊇ {q}), Simple (p ⊇ q)
and Complex (involving ‘*’). Total number of constraint variables is given in #V ars, with #Heap showing
number modelling the heap. For each, the two numbers are for the field-insensitive and -sensitive analyses
respectively. Finally, “# PWC” counts positive weight cycles in the final graph (for the sensitive analysis).

however, this cannot be exploited without using undefined
C, such as:

aggr1 *p = malloc(sizeof(aggr1)); idx(HEAP00)=0
idx(HEAP01)=1

int a,*r; p ⊇ {HEAP00}
aggr2 *q = (aggr2 *) p; q ⊇ p
q->f3 = &a; ∗(q+1) ⊇ {a}
p->f1 = 1.0; /* clobbers q->f3 */ ∗(p+0) ⊇ {?}
r = q->f3; r ⊇ ∗(q + 1)

Here, our analysis unsoundly concludes that r only points to
a. Note the special value “?”, used to indicate that a pointer
may target anything. In general, we are not concerned with
this issue as our objective is to model portable C programs
only. Finally, nested structs are easily dealt with by “inlin-
ing” them into their enclosing struct, so that each nested
field is modelled by a distinct constraint variable.

4. EXPERIMENTAL STUDY
We now present empirical data on a range of benchmarks
comparing two example field-sensitive and -insensitive solvers.
Figure 3 provides pseudo-code for the field-sensitive solver.
The insensitive algorithm is similar, but operates on the
simpler language of Figure 1. Notice that cycles are identi-
fied with Tarjan’s algorithm [25] and not the partial online
detector from [7]. In our experience, we have found this con-
figuration to be highly efficient, not least because Tarjan’s
algorithm can topologically sort the graph for free. Our
implementation also used bit vectors for the solution sets,
applied the variable substitution methods of [20] and the
(hash-based) duplicate set compaction scheme from [10].

To generate constraints, the SUIF 2.0 compiler was em-
ployed and a few points must be made about this: the ap-
proach of Section 3 was used for modelling the heap; string
constants were all treated as one object; lastly, external
function calls were modelled with hand crafted summary
functions. Note, we were able to compile all the benchmarks
with only superficial modifications, such as adding extra
“#include” directives for missing standard library headers.

Finally, the experimental machine was a 900Mhz Athlon
with 1Gb of main memory, running Redhat 8.0 (Psyche).
The executables were compiled using gcc 3.2, with “-O3”.

Table 1 provides information on our benchmarks, which
are all open source and available online. In particular, we
note the number of variables differs between the insensitive
and sensitive analyses. This was expected as, in the latter,
each aggregate is now modelled using several variables. In
fact, there will be more constraints for similar reasons, al-
though these are omitted for brevity as they are essentially

foreach y ∈ V do changed(y) = true;

while ∃y.changed(y) do
collapse zero weight cycles with Tarjan’s algorithm
foreach n ∈ V in (weak) topological order do
if changed(n) then
changed(n)=false;
// process complex constraints involving ∗n
foreach c ∈ C(n) do case c of
∗(n + k) ⊇ w:

foreach v ∈ Sol[n] do
x = v + k;
if x ≤ end(v) ∧ w→x /∈ E do
E ∪= w→x;
if Sol[w] 6⊆ Sol[x] do
Sol[x] ∪= Sol[w]; changed(x) = true;

w ⊇ ∗(n + k):
foreach v ∈ Sol[n] do
x = v + k;
if x ≤ end(v) ∧ x→w /∈ E do
E ∪= x→w;
if Sol[x] 6⊆ Sol[w] do
Sol[w] ∪= Sol[x]; changed(w) = true;

∗(n + k) ⊇ {w}:
foreach v ∈ Sol[n] do
x = v + k;
if x ≤ end(v) ∧ w /∈Sol[x] do
Sol[x] ∪={w}; changed(x) = true;

// process outgoing edges from n

foreach
k

n→w ∈ E do
foreach v ∈ Sol[n] do
x = v + k;
if x ≤ end(v) do Sol[w] ∪= {x};

if Sol[w] changed then changed(w) = true;

Figure 3: The Field-sensitive Pointer Analysis Al-
gorithm. All scalar variables (e.g. n and x) have in-
teger type and Sol is an array of integer sets, where
Sol[n] is initialised by constraints of the form n ⊇ {q}.
C(n) contains all constraints involving “∗n”. The al-
gorithm consists of an outer loop which iterates un-
til no change is observed. On each iteration, zero
weighted cycles are collapsed and then all remain-
ing are visited in topological order. To visit a node
n, any complex constraints involving it are evalu-
ated and then Sol[n] is propagated along all outgoing
edges. Note the use of end information to prevent
infinite loops arising from positive weight cycles.



Time / s Avg Working Avg Deref Dereference Sites (% of normalised total)
Set Size Size (N) 0 1 2 3-10 11-100 101-1000 1000+

make fdi 0.07 10.3 336.7 5.7 7.3 0.77 5.0 16.0 66.0 0.0
fds 0.17 7.0 17.2 5.9 20.0 6.3 4.2 64.0 0.0 0.0

gawk fdi 0.12 28.7 633.9 6.2 7.8 6.3 4.3 27.0 0.93 48.0
fds 0.3 15.3 22.4 7.1 24.0 21.0 7.0 41.0 0.0 0.0

bash fdi 0.51 84.5 543.0 5.4 7.6 2.7 3.4 20.0 61.0 0.0
fds 0.53 52.5 86.7 5.4 24.0 6.1 2.9 5.8 56.0 0.0

emacs fdi 0.4 12.2 79.3 24.0 17.0 27.0 2.7 7.9 21.0 0.53
fds 0.69 2.6 5.4 25.0 25.0 32.0 10.0 7.6 0.37 0.03

sendmail fdi 0.49 58.7 558.4 3.5 17.0 1.8 4.8 8.0 65.0 0.0
fds 2.05 106.5 214.2 4.6 23.0 3.3 4.2 4.4 60.0 0.0

named fdi 30.0 570.5 2865.5 3.4 3.6 3.9 28.0 1.4 1.2 58.0
fds 129.1 2042.9 2167.7 5.1 8.4 1.3 28.0 2.2 2.7 52.0

gs fdi 277.4 1148.7 7703.1 32.0 2.7 1.2 3.1 3.8 1.7 56.0
fds 2510.4 5977.0 7365.2 33.0 7.2 2.9 2.1 0.25 0.35 54.0

Table 2: Experimental data on the field-sensitive (fds) and field-insensitive (fdi) formulations of our analysis.

the same. This table also looks at the number of positive
weight cycles in the final graph. It is important to realise
the count may be higher during solving, as some cycles may
end up being combined. Nevertheless, we believe this figure
indicates that positive weight cycles are rare.

Table 2 looks at the effect on time and precision of using
our field-sensitive analysis versus its insensitive counterpart.
The data clearly shows that field-sensitivity is more expen-
sive to compute. The average working set size gives the aver-
age size of the final solution sets computed by the algorithm.
This figure gives insight into the cost of a set union oper-
ation during solving and, hence, we expected a correlation
with execution time. Unfortunately, only three benchmarks
appear to support this and one explanation might be that
the greater accuracy of the sensitive analysis means there are
fewer cycles to collapse. Furthermore, we note the number
of positive weight cycles appears to impact upon the average
working set size. “Avg Deref” reports the average set size
at dereference sites. However, to facilitate a comparison (in
terms of precision) between the two analyses we must nor-
malise this value. To understand why, consider a pointer p
which targets the first three fields of some struct a. For the
insensitive analysis, we have the solution p⊇{a}, whilst the
sensitive analysis gives p⊇ {af1, af2, af3}. Thus, the latter
seems less accurate since it is larger. However, this is mis-
leading as the insensitive analysis actually concludes that p
may point to any field of a. Therefore, we normalise the
insensitive solution by counting each aggregate by the num-
ber of variables representing it in the sensitive formulation.
We also break up the average deref figure to show its dis-
tribution. Note that zero sized sets arise from unreachable
code, typically occurring when a function is linked with the
program, but not actually called. The results are encourag-
ing and show the field-sensitive analysis to give more precise
results across the board. However, it appears the payoff de-
creases with program size. In particular, a large proportion
of sets for the two largest benchmarks have a thousand el-
ements or more. We believe the main reason for this trend
can be attributed to the number of variables modelling the
heap — which does not increase with program size. Thus,
these variables will likely be modelling an increasingly large

number of actual heap objects. In fact, the data for emacs

appears to support this, since this has an unusually high
number of heap variables and appears to have a much bet-
ter distribution of sets than the others.

5. RELATED WORK
Flow- and context-insensitive pointer analysis has been stud-
ied extensively in the literature (see e.g. [19, 15, 7, 10, 20, 2,
23, 5]). These works can, for the most part, be placed into
two camps: extensions of either Andersen’s [2] or Steens-
gaard’s [23] algorithm. The former use inclusion constraints
(i.e. set-constraints) and are more precise but slower, while
the latter adopt unification systems and sacrifice precision in
favour of speed. Thus, new developments tend to be focused
either on speeding up Andersen’s algorithm (e.g. [10, 7, 20,
19]) or on improving the precision of Steensgaard’s (e.g. [5,
6, 16]). Furthermore, there have been numerous studies on
the relative precision of these two approaches (see e.g. [17, 9,
12, 22, 5, 6], with the results confirming that set-constraints
offer useful improvements in precision. We refer the reader
to [11] for a more thorough survey of pointer analysis.

For field-sensitive pointer analysis of C, there are several
previous works (e.g. [27, 28, 3, 16]), although only two
are for the flow- and context-insensitive setting. The first,
due to Yong et al. [28], is a framework covering a spec-
trum of analyses from complete field-insensitivity through
various levels of field-sensitivity. The main difference from
our work is the approach taken to modelling field-addresses
where, instead of using integer offsets, the actual field names
themselves are used. To understand this, consider:

typedef struct { int *f1; int *f2; } aggr1;

aggr1 a,*b; int *p,c;

a.f1 = &c; a.f1 ⊇ {c}
b = &a; b ⊇ {a}
p = b->f2; p ⊇ (∗b)||f2

Here, the || operator is just string concatenation, where
a||b ⇒ a.b and (∗a)||b ⇒ c.b, if a⊇ {c}. Thus, p⊇ (∗b)||x
replaces p⊇∗(b+k) from our system. While this difference
appears trivial, it hides some complications. For example:



typedef struct { int *f1; int *f2; } aggr1;

typedef struct { int *f3; int *f4; } aggr2;

aggr1 a; aggr2 b; void *c; int d;

b.f3 = &d b.f3 ⊇ {d}
c = &b; c ⊇ {b}
a = (struct aggr1) *c; a.f1 ⊇ (∗c)||f1

a.f2 ⊇ (∗c)||f2

The above is well-defined C code, but the last statement
presents an issue for the name string approach. This is be-
cause the type of “a” determines which fields are involved in
the assignment. The problem is that the constraint variables
b.f1 and b.f2 (arising from (∗c)||f1 and (∗c)||f2) do not ex-
ist as “b” has a different, but compatible type to “a”. To
overcome this, Yong et al. introduce three functions, nor-
malise, lookup and resolve, whose purpose is to bridge the
gap between different names representing the same location
(such as b.f1 and b.f3 in the above). The key point is that,
by using offsets instead of name strings, our system avoids
these issues entirely and, thus, provides a simpler and more
elegant formalisation.

An important feature of the Yong et al. framework is the
ability to describe both portable and non-portable analyses.
The latter can be used to support commonly found, but
undefined C coding practices which rely on implementation-
specific information, such as type size and alignment. In
contrast, our system as described cannot safely handle such
practices. However, with some small modification, it could
be made to do so, whilst retaining its relative simplicity.

Yong et al. also examine the precision obtainable with
field-sensitivity and, although smaller benchmarks were used,
their findings match ours. Finally, they do not discuss the
PWC problem, perhaps because it is only relevant to partic-
ular instances of their framework. Nevertheless, to obtain
an equivalent analysis to ours, this issue must be addressed.
Indeed, Chandra and Reps do so in their analyses, which
they describe as an instance of the Yong et al. framework
[3, 4]. Their solution is to adopt a worse-case assumption
about pointers in positive weight cycles (i.e. they point to
every field of each target). Unfortunately, they do not pro-
vide any experimental data which could be used as the basis
of a comparison with our system.

6. CONCLUSION
We have presented a novel approach to modelling indirect
function calls and aggregates for pointer analysis of C. Fur-
thermore, we we evaluated its effect on time and precision
using an example implementation. Our results indicate that
field-sensitivity, while offering greater precision, is expensive
to compute. In the future, we are interested in extending our
formulation to be flow-sensitive and investigating the pros
and cons of doing this. We have also been investigating the
potential of several new graph algorithms for speeding up
pointer analysis [19, 18]. Finally, the reader is referred to
[18] for a more thorough examination of this material.
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