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Abstract

This paper presents and evaluates a number of tech-
niques to improve the execution time of interprocedural
pointer analysis in the context of large C programs. The
analysis is formulated as a graph of set constraints and
solved using a worklist algorithm. Indirections lead to new
constraints being added during this process.

In this work, we present a new algorithm for online cy-
cle detection, and a difference propagation technique which
records changes in a variable’s solution. Effectiveness of
these and other methods are evaluated experimentally us-
ing nine common ‘C’ programs ranging between 1000 to
55000 lines of code.

1 Introduction

Pointer analysis is the problem of determining before-
hand what the pointer variables in a program may target.
Any algorithm for doing this will always be approximate
and the aim is to produce the most accurate (smallest) solu-
tion possible, for each variable, in practical amounts of time
and space. A solution is regarded as valid if all actual tar-
gets are included, although there may also be extra spurious
targets.

This work is about improving the runtime of such analy-
ses, in particular those employing a worklist algorithm. Our
main contributions are:

• An original algorithm for online cycle detection.

• A difference-propagation solver for the pointer analy-
sis problem. This reduces work by propagating only
the change in solution for a variable, rather than the
whole solution.

• Empirical data comparing these and other techniques.

In this paper, as is commonly the case, we only consider
flow- and context-insensitive analyses.

1.1 Flow- and Context-Sensitivity

A common way of categorising this area is in terms of
flow- and context-sensitivity. The former indicates whether
statement order should be considered. Thus, in the follow-
ing, a flow-insensitive analysis would conclude that x can
point to both y and w:

(1) z = &y;
(2) x = z;
(3) z = &w;

This conservative result arises as the algorithm is unaware
of the ordering between statements. Thus, it reasons that (3)
could be executed before (2) and vice-versa. The advantage
of doing this comes from a reduced space requirement, as
it is no longer necessary to store separate solutions for each
variable at different program points.

In a similar fashion, a context-insensitive analysis ig-
nores calling context. To see this more clearly, consider
the following:

int *simple(int *q) {return q;}
(C1) x = simple(&a);
(C2) y = simple(&b);

In this case, there are two calling contexts, C1 and C2. A
context-insensitive analysis merges these into one, which
could be thought of as replacing C1 and C2 with:

(C1+2) {x,y} = simple({&a,&b});

Which means: analyse simple as though q points to both a
and b and assign the result to both x and y. Thus, such an
analysis would conclude that x and y can point to a and b.
Again, the reasoning behind this seemingly wasteful sim-
plification is practicality: If this was not done then an anal-
yser would effectively be inlining every function and this is
known to be unscalable.

1.2 Organisation

The remainder of this paper is organised as follows: Sec-
tion 2 will cover related work and any background neces-



char *f(char *p) {
char *q;
if(...) q = ‘‘bar’’; /* fq ⊇ {t1} */
else q = p; /* fq ⊇ fp */
return q; /* f∗ ⊇ fq */

}

void main(void) {
char *r,*s,*p,**t,**q;
p = ‘‘foo’’; /* mainp ⊇ {t2} */
if(...) r = f(p); /* fp ⊇ mainp, mainr ⊇ f∗ */
else r = p; /* mainr ⊇ mainp */
s = r; /* mains ⊇ mainr */
r = ‘‘test’’; /* mainr ⊇ {t3} */
q = &r; /* mainq ⊇ {mainr} */
t = q; /* maint ⊇ mainq */
*t = s; /* ∗maint ⊇ mains */

}
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Figure 1. An artificial example illustrating how the initial constraint graph is derived from the source
code. The “tX” constants represent the string objects and f∗ the return value of f. Roughly speaking
the graph can be solved by propagating the solution for a node to all those reachable from it. However,
there is a complex constraint ∗maint ⊇ mains, which cannot be directly represented in the graph.
But, it must eventually lead to an edge from mains to mainr being added. This will happen during
solving, sometime after mainr has been propagated into the solution of maint.

sary. Section 3 will overview three methods for improving
the runtime of such analyses. These will then be empirically
evaluated and discussed in Section 4. Finally, conclusions
will be drawn and future work considered in Section 5.

2 Background

Flow- and context-insensitive pointer analysis has been
studied extensively in the literature (see e.g. [10, 14, 21, 6,
23]). These works can, for the most part, be placed into two
camps: extensions of either Andersen’s [6] or Steensgaard’s
[23, 22] algorithm. The former use inclusion constraints
and are more precise but slower. The latter adopt unification
systems and sacrifice precision in favour of speed.

We will now examine each method in turn, paying par-
ticular attention to inclusion constraints as our work is in
this area.

2.1 Inclusion Constraints

This general approach to pointer analysis, first suggested
by Andersen, comes under the banner of set-based con-
straint solving (see e.g. [3, 4]). This involves generating
and solving simple set-constraints, which are often referred
to as inclusion constraints due to their use of the⊇ operator.

A small language is used for this purpose, where the do-
main of variables is denoted by VAR. In addition, those
whose addresses have been taken are members of VAR& ⊆
VAR. Thus, the constraints themselves take the form:

p ⊇ q | p ⊇ {q} | p ⊇ ∗q | ∗p ⊇ q

Where p and q are variables from VAR and ∗ is the usual
‘C’ dereference operator. Those involving the dereference
operator are termed complex constraints. Finally, a solution
to a constraint set is an assignment to each variable from
P(VAR&), such that all constraints are satisfied.

2.1.1 Constraint Graph Formulation

In his original formulation, Andersen simply maintained
the constraints in a vector. However, a more suitable rep-
resentation is a constraint graph. This was first used by
Heintze and Tardieu [14] and, although our description
varies slightly, can be constructed as follows:

1. For every variable p, a unique vertex vp is created.

2. An edge vp←vq is added for each constraint p ⊇ q.

3. Each vertex vp is associated with a solution set
Sol(vp) ⊇ VAR&. This is initialised with all variables
q involved in a constraint p ⊇ {q}.



In what follows, we often use a variable and its vertex inter-
changeably when the meaning is clear.

The constraint graph can be thought of as a dependence
graph composed with a solution set for each vertex. Further-
more, as there is no clear means of expressing the complex
constraints, we simply assume that they remain close-at-
hand. This is to permit, for a given variable, quick iteration
through those constraints which dereference it. Figure 1
provides a sample translation from ‘C’ code into the initial
constraint graph.

2.1.2 Solving

At this point, the constraints can be solved by repeatedly
selecting an edge vx→ vy and merging Sol(x) into Sol(y)
until a fixpoint is reached. This is often referred to as con-
vergence. During this process, new edges arising from the
complex constraints must be added to the graph. To see why
this is so, consider the complex constraint p ⊇ ∗q. Suppose
that initially Sol(q) = ∅, but at some point during the analy-
sis Sol(q) = {x}. Clearly, then, there is a dependence from
x to p and, furthermore, this could not have been known at
graph construction time. Therefore, the edge x→p must be
added as the solution for q becomes available.

The choices of which edge to select and when to
process a complex constraint are important factors affecting
convergence time. These issues were not addressed by
Andersen, who used a simple scheme where constraints are
processed in turn. As we shall see, much more sophisti-
cated algorithms are possible.

The classical solution to this type of problem is the
worklist algorithm (see e.g. [19]). Such an algorithm
operates by initially placing all nodes onto a worklist. Then
a node is chosen from the list and its solution propagated
along all outgoing edges. Any successors whose solution
has now changed are placed onto the worklist. This
continues until a fixpoint is reached. Generally speaking,
these algorithms are assumed to be working on a static
graph. Thus, we must extend them to deal with the dynamic
setting caused by the complex constraints. The general
idea is to process those constraints involving ∗p as soon as
Sol(p) changes. Good places to do this are when p is taken
off the worklist or when it is put on. Figure 2 provides an
example worklist solver using the former.

The remaining issue is worklist selection strategy. This
is, in part, the subject of this paper and, although a large
amount of work has been done in the static setting (see e.g.
[5, 15, 7, 8, 16]), there appears to have been little for the
dynamic case [17, 12]. In Section 3.1 we return to this.

Another interesting approach to inclusion-based con-
straint solving can be found in the work of Heintze and

procedure solve()
W = V ;

while |W | > 0 do
n = select(W );

// process constraints involving ∗n
foreach c ∈ C(n) do

case c of
∗n ⊇ w:

foreach k ∈ Sol(n) do
if w→k /∈ E do

E ∪= w→k;
Sol(k) ∪= Sol(w);
if Sol(k) changed then W ∪= {k};

w ⊇ ∗n:
foreach k ∈ Sol(n) do

if k→w /∈ E do
E ∪= k→w;
Sol(w) ∪= Sol(k);

if Sol(w) changed then W ∪= {w};

// propagate solution to successors of n
foreach n→w ∈ E do

Sol(w) ∪= Sol(n);
if Sol(w) changed then W ∪= {w};

// end while

Figure 2. The basic worklist constraint solver.
The algorithm assumes that Sol has been ini-
tialised with all trivial constraints of the form
p ⊇ {q}. The set C(n) contains all complex
constraints involving “∗n”. Selecting a node
automatically removes it from the worklist.

Tardieu [14]. Their approach, roughly speaking, is to
repeatedly recompute the solution for each dereferenced
variable n until no change is observed. This is achieved
by performing a reverse depth-first search starting at vn,
which searches out all variables contributing to Sol(n) and
combines their solutions into it. New edges arising from
constraints involving “∗n” are added as soon as Sol(n)
has been recomputed. Completing this provides only the
solutions for dereferenced variables. This may be sufficient
or, alternatively, a final phase could be employed to solve
the (now static) constraint graph. Their work provides
some evidence that sizeable programs (≥ 440KLOC) can
be analysed in a matter of seconds.

In addition to the above, there have been a number of
other ideas put forward for improving convergence time and
space usage. The most notable being variable substitution
[21, 10]. This idea arises from the observation that vari-



ables must often have the same solution. Thus, space can
be saved by representing them with a single vertex and/or
solution set. The clearest example of this arises with vari-
ables involved in a cycle. As the constraint graph is dynamic
in nature, full cycle detection requires an online algorithm.
In [10] such an algorithm, albeit rather crude, is applied to
constraint solving and significant speedups are observed. In
Section 3.2, we present a better solution for detecting cycles
online.

The algorithm of Heintze and Tardieu also uses an online
cycle detector. However, they effectively get this for free as
a byproduct of the reverse depth-first search.

2.2 Unification Algorithms

The algorithms presented by Steensgaard [23, 22] were
the first example of a unification-based approach to pointer
analysis. The idea is to enforce the invariant that, for each
variable x, |Sol(x)| ≤ 1. This reduces the space required to
hold the solution from O(n2) to O(n) and, with some clever
trickery, a near-linear time complexity is achieved.

However, these improvements come at the expense of
precision, which can be explained by comparing how sim-
ple assignments, such as x = y, are dealt with. An
inclusion-based system, such as those discussed previously,
says that the solution of x must include that of y. A uni-
fication system, however, states that the solution of x must
equal that of y. The following attempts to clarify what this
really means:

x=&z;
x=y;

In the above, the only way for Sol(x) = Sol(y) to hold is
if z ∈ Sol(y). In other words, we unify the solutions of x
and y, resulting in the conservative conclusion that y could
point to z.

Much work has been done on this approach to improve
the overall precision (see e.g. [9, 11]) and there would ap-
pear to be some indications that the actual loss compared
with an inclusion-based system is quite small. However, in
the face of results indicating that Andersen’s algorithm is
scalable, such as those of Heintze and Tardieu, the future
for unification seems unclear.

3 Convergence Techniques

In this section we examine three specific techniques for
improving the convergence time of an inclusion-based con-
straint solver: iteration order, cycle detection and difference
propagation.

3.1 Iteration Order

As mentioned in Section 2.1.2, an integral part of a work-
list algorithm is the strategy for choosing which node to
process next. This is often referred to as the iteration or-
der. The problem, then, is that selecting the wrong node
can result in extra work. Figure 3 illustrates this.

For a static graph, iterating in topological order or re-
verse post-order is a good approach. This is achieved by
maintaining two priority queues, current and next, of ver-
tices with priority given to those earlier in the r.p.o. The
plan now is simple: nodes are placed onto the worklist by
loading them into next and are selected by taking from
current. If current is empty it is reloaded from next,
which is then emptied. Thus, the worklist is empty only
when both queues are empty. The reader is referred to [19]
for a more detailed description of this. There are many vari-
ations and improvements possible. For example, it is possi-
ble to place nodes directly into current, if they come higher
in the r.p.o than that currently being visited. Also, using just
a single priority queue can be advantageous in some cases.

In general, the problem with this approach is the han-
dling of cycles. The solution is to identify these strongly
connected components and iterate each until completed
before moving on. This was first suggested in [15] and a
good examination can also be found in [19].

At this point, we turn our attention to the constraint
graph. As we know, this is a dynamic graph and, therefore,
we cannot completely determine beforehand the topolog-
ical order or strong components. Furthermore, even if
we used online algorithms to do this the approach used
previously would not be optimal. Figure 4 demonstrates
why. Nevertheless, one may still suppose that processing
the graph in topological order will perform well. Indeed, so
long as nodes are visited fairly, it does. But, experiments
we have conducted suggest a simpler scheme, known as
least recently fired [17], is just as effective. The idea is to
prioritise nodes by when they were last visited, so that a
node is chosen over another if it was visited less recently.
In Section 4, we compare the LRF scheme with two simple
and oft-used strategies: LIFO and FIFO.

3.2 Online Cycle Detection

As discussed in Section 2.1.2, cycle detection is a use-
ful component for an inclusion-based constraint solver. In
this section, we now present a powerful and original online
solution to this problem, based on the work of Marchetti-
Spaccamela et al. [18].

The pseudo-code is listed in Figure 5. The algorithm op-
erates by maintaining a topological ordering of the vertices,
which is represented by the n2i and i2n arrays. An invari-
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Figure 3. Solving a simple constraint graph, using an arbitrary selection strategy. The initial graph
is shown on the left. A bold border indicates that the vertex currently resides on the worklist. The
dashed edges indicate where propagation occurs. Note, the algorithm hasn’t finished at part e,
because r and s must still be selected. The point is that some nodes are visited twice when they
don’t need to be. The optimal selection order is p>q>r>s.
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Figure 4. The diagrams show a constraint graph (drawn topologically) being converged using an
online topological selection strategy. We assume that the constraint set included a single complex
constraint, ∗t ⊇ q. In diagram (g), node t is processed, causing the edge q → r to be added.
Furthermore, the algorithm immediately propagates across this edge, causing r to be put back on
the worklist. Thus, nodes r and u will be revisited after (g). The point is that leaving s and t until last
means the new edge is not discovered soon enough. Had they been visited earlier, each node could
have been visited just once. Thus, an online topological strategy is not optimal.



ant is enforced which states that if x→y ∈ E then y comes
after x in the order (n2i[y] > n2i[x]). Thus, when an edge
x→ y is inserted there are two cases to consider:

1. n2i[y] ≥ n2i[x] - The two vertices are already ordered
correctly and we do nothing.

2. n2i[y] < n2i[x] - Vertex y is positioned before x in
the ordering. To resolve this a depth-first search is per-
formed starting from y, limited to nodes between y and
x in the order. This uncovers vertices reachable from y
which should now come after x. These are then shifted
past x in the ordering. If x is reached during the search
then a cycle has been detected and we back propagate
this information to uncover those nodes involved.

The algorithm achieves an amortised cost over Θ(E) in-
sertions of O(V ), which is a good improvement upon the
O(V + E) complexity of the offline algorithm. A proof of
this can be found in [18]. The reader is referred to [20] for
a more detailed examination of this algorithm and its com-
plexity.

3.3 Difference Propagation

Difference propagation is a technique first suggested by
Fecht and Seidl [13]. They proposed a general framework
for applying it to distributive constraint systems. However,
this is unable to describe constraints which have a derefer-
enced variable on the left hand side. Thus, the algorithm
we provide here is really an instance of their framework ex-
tended to cope with the constraint system of Section 2.1.

The rough aim of the technique is to reduce the cost of
propagating the solution for a node to its successors. In a
standard worklist solver (see e.g. Figure 2), propagation
along an edge x→y occurs by merging Sol(x) into Sol(y).
This operation is likely to be linear in the size of the smaller
set and, therefore, reducing the size of sets involved should
yield an improvement.

The key idea, then, is realising that each element of
Sol(x) only needs to be propagated along an edge once.
Figure 6 attempts to clarify this. Clearly, for this to work a
sufficient number of nodes must be visited more than once
and there are three likely reasons why this can happen: poor
iteration order, complex constraints and cycles. Figures 3
and 4 provide examples of the first two.

The new solver is given in Figure 7. A key component
is the difference set, ∆(n), which contains the approximate
change in solution for each node. We can think of ∆(n)
as the collection point for elements propagated to n. It is
approximate as it may contain values which are already in
Sol(n). Each time n is visited the algorithm computes δ,
the actual change in solution, by taking the difference be-
tween ∆(n) and Sol(n). This is likely to be smaller than

procedure add edge(t→h)
lb = n2i[h]; ub = n2i[t];
if lb < ub then

mark t as in component;
dfs(h); shift();

procedure dfs(n)
mark n as visited;
forall n→w ∈ E do

if n2i[w] ≤ ub then
if w unmarked do dfs(w);
if w marked in component then

mark n as in component;

procedure shift()
unmark t; shift = 0;
for i = lb to ub do

n = i2n[i];
if n marked then

if n marked visited then push(n, L);
else push(n, C);
shift = shift+1;
unmark n;

else allocate(n, i−shift);
// place visited nodes after t in ordering
for j = 0 to |L| do

allocate(L[j], i−shift); i = i+1;
// check if new cycle detected
if |C| > 0 then cycle detected(t ∪ C);

procedure allocate(n, i)
// assign n to topological index i
n2i[n] = i; i2n[i] = n;

Figure 5. Our algorithm for online cycle
detection. The i2n and n2i arrays are
the [topological-]index-to-node and node-to-
[topological-]index maps respectively.

the solution itself and can, therefore, save unnecessary work
when processing complex constraints and in propagating.
The complex constraints themselves must be handled with
care because, when a new edge x→y is added, we must en-
sure all values in Sol(x) make their way into Sol(y). This
is achieved by propagating Sol(x), not ∆(x), into ∆(y).

The algorithm is likely to visit more nodes than the stan-
dard solver. The reason being that it places a node n onto
the worklist when ∆(n), not Sol(n), has changed. Thus, it
is now possible for a node n to be placed onto the worklist
as a result of some element, already present in Sol(n), be-
ing inserted into ∆(n). We present some experimental data
in Section 4 which attempts to quantify the effect of this.
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Figure 6. Illustrating unnecessary work per-
formed by the standard worklist solver. The
diagrams show part of a constraint graph dur-
ing convergence. We see an initial propaga-
tion from p to q occurring (a). The solution
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propagated to q (c). The point is that “a” does
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this case is {b}.

4 Experimental Study

In this section we provide empirical data, over a range
of benchmarks, on the runtimes of worklist solvers using
different combinations of the techniques described in Sec-
tion 3. The purpose is to facilitate an understanding of how
effective these methods can be.

Table 1 provides information on our benchmark suite.
All are part of the GNU system and, as a result, their full
source can be obtained from http://www.gnu.org.
The SUIF 2.0 research compiler from Stanford [2] was
deployed as the frontend for generating constraint sets.
In all cases, we were able to compile the benchmarks
with only superficial modifications, such as adding extra
“#include” directives for missing standard library head-
ers.

The constraint generator operates on the full ‘C’ lan-
guage and a few points must be made about this:

• Heap model - A single heap object per static allocation
site was used.

• Structs - All elements of a structure were mapped to a
single constraint variable.

• Arrays - Treated in a similar fashion to structs, by ig-
noring the index expression.

procedure solve()
foreach n ∈ V do

W ∪= {n}; ∆(n) = Sol(n); Sol(n) = ∅;

while |W | > 0 do
n = select(W );
// compute actual change in solution
δ = ∆(n)− Sol(n);
Sol(n) ∪= δ; ∆(n) = ∅;

// process constraints involving ∗n
foreach c ∈ C(n) do

case c of
∗n ⊇ w:

foreach k ∈ δ do
if w→k /∈ E do

E ∪= w→k;
∆(k) ∪= Sol(w);
if ∆(k) changed then W ∪= {k};

w ⊇ ∗n:
foreach k ∈ δ do

if k→w /∈ E do
E ∪= k→w;
∆(w) ∪= Sol(k);

if ∆(w) changed then W ∪= {w};

// propagate δ to successors of n
foreach n→w ∈ E do

∆(w) ∪= δ;
if ∆(w) changed then W ∪= {w};

// end while

Figure 7. The Difference propagating worklist
solver. Sol and C are initialised the same as
for Figure 2.

• String Constants - These were preserved intact and not
ignored or combined into a single object.

• Indirect Calls - Indirect calls were handled using a
mechanism similar to processing the complex con-
straints. Exact details are, unfortunately, beyond the
scope of this paper.

• External Library Functions - These, almost entirely,
came from the GNU C library and were modelled us-
ing hand crafted summary functions, which captured
only aspects relevant to pointer analysis.

The results, listed in Tables 2 and 3, were generated on a
900Mhz Athlon based machine with 1Gb of main memory,
running Redhat 8.0 (Pysche). The executables were com-
piled using gcc 3.2, with optimisation level “-O2”. Timing



Benchmark L.O.C. Constraints Set # Cycles Avg Set
Name Version Triv Simp Comp Added #Var Initial Final Size

bool 0.11 3246 138 796 266 3001 1031 26/(190) 17/(294) 7.43
time 1.7 1244 92 530 11 2 848 5/(16) 5/(16) 0.44
bc 1.06 7079 396 1324 358 2468 1609 53/(208) 52/(342) 5.03
chess 5.02 7451 953 851 27 23 1658 15/(139) 17/(150) 1.24
grep 2.0 7243 327 1937 501 552 2298 49/(349) 45/(414) 1.48
make 3.79.1 16164 1019 4030 1320 20617 4105 103/(595) 89/(837) 33.07
uucp 1.06.1 10256 625 2595 586 14970 2994 46/(250) 41/(505) 17.8
gawk 3.1.0 19598 1320 7054 1511 280972 6542 110/(1422) 86/(2311) 221.45
bash 2.05 55324 2813 11636 2365 240331 10649 211/(1203) 201/(2154) 111.85

Table 1. The Benchmark Suite. L.O.C. reports non-blank, non-comment lines only. Constraints are
counted as Trivial (p ⊇ {a}), simple (p ⊇ q), Complex (involving ‘∗’) or Added [during convergence].
The number of cycles in the initial and final constraint graphs are provided, along with the total
number of variables involved in a cycle (shown in brackets). The last column provides the average
size of a target set in the solution.

bool time bc chess grep make uucp gawk bash

WL 0.0205 0.000364 0.0216 0.00123 0.00518 0.609 1.07 656.0 207.0
WF 0.0156 0.000366 0.0146 0.00127 0.00579 0.627 0.833 190.0 46.4
WR 0.0168 0.000427 0.0183 0.00179 0.00609 0.465 0.465 58.6 49.4
WDL 0.0241 0.000537 0.0245 0.00227 0.00729 0.436 0.403 71.1 33.1
WDF 0.019 0.000509 0.0191 0.00227 0.00655 0.386 0.327 41.1 17.7
WDR 0.019 0.000604 0.023 0.00253 0.00767 0.41 0.26 37.6 26.4
WSL 0.0188 0.000326 0.0194 0.000955 0.00446 0.564 1.08 566.0 199.0
WSF 0.0135 0.000338 0.0124 0.000998 0.00456 0.449 0.809 207.0 56.3
WSR 0.014 0.00039 0.0169 0.00119 0.00461 0.329 0.283 44.7 34.9
WDSL 0.0193 0.000456 0.0206 0.00225 0.00574 0.394 0.383 54.9 36.7
WDSF 0.0152 0.000504 0.0173 0.00271 0.00576 0.309 0.3 34.1 17.2
WDSR 0.0157 0.000522 0.0207 0.00209 0.0064 0.336 0.214 31.1 19.7
WCL 0.105 0.000347 0.0542 0.00148 0.0238 1.55 0.616 166.0 87.9
WCF 0.0459 0.000381 0.0456 0.00187 0.0241 0.666 0.558 150.0 34.7
WCR 0.0313 0.00081 0.041 0.00165 0.023 0.367 0.16 5.14 7.05
WDCL 0.0379 0.000506 0.0402 0.00242 0.0254 1.0 0.337 29.0 23.2
WDCF 0.0246 0.000517 0.0359 0.0025 0.025 0.714 0.229 11.3 12.7
WDCR 0.0341 0.000534 0.0482 0.00256 0.0257 0.437 0.182 5.85 7.09

Table 2. Empirical data showing the effects of various convergence techniques. The various algo-
rithms are on the left hand side and the key is: W=Worklist, S=Static cycle detection, C=online Cycle
detection, D=Difference propagation and L,F,R indicate a LIFO, FIFO and LRF worklist selection strat-
egy respectively. Section 3 details the specifics of each technique. The data was averaged over five
runs with a very low variance being observed.

WL WF WR WDL WDF WDR WCL WCR WDCL WDCR

bool 2302 2176 2057 3876 2524 2349 1573 1338 2401 1372
bc 4499 3373 3225 8357 4393 3711 3369 2141 5583 2641

chess 2189 2191 1896 2394 2241 1947 1951 1662 2016 1691
grep 4425 4274 3644 5645 4774 3857 3628 2874 4385 3086
make 16615 15194 12904 45293 20287 14270 11364 6512 35795 7138
gawk 140440 36261 22805 5899208 96296 25230 58790 9289 119725 10007
bash 231507 46385 43131 2173446 82963 45813 156996 21534 310919 23583

Table 3. The values are the number of times any node was taken off the worklist. This is the visit
count. Space alone has prevented us from showing data for all benchmarks and algorithms



was performed using the gettimeofday function and the
implementation was in C++, making extensive use of the
Standard Template Library and Boost Library [1].

4.1 Discussion

We will now point out key features of the data, along
with some remarks. In doing this, it is helpful to split the
benchmarks into two categories: the small ones (bool,
time, bc, grep and chess) and the large ones (make,
uucp, gawk and bash). Also, note that we regard WL,
WF and WR as the baseline solvers.

Selection Strategy - Looking at Table 2 and the baseline
algorithms WL, WF and WR we observe that LRF is never
optimal for the small benchmarks, but is generally best
for the large ones. This trend is repeated throughout the
WD, WS and WDS families and, in the WC and WDC
categories, we see LRF gaining a significant advantage
over LIFO and FIFO. Table 3 suggests that LRF always
has a lower visit count than the other strategies. However,
we note that this reduction is not always significant for the
smaller benchmarks.

Comments: The LRF scheme requires the use of a
priority queue, giving it a higher overhead. Hence, it seems
reasonable to conclude that this can outweigh any small
saving in visit count.

Cycle Detection - From the data in Table 2, we see
that the WS algorithms almost always beat their baseline
counterparts. We also see from Table 2 that online detection
does not perform well on the small benchmarks. However,
WCR is usually better than WSR on the large ones. In
particular, WCR and WDCR are by far the fastest solvers
for the two largest benchmarks, gawk and bash. Table 3
indicates that online cycle detection dramatically reduces
the visit count, irrespective of benchmark size.

Comments: Online cycle detection is expensive and thus
a high return is needed to show any improvement in run-
time. Looking at visit count alone is not sufficient to explain
why it only pays off on the larger benchmarks. We must also
consider the relative cost of visiting a node and the final col-
umn of Table 1 attempts to measure this. The figures show
only the average set size once convergence is complete, but
we believe this gives an indication of the set sizes involved
during convergence. Thus, in Table 1 we observe that the
larger benchmarks have a significantly greater average set
size. We feel this implies the cost per visit to be relatively
bigger for the larger benchmarks and, hence, more is gained
by reducing the number of visits.

The performance of the online cycle detector, in general,
is pleasing as it demonstrates that the technique can be
efficient and beneficial over static detection.

Difference Propagation - For the large benchmarks,
the results in Table 2 show that difference propagation
is always an improvement over the baseline. The exact
opposite holds for the small benchmarks. We note with
curiosity that, for the two largest benchmarks, WDL and
WDF go significantly faster than WCL and WCF, but that
WDR is much slower than WCR. We also see that adding
difference propagation to the WS family almost always
yields something better for the large benchmarks, but that
WDCR is worse than WCR in all but one. Finally, Table
3 shows that difference propagation causes the expected
increase in visit count.

Comments: Again, this technique introduces an over-
head which appears unjustified on the smaller benchmarks.
However, it does appear to show promise, although it re-
mains unclear why the WDCR algorithm does not do bet-
ter. The data for bash shows a sizeable increase in visit
count, with only a small drop in performance. This sug-
gests that visit count may not be relevant in explaining the
problem. And so, we can only speculate that with cycles
removed, there are simply not enough nodes being visited
more than once. This may be supported by the data from Ta-
ble 1, which indicates that the final constraint graphs have
a high outdegree and thus will propagate their solution to
many nodes in a single visit.

5 Conclusion

We have explored the use of some existing and some
original methods for improving the convergence time of
inclusion-constraint solvers in the field of pointer analysis.
Our results indicate that worklist selection strategy is im-
portant, that online cycle detection is feasible and effective
and, finally, that difference propagation has potential.

In the future we hope to look at larger benchmarks, in-
vestigate the difference propagation technique further, add
an implementation of the Heintze-Tardieu solver and intro-
duce flow-sensitivity.
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