
A Batch Algorithm for Maintaining a Topological Order

David J. Pearce1 Paul H.J. Kelly2

1School of Engineering and Computer Science, Victoria University of Wellington, NZ,
Email: david.pearce@ecs.vuw.ac.nz

2Department of Computing, Imperial College London, UK, Email: p.kelly@imperial.ac.uk

Abstract

The dynamic topological order problem is that of
efficiently updating a topological order after some
edge(s) are inserted into a graph. Much prior work
exists on the unit-change version of this problem,
where the order is updated after every single in-
sertion. No previous (non-trivial) algorithms are
known for the batch version of the problem, where
the order is updated after every batch of insertions.
We present the first such algorithm. This requires
O(min{k · (v+e), ve}) time to process any sequence
of k insertion batches. This is achieved by only re-
computing those region(s) of the order affected by the
inserted edges. In many cases, our algorithm will only
traverse small portions of the graph when processing a
batch. We empirically evaluate our algorithm against
previous algorithms for this problem, and find that
it performs well when the batch size is sufficiently
large.

1 Introduction

A topological order, ord, of a directed acyclic graph
D = (V, E) maps each vertex to a priority value
such that ord(x) < ord(y) holds for all edges (x, y)∈
E. The Dynamic Topological Order (DTO) prob-
lem involves updating a topological order after an
edge insertion. In the unit-change version of DTO,
the topological order is updated after each edge in-
sertion; in the batch version, the topological or-
der is updated after each batch of insertions. The
DTO problem has many applications and has been
studied in the context of constraint-based pointer
analysis [21, 9], compilation [14, 17], incremental
evaluation of computational circuits [2], constraint-
based local search algorithms [16], deadlock detec-
tion [4], machine-learning [26], and multiple sequence
alignment [24, 25, 7]. For example, in constraint-
based pointer analysis, topologically ordering ver-
tices and detecting cycles in the (dynamically chang-
ing) constraint graph can dramatically reduce solv-
ing time [21, 18, 9]. Since many DTO algorithms
(including that studied here) extend naturally to dy-
namic cycle detection [18, 11, 27], such algorithms are
key to efficient pointer analysis. Furthermore, in this
problem, edges are typically inserted in batches and,
hence, there is much to gain from efficient solutions
to the batch DTO problem.

Copyright c©2010, Australian Computer Society, Inc. This
paper appeared at the Thirty-Third Australasian Computer
Science Conference (ACSC2010), Brisbane, Australia. Con-
ferences in Research and Practice in Information Technology
(CRPIT), Vol. 102, B. Mans and M. Reynolds, Ed. Reproduc-
tion for academic, not-for profit purposes permitted provided
this text is included.

Prior Work (Unit Change Problem). In the
unit-change problem, the topological order is updated
after every edge insertion. A simple approach is to re-
compute the topological order from scratch after an
edge insertion using a standard topological sort. Us-
ing a depth-first search, this yields an Θ(v + e) time
per insertion, where v = |V |, e = |E|, since every ver-
tex and edge is visited. We can easily improve upon
this by first checking whether the inserted edge does,
in fact, invalidate the current ordering. In some cases,
it will not and, hence, we can avoid work. This gives
an O(v+e) runtime, which reflects the fact that some
insertions take Θ(v + e) time, whilst others take Θ(1)
time.

Numerous works have built upon these basic prin-
ciples to devise more efficient algorithms. In the ma-
jority of cases, efficiency is determined by considering
an amortised bound on the time taken to process any
sequence of k insertions. For example, the cost of
inserting k edges using the simple approach outlined
above is O(k · (v + e)) as, in the worst-case, the cost
per insertion is O(v + e).

One of the first works to improve upon this was
the algorithm of Marchetti-Spaccamela et al. (hence-
forth, MNR) [15]. This processes a single edge inser-
tion in O(v+e) time, and any sequence of k insertions
in O(ve) time. Their algorithm is based upon the fol-
lowing observation:

Definition 1. Let D = (V, E) be a directed acyclic
graph and ord a valid topological order. For an edge
insertion (x, y), ARxy = {k ∈ V | ord(y) ≤ ord(k) ≤
ord(x)}. We call ARxy the Affected Region.

Marchetti-Spaccamela et al. showed that only ver-
tices within the affected region need be repositioned
to obtain a valid order. Furthermore, whilst the
worst-case cost of processing a single insertion is the
same as that of the simple approach outlined above,
in practice it is very likely that MNR will do much
less work as: firstly, both algorithms only do work
when the inserted edge invalidates the ordering; sec-
ondly, MNR will only visit vertices and edges in the
affected region, where as a standard topological sort
will always visit every edge and vertex in the graph.

One of the most important works in this area is
that of Alpern et al. [2]. They identified a lower
bound, Kmin, for the unit-change problem:

Definition 2. Let D = (V, E) be a directed acyclic
graph and ord a valid topological order. For an edge
insertion, x→ y, the set K of vertices is a cover if
∀a, b ∈ V.[a Ã b ∧ ord(b) < ord(a) ⇒ a∈K ∨ b∈K].
A cover is minimal, written Kmin, if it is not larger
than any valid cover.

Alpern et al. provided an algorithm (henceforth,
AHRSZ) whose runtime for a single edge insertion
was bounded by the number of edges adjacent to
members of Kmin. However, they did not provide

an amortised bound on the time to process any se-
quence of k insertions. Zhou and Müller improved
the space requirements of AHRSZ [29]. Katriel and
Bodlaender showed, for a slight variant of AHRSZ,
an O(min{k3/2 log v, k3/2 + v2 log v}) bound on the
time to insert k edges [12]. Liu and Chao obtained a
tighter bound of O(k3/2 +kv1/2 log v) for the Katriel-
Bodlaender algorithm [13]. Kavitha and Mathew fur-
ther improved this to O(k3/2 + k1/2v log v). More re-
cently, Haeupler et al. gave yet another variant on the
AHRSZ algorithm, and achieved an O(k3/2) bound on
the time to process any sequence of k insertions [10].

Using a different approach, we developed a sim-
pler algorithm (henceforth, PK) and experimentally
showed it to be fastest on sparse random graphs [19,
20]. While this has inferior time complexity, com-
pared with those based on the algorithm of Alpern et
al., it does have an important advantage: the AHRSZ
algorithm (and subsequent improvements) rely on an
ordered-list data structure [8, 5] which suffers from
high overheads in practice, and also from being rather
difficult to implement. Ajwani et al. also took an-
other approach and obtained an O(v2.75) bound with
a different algorithm, thus improving upon the result
of Katriel and Bodlaender for dense graphs [1]. Fi-
nally, Bender et al. very recently presented a new al-
gorithm [6] which represents a radical departure from
those before, in that it does not maintain an explicit
ordering of vertices (which all previous algorithms
do). For this, they obtained an O(v2 log v) time to
process any sequence of k insertions, which improves
upon all those before it, particularly for dense graphs.

Prior Work (Batch Problem). The batch ver-
sion of the DTO problem is slightly more relaxed than
the unit-change version. In this case, it is no longer
required that the topological order be updated after
every edge insertion; instead, edge insertions are pack-
aged into batches, with each batch being processed in
one go. Thus, the topological order must be updated
after every batch of insertions. While this version
of the problem arises in practical problems (see e.g.
[18, 22, 23]), there have thus far been no specific so-
lutions for it.

As before, a simple approach is to recompute the
topological order from scratch after each batch B of
insertions (see Algorithm 1). This yields an O(v + e)
bound on the time to process a single batch B and,
hence, takes O(k · (v + e)) time for a sequence of k
insertion batches.

Another approach is to simply reuse one of the so-
lutions to the unit-change problem. That is, to pro-
cess a batch of b insertions as if it were a sequence of
b individual insertions. Since, for each of the previ-
ous unit-change algorithms, the worst-case time for a
single edge insertion is still O(v + e), we arrive at a
bound of O(min{kb · (v + e), ?}) for a sequence of k
insertion batches, each of which has at most b edges.
The ? in this bound is a cap on the total cost, as
determined by the amortised bound obtained for the
unit-change algorithm in question. For example, for
MNR, the bound would be O(min{kb · (v + e), ve}),
whilst for the algorithm of Bender et al. [6] it would
be O(min{kb · (v + e), v2 log v}).

We can obtain an even better bound than this
by combining both of these approaches together [11].
The idea is simply to run Algorithm 1 in parallel with
one of the unit change algorithms when processing a
sequence of insertion batches. Then, we simply see
which one finishes first and use the topological order
it produces (whilst stopping the other immediately).
For example, let us consider using MNR here. Since
Algorithm 1 takes at most O(k ·(v+e)) for a sequence

Algorithm 1 ADD EDGE(B)

1: // B is a batch of updates
2: if ∃(x, y) ∈ B.[ord(y) < ord(x)] then
3: perform standard topological sort

of k insertion batches, and MNR takes at most O(ve)
for any insertion sequence, we arrive at a combined
worst-case bound of O(min{k · (v + e), ve}) for the
parallel algorithm. This improves upon the worst-
case bound of either algorithm in isolation. However,
whilst this is certainly better in theory, it is also clear
that it is not a particularly practical solution. In par-
ticular, there will be much redundant work performed
by both algorithms as they are, in fact, operating in a
very similar fashion. For example, both will perform
depth-first traversals of the graph when, in fact, only
one traversal is required. Thus, one desires an algo-
rithm which properly and efficiently combines Algo-
rithm 1 and a unit-change algorithm whilst achieving
the same bound without such redundancy.

Our Contribution. At last, we can now discuss
the contributions of this paper:

1. We present the first algorithm (henceforth, PK2)
which genuinely integrates Algorithm 1 with a
unit-change algorithm.

2. We provide a proof of correctness for algorithm
PK2.

3. We present results from an empirical compari-
son of PK2 against other unit-change algorithms.
The results indicate the PK2 outperforms the
other algorithms when the batch size is suffi-
ciently large.

Algorithm PK2 does not suffer any of the redundancy
inherent in the parallel algorithm discussed above. In
particular, it never traverses an edge or visits a vertex
more than once when processing a batch of edge inser-
tions. It will also process a single edge in worst-case
O(v+e) time, and any sequence of k batches in worst-
case O(min{ve, k · (v + e)}) time. To achieve this, we
build upon algorithm MNR, primarily because it is
the simplest of the unit-change algorithms. Never-
theless, the bound we obtain on the time to process k
batches is still better than all previous algorithms, ex-
cept for the parallel algorithm discussed already. For
example, the best unit-change algorithm, due to Ben-
der et al. [6], requires O(v2 log v) to process a single
batch. This is a log factor worse than for our algo-
rithm on dense graphs (i.e. when e = O(v2)), and
will be more for sparse graphs (i.e. when e < O(v2)).
Finally, we hope that this work will motivate future
investigation into the batch DTO problem, which has
so far been ignored by others.

2 Algorithm PK2

Before presenting algorithm PK2, we will first review
the operation of algorithm MNR, upon which PK2 is
based.

2.1 Overview of MNR

The algorithm of Marchetti-Spaccamela et al. [15] em-
ploys an array of size |V | which maps each vertex to
a unique integer from {1 . . . |V |}. In addition, a sec-
ond array ord−1 of size |V | is used, which is the in-
verse of ord — it maps each index in the order to the
corresponding vertex. For an invalidating edge (x, y),

Affected Region

y w xcbza

Affected Region

a b c x

Affected Region

a b c yx z w

Affected Region

xcba

Figure 1: Illustrating the MNR algorithm updating a topological order. The original topological order is on
the far left, while that obtained from running MNR is on the far right; in all cases, vertices are laid out in
topological order (i.e. increasing in ord value) from left to right (hence, the invalidating edge is that drawn
with a dashed line). In between, we see the two stages of the MNR algorithm: discovery and shifting. The
former identifies vertices which are out-of-order after the edge insertion, and is implemented using a DFS from
y (restricted to the affected region). The latter shifts those vertices found during discovery up the order, so
that they now come after x whilst still retaining their original relative orders.

3Y bX n Y 1 Y 2X 2X 1 X n Y bX 2X 1Y 1 Y 2 Y

Figure 2: Illustrating a worst-case input for algorithm MNR (left), where the dashed arcs represent the edges
to be inserted. The result of processing the first edge insertion (Y1, X1) is shown on the right. Here, n is Θ(v)
and there exist Θ(e) edges of the form (Xi, Xj), where i < j and X1 Ã Xi. The sequence of new insertions
contains b edges of the form (Yi, X1). Assuming these are processed in order, starting from (Y1, X1), then each
requires Θ(v + e) time since every edge reachable from X1 is traversed by the depth-first search. Thus, MNR
needs Θ(b(v + e)) time to solve this graph.

MNR identifies and removes nodes reachable from y in
the affected region using a depth-first search (known
as discovery). Then, it traverses the affected region
from the bottom, shifting vacant spaces to the top.
Nodes previously removed are now placed in their
original order back into the vacant slots. Figure 1 il-
lustrates this. MNR requires O(v+e) time to process
an edge insertion. The worst-case occurs when the
affected region includes Θ(v) nodes and Θ(e) edges
reachable from y. Figure 2 illustrates the first edge,
(Y1, X1), being processed in a worst-case sequence for
MNR. In fact, Marchetti-Spaccamela et al. obtained
an O(ve) bound on the total time to process any se-
quence of insertions for MNR [15]. This caps the total
cost of processing a batch; hence, even if b was Θ(v2)
above (e.g. by allowing those of the form (Yi, Xj)),
the runtime would not be Θ(v2e) as might be ex-
pected. The proof of this relies on a simple observa-
tion that, if an edge v → w is traversed as a result
of an invalidating edge x→ y, then it won’t be tra-
versed again for any other invalidating edge whose
tail is x. This is because, having processed x → y,
we have ord(x)≤ord(v)<ord(w) and, for any subse-
quent invalidating edge x→z, we have ord(z)≤ord(x)
(otherwise, it isn’t invalidating).

2.2 Overview of PK2

We now present our new algorithm, referred to as PK2
(since we refer to our earlier algorithm as PK [20]), for
the batch DTO problem. The algorithm essentially
extends MNR to the batch problem and, when the
batch size is 1, they operate in an identical fashion.
As with MNR, algorithm PK2 employs two arrays,
ord and ord−1, to map nodes to indices and vice-versa.

The key feature of algorithm PK2 is that it never
visits or shifts a node more than once when inserting
a batch of edges (unlike MNR). To achieve this, we
must alter our notion of the affected region so that
overlapping regions are treated as one — so, although

a batch of insertions can still define several affected
regions, they are all disjoint and can be processed
independently. The following aims to clarify this:

Region 1

x y zwvtsa b c d u e f g h i j

Affected
Region 3

Affected
Region 2

r

Affected

Here, each affected region can be correctly ordered
independently of the others, by rearranging its con-
tents. Thus, we extend the definition of an affected
region to a batch of overlapping edges by combining
their affected regions as follows:
Definition 3. Let D = (V, E) be a DAG and ord
a valid topological order. For a set B of overlapping,
invalidating edge insertions, the Affected Region is de-
noted ARB and defined as {k ∈ V | b ≤ ord(k) ≤ t},
where b (resp. t) is the lowest (resp. highest) index
of {x | (x, y)∈ B ∨ (y, x)∈ B}.

2.3 Shift Procedure

The first difficulty lies in rearranging an individual
affected region without visiting or shifting any node
twice. To achieve this goal, we introduce the notion
of a shift set as follows:
Definition 4. A frontier pair, (x, d), is a pair of
nodes in ARB where d Ã x, ord(x) < ord(d) and
where ¬∃z∈ARB .[zÃx∧ord(d) < ord(z)]. We refer
to d as the destination of x.

Informally, a frontier pair (x, d) identifies a vertex
x to be reordered and its destination d, which is the
vertex furthest up the ordering where d Ã x. Our
algorithm must ensure x is located above d in the
final ordering.

Algorithm 2 SHIFT(i, Q) // i is leftmost position in affected region, Q is a shift queue

1: n = 0 // number of nodes temporarily removed from order so far
2: while Q 6=∅ do
3: w = ord−1(i) // w is node at topological index i
4: if vacant(w) then
5: n=n+1 ; vacant(w) = false; // reset vacant flag as slot will be occupied by end
6: else
7: allocate(w, i− n)

// now insert all nodes associated with index i
8: (v, d) = head(Q)
9: while Q 6=∅ ∧ w = d do

10: n=n−1 ; allocate(v, i− n) ; pop(Q) ; (v, d) = head(Q)
11: i = i+1

procedure allocate(v, i)
12: ord(v) = i ; ord−1(i) = v // place v at index i

ww x y zi j z jx y i z jw x y i f

3 20

(f,i)2(h,j)1(g,j)0Q = (h,j)1(g,j)0Q = (f,i)2(h,j)1(g,j)0Q =

Figure 3: Illustrating the shift procedure of Algorithm 2 operating on affected region 3 from our running
example. The topological order after discovery is shown on the left, where the spaces are slots vacated by
nodes now on the shift queue Q. In the middle diagram, the algorithm has begun shifting vertices into the
correct position; it has reached the destination of the head element on Q. In the final diagram, we see that f
has been placed after its destination i, and the algorithm will proceed to push the vacant spaces up the order

Definition 5. For a set B of overlapping, invalidat-
ing edge insertions, the shift set is defined as the set
of all frontier pairs (x, d) in ARB.

For example, the shift set for Affected Region 3 in
the example above (as j 6Ã i) is: {(f, i), (g, j), (h, j)}.
We can obtain a valid ordering from this by shifting
each node immediately right of its destination, whilst
topologically sorting those with the same destination
(Lemma 1). To formalise this process, we refine our
notion of a shift set into that of a shift queue:

Definition 6. A shift queue, Q, is a shift set whose
members are also totally ordered. More specifically,
∀(x1, d1)i, (x2, d2)j ∈Q.[(ord(d1)>ord(d2)∨ (d1 =d2∧
x1 Ã x2)) ⇒ i < j]. The head of the queue (i.e. the
pair to be removed first) is that with the highest index.

The shift process operates by scanning the affected
region from bottom-to-top whilst shifting vacant slots
up the order. During this process, if the current ver-
tex being examined is d and (v, d) is the head of the
shift queue, then v is placed into the vacant slot im-
mediately after d; and, if the next element on the shift
queue has the same destination, it is placed immedi-
ately after that and so on, until all those with the
same destination are placed.

The shift procedure is detailed in Algorithm 2.
Figure 3 illustrates the algorithm operating on Af-
fected Region 3 from our example before, assuming
the shift queue has been constructed already. Note,
for clarity, the value of i on Line 2 is indicated by
the triangular marker, whilst the value of n at that
point is given below it. In the figure, the left diagram
shows the spaces vacated by those now on the shift
queue Q. In the middle diagram, the algorithm has
begun shifting them up the order and has reached the
destination of the head element on Q. In the final di-
agram, we see that f was placed after its destination
i, and that the algorithm is proceeding to shift the
remaining vacant spaces up the order.

Lemma 1. Let D = (V, E) be a DAG, ord a valid
topological order (with ord−1 as its reverse map) and
B a set of overlapping, invalidating edge insertions.
Given Q, a shift queue for B, Algorithm 2 produces a
valid topological order.

Proof. Let ord’ be the updated topological order.
Suppose ord’ is invalid. Then, there is some x, y ∈ V
where xÃy and ord’(y) < ord’(x). Since Algorithm 2
only repositions nodes within ARB , it follows that
x, y ∈ ARB (otherwise, ord was invalid to begin with).
There are five cases to consider:

i) (y, dy)i 6∈ Q and (x, dx)j 6∈ Q. In this case, the
relative positions of x and y are preserved by
Algorithm 2 and, hence, ord’(y) < ord’(x) ⇒
ord(y) < ord(x) which is a contradiction.

ii) (y, dy)i ∈ Q and (x, dx)j 6∈ Q. Here, ord(dy) <
ord(x) is needed to get ord’(y) < ord’(x) as
y is placed immediately after dy and the rela-
tive positions of dy and x do not change (note,
(dy, ddy) 6∈ Q follows from Definition 5). How-
ever, this implies Q is malformed under Defini-
tion 5 (as xÃy ∧ ord(dy) < ord(x)).

iii) (y, dy)i 6∈ Q and (x, dx)j ∈ Q. In this case,
ord(dx) < ord(y) follows from Definition 5 (oth-
erwise, dx would be y’s destination since xÃy).
Again, since x is placed immediately after dx and
the relative positions of dx and y do not change,
we arrive at ord’(x) < ord’(y).

iv) (y, dxy)i ∈ Q and (x, dxy)j ∈ Q. Here, i < j
follows from Definition 6 and, since vertices are
placed in the order popped from Q and that with
highest index is popped first, this gives ord’(x) <
ord’(y).

Algorithm 3 DISCOVER(B⊆E) //B is a set of overlapping, invalidating edge insertions

1: Q = ∅ ; sort(B) // sort invalidating edges into descending order by index of tail
2: for all i = 0 . . . |B| do
3: (x, y) = B[i]
4: if ¬vacant(y) then dfs(y, ord(x))
5: return Q

procedure dfs(v, ub)
6: vacant(v) = true ; onStack(v) = true
7: for all (v, s) ∈ E do
8: if onStack(s) then abort // cycle detected
9: if ¬vacant(s) ∧ ord(s)<ub then dfs(s, ub) // visit if not already and in ARB

10: onStack(v) = false ; push((v, ord−1(ub)), Q)

v) (y, dy)i ∈ Q and (x, dx)j ∈ Q and dx 6=dy. Here,
ord(dy)>ord(dx) follows from Definition 5 (oth-
erwise, dx would be y’s destination since xÃ y)
and, hence, i < j from Definition 6. Again, this
gives ord’(x) < ord’(y), since vertices are placed
in the order popped from Q.

Finally, it is fairly easy to see that Algorithm 2 runs
in time linear in the size of the affected region.

2.4 Discovery Procedure

The goal of the discovery phase is to construct the
shift queue for an affected region without visiting a
node or traversing an edge more than once. Recall
the discovery procedure of MNR consists of search-
ing from the head of an invalidating edge to identify
and mark those which must be shifted past its tail.
In the new procedure, we start from the invalidat-
ing edge (x, y) with largest ord(x) value, where x is
not already on the shift queue, and search forward
from y using a depth-first search; during this, (u, x)
is placed onto the shift queue (in post-order) for each
vertex u visited. This is repeated until there are no
more invalidating edges to process, at which point the
shift queue is complete. Observe that choosing the in-
validating edge with largest ord(x) value ensures the
correct destination is obtained for each node visited.

Pseudo-code for the discovery procedure is given
in Algorithm 3. A subtle aspect of the procedure is
the way in which the forward search is pruned. For
MNR, each search was restricted to any node within
the affected region. For our new definition of an af-
fected region this rule leads to some inefficiency:

Affected Region (AR)

f x y g z h i

Here, f connects to a number of nodes right of h and,
as they lie in the affected region, it seems that a search
from f should visit them. However, h is the destina-
tion of those discovered from f and, hence, those right
of h can be ignored. Therefore, Algorithm 3 restricts
the search to just those nodes whose index is lower
than the current destination (h in this case).
Lemma 2. Assume D = (V, E) is a DAG and ord
an array mapping each vertex to a unique index from
{1 . . . |V |}, with ord−1 as its reverse map. If a batch B
of overlapping, invalidating edge insertions does not
introduce a cycle, then Algorithm 3 produces a valid
shift queue Q.

Proof. First, we show Q is a valid shift set (i.e.
∀x, dx.

[
(x, dx) ∈ Q ⇐⇒ (x, dx ∈ ARB ∧ dx Ã x ∧

ord(x) < ord(dx) ∧ ¬∃z ∈ ARB .[z Ã x ∧ ord(dx) <

ord(z)])
]
) by considering each direction in turn:

⇒ Since dx is the tail of an edge in B, dx ∈ ARB

holds by definition. Since dx = ord−1(ub) on Line
11, ord(x)<ord(dx) follows from the condition on
Line 9. Now, dfs(v, ord(dx)) only explores ver-
tices reachable from dx, so dx Ãx. Let (u,w) be
the last invalidating edge on the path dx Ãx (it
must cross at least one since ord(x) < ord(dx)).
Then, ord(w)≤ ord(x) by definition and, hence,
x ∈ ARB . Finally, we show ¬∃z ∈ ARB .[z Ã
x ∧ ord(dx) < ord(z)] by contradiction. Suppose
such a z existed. By definition, any invalidat-
ing edge (z, w) will be seen on Line 3 before any
(dx, u), but no dfs(w, ord(z)) call manages to
reach x (otherwise, dx = z). Since z Ã x, at
least one dfs(w, ord(z)) call failed to reach x be-
cause it encountered nodes vacated by an earlier
dfs(v, ord(z′)) call. This is a contradiction, since
it implies ∃z′∈ARB .[z′Ãx ∧ ord(z)<ord(z′)].

⇐ We show by contradiction that if dx Ãx, ord(x)<
ord(dx) and ¬∃z ∈ ARB .[z Ã x ∧ ord(dx) <
ord(z)], then (x, dx) ∈ Q. Suppose then, that
(x, dx) 6∈Q. By definition, every invalidating edge
(dx, w) is seen on Line 3, but no dfs(w, ord(dx))
call manages to reach x. Since dx Ã x, at least
one call failed to reach x because it encoun-
tered nodes vacated by an earlier dfs(v, ord(d′x))
call. This is a contradiction, since it implies
∃d′x∈ARB .[d′x Ãx ∧ ord(dx)<ord(d′x)].

Finally, we demonstrate Q must be a valid shift queue.
Since invalidating edges with tails higher in ord are
seen before those lower down, any (u, d1) will be
pushed onto Q before any (v, d2) when ord(d2) <
ord(d1). Likewise, since tuples are pushed onto Q
in post-order, those with the same destination are
pushed in reverse topological order.

Since Algorithm 3 uses a depth-first search, it fol-
lows that it requires O(v + e) time to build the shift
queue for a batch of edges insertions. Note, if a merge
sort is used on Line 1, then the runtime is actually
O(v + e · log b). However, the log factor can be elimi-
nated using a bucket sort.

Finally, if the insertion batch introduces a cycle,
Algorithm 3 will detect this and abort. This prop-
erty is useful since many applications of DTO algo-
rithms benefit from the detection and elimination of
cycles [21, 18, 9]. Informally, this follows from the ba-
sic properties of depth-first search and the fact that
all vertices in the cycle must lie within the affected
region:

Algorithm 4 ADD EDGE(B) //B is a set of edge insertions

1: E = E ∪B;
2: for all (x, y) ∈ B do
3: if ord(x) < ord(y) then B=B−{(x, y)} // remove forward edges from B
4: if |B| > 0 then
5: sort(B) // sort invalidating edges into descending order by index of tail
6: lb = |V | // lowerbound of current region
7: s = 0 // start of current region
8: for all i = 0 . . . |B|−1 do
9: (x, y) = B[i]

10: if ord(x) < lb ∧ i 6= 0 then
11: Q = DISCOVER({B[s], . . . , B[i−1]}) ; SHIFT(lb,Q)
12: s = i // start of new region
13: lb = min(ord(y), lb);

// Process final region
14: Q = DISCOVER({B[s], . . . , B[|B|−1]}) ; SHIFT(lb, Q)

Lemma 3. Assume D = (V, E) is a DAG and ord
an array mapping each vertex to a unique index from
{1 . . . |V |}, with ord−1 as its reverse map. If a batch B
of overlapping, invalidating edge insertions introduces
a cycle, Algorithm 3 will detect this and abort.

Proof. Suppose B introduces a cycle C, and dfs(x, i)
is first call involving a vertex x ∈ C. Algorithm 3
processes invalidating edges with highest tail first,
hence ∀w ∈ C.[ord(w) ≤ i]. Thus, dfs(x, i) will con-
tinue visiting vertices of C until it finds one where
onStack = true (which must exist as C is a cycle) —
at which point it aborts.

2.5 Putting it All Together

Pseudo-code for the complete algorithm PK2 is given
in Algorithm 4. This identifies distinct affected re-
gions and processes them using Algorithms 2 and 3.
As such, the overall runtime for a single edge insertion
is O(v+e) which follows from the individual runtimes
of Algorithms 2 and 3. For any sequence of k inser-
tions, we obtain the following amortised bound:

Theorem 1. Let D = (V, E) be a DAG and ord a
valid topological order (with ord−1 as its reverse map).
Then, PK2 requires O(min{k · (v + e), ve}) time to
process any sequence of edge insertions split into k
batches, where e is the number of edges in the final
graph.

Proof. Let the insertion sequence be split into batches
B1, . . . , Bk. Suppose an edge (v, w) is traversed whilst
processing some batch Bi. This can only occur if
there is an (x, y) ∈ Bi, where y Ã v. Furthermore,
(v, w) is traversed exactly once whilst processing Bi
(this follows because nodes are visited according to
a depth-first search). Now, after processing Bi is
completed, ord(y) < ord(v) will hold. It follows that
(v, w) will not be traversed again as a result of any
insertion (y, z) (for any z) occurring after this point.
This is because the affected region for such an edge
must extend to the left of y, but v will always be right
of y (from now on). Thus, an edge can be traversed at
most v times during any sequence of insertions. Fur-
thermore, since no edge can be traversed more than
once whilst processing a batch, an edge can be tra-
versed at most k times when processing k batches.

Theorem 1 is a straightforward extension to the
proof originally given by Marchetti-Spaccamela et al.
to show algorithm MNR runs in O(ve) time for any
sequence of edge insertions [15]. This bound improves
upon the O(min{kb · (v + e), ve}) bound obtained by
MNR for a sequence of k batches containing at most
b edges and, in fact, over all other previously known

algorithms for this problem (except for the parallel
algorithm discussed in §1). Furthermore, while PK2
does the same amount of work as Algorithm 1 in the
worst case, there are many situations where PK2 does
much less. This is because for an invalidating inser-
tion, Algorithm 1 always visits every node and every
edge, whereas PK2 visits only those within an affected
region. This difference is highlighted by the following:

3 Experimental Study

In this section, we experimentally compare the per-
formance of algorithm PK2 against various algorithms
for this problem: STS (recall Algorithm 1), MNR [15],
PK [19] and AHRSZ [2]. As with MNR, neither PK
nor AHRSZ offers any benefit to processing edges in
batches, rather than one at a time. The experiments
measure how the Average Cost Per Insertion (ACPI)
varies with batch size at different graph densities, over
a large number of randomly generated DAGs.

Definition 7. For a DAG with v nodes and e edges,
define its density to be e

1
2 v(v−1)

. Thus, it is the ratio of
the number of actual edges to the maximum possible.

Definition 8. The model Gdag(v, p) is a probability
space containing all graphs having a vertex set V =
{1, 2, . . . , v} and an edge set E ⊆ {(i, j) | i < j}.
Each edge of such a graph exists with a probability p
independently of the others.

The model Gdag(v, p) was first defined by Barak
and Erdös [3]. Using this, a DAG with v nodes and
expected density x can be generated by setting p = x.
Our experiments determined the Average Cost Per In-
sertion (ACPI) for each algorithm by measuring the
time taken to insert a sample of edges into a DAG
whilst maintaining a topological order. To do this,
we generated 100 random DAGs with 2500 vertices
at density 0.001, and 100 random DAGs with 2500
vertices at density 0.01. The edge set for each graph
was divided into those making up the graph itself and
those making up the insertion sample. The size of the
insertion sample was fixed at 360 edges to ensure the
total amount of work done remained constant across
all experiments. For a given algorithm and batch size
b, the average time taken to process the insertion sam-
ple in batches of b edges was recorded for each graph.
An important point is that the insertion sample may
include non-invalidating edges and these dilute our
measurements, since the algorithms do no work for
these cases. Our purpose, however, was to determine
what performance can be expected in practice, where
it is unlikely all edge insertions will be invalidating.

All experiments were performed on a 900Mhz
Athlon based machine with 1GB of main mem-
ory, running Mandrake Linux 10.2. The executa-
bles were compiled using gcc 3.4.3, with optimisa-
tion level “-O3” and timing was performed using
the gettimeofday function, which gives microsec-
ond resolution. To reduce interference, experiments
were performed with all non-essential system dae-
mons/services (e.g. X windows, crond) disabled and
no other user-level programs running. The implemen-
tation itself was in C++ and took the form of an ex-
tension to the Boost Graph Library v1.33.0, utilising
the adjacency_list class to represent a DAG [28].
The complete implementation, including C++ code
for all three algorithms and the random graph gener-
ator, is available online at http://www.ecs.vuw.ac.
nz/∼djp.

Figure 4 shows the results of our experiments com-
paring ACPI for PK2, MNR, STS, PK and AHRSZ
across varying batch sizes at densities 0.001 and 0.01.
The plots for MNR, PK and AHRSZ are flat since
they obtain no advantage from processing edges in
batches. We see that PK2 is always a better choice
than either MNR or STS and, in many cases, offers
significant gains over them. When the batch size is
one, little difference is observed between MNR and
PK2 which reflects their close relationship. At density
0.01, the gap between these two algorithms has re-
duced. This is because, on dense graphs, there are few
invalidating edges in the insertion batch as the graph
is already highly ordered (hence, most insertions are
not invalidating — see [20] for more on this). Thus,
there is less chance the affected regions for two inval-
idating edges will overlap (as there are simply fewer
affected regions) which is needed for PK2 to obtain
an advantage over MNR. While PK2 is the clear win-
ner at density 0.01, compared with PK and AHRSZ,
it is less conclusive on the sparser graphs. Certainly,
on small batches, it does not perform well by com-
parison. This is not surprising, since MNR performs
poorly on sparse graphs as well and, on small batches,
PK2 and MNR will have similar behaviour. Indeed,
given the gains obtained by PK2 over MNR (on which
it is based), it seems quite clear that extending either
PK or AHRSZ to deal with batch insertions more ef-
ficiently would be valuable. The data also indicates
that, for large batches, the performance of STS ap-
proaches that of PK2. This is expected as it becomes
highly likely here that most nodes will be a member
of some affected region and, hence, will be reordered
by PK2 anyway. Of course, PK2 can still obtain an
advantage because it does not always need to traverse
every edge (as STS does).

Figure 5 shows the results of a second experiment
which measured the number of vertices and edges vis-
ited or shifted by each algorithm, rather than ACPI
(note, all other experimental parameters remain the
same). This is useful as it gives us a clear picture
regarding the amount of work being performed by
each algorithm, which is not muddied by the perfor-
mance characteristics of the experimental machine.
The charts show a striking resemblance to those of
Figure 4 and give a strong indication that the results
of Figure 4 are not dependent on the experimental
machine, rather it is a direct function of the underly-
ing algorithm.

Limitations. The results indicate that PK2 is al-
ways an improvement upon MNR, and that it pro-
vides a useful improvement over the other algorithms
in certain situations. However, we have not been

able to compare PK2 against all prior unit-change
algorithms (primarily because of the difficulty in im-
plementing these algorithms). However, most of the
other unit-change algorithms (i.e. [29, 12, 13, 10]) are
minor variants on algorithm AHRSZ, and we would
expect them to have very similar performance in prac-
tice. The remaining algorithms are that of Ajwani et
al. [1] and Bender et al. [6]. In their paper, Ajwani et
al. experimentally compare their algorithm against
PK, MNR and AHRSZ and find that it only offers an
improvement on a particular (artificially constructed)
hard class of input graphs. Thus, we would not ex-
pect to see their algorithm performing better than PK
in any of our experiments. Finally, then, remains the
algorithm of Bender et al. which is very recent, and
does yield the best amortised bound for any sequence
of k edge insertions. Bender et al. do not report
any experimental results for their algorithm, and it
remains unclear how efficient it will be in practice.
Nevertheless, it would be nice if this algorithm could
be empirically evaluated in the future.

4 Conclusion

We have presented the first DTO algorithm which
requires O(min{k · (v+e), ve}) time to process any
sequence of k edge insertion batches. We have exper-
imentally evaluated it against various previous algo-
rithms for this problem, demonstrating that: first, it
always outperforms a standard topological sort and
the related MNR algorithm; secondly, that it is gen-
erally better than the others when the batch size is
large enough.

Acknowledgements. Thanks go to Irit Katriel,
Gary Haggard and some anonymous referees for help-
ful comments on earlier drafts of this paper.

References

[1] D. Ajwani, T. Friedrich, and U. Meyer. An
Õ(n2.75) algorithm for online topological order-
ing. In Proc. Scandanavian Workshop on Algo-
rithm Theory, volume 4059 of LNCS, pages 53–
63. Springer-Verlag, 2006.

[2] B. Alpern, R. Hoover, B. K. Rosen, P. F.
Sweeney, and F. K. Zadeck. Incremental eval-
uation of computational circuits. In Proc. ACM-
SIAM Symposium on Discrete Algorithms, pages
32–42. ACM Press, 1990.

[3] A. Barak and P. Erdös. On the maximal num-
ber of strongly independent vertices in a random
acyclic directed graph. 5(4):508–514, 1984.

[4] F. Belik. An efficient deadlock avoidance tech-
nique. IEEETC: IEEE Transactions on Com-
puters, 39, 1990.

[5] M. A. Bender, R. Cole, E. D. Demaine,
M. Farach-Colton, and J. Zito. Two simplified
algorithms for maintaining order in a list. In
Proceedings of the European Symposium on Al-
gorithms (ESA), volume 2461 of Lecture Notes
in Computer Science, pages 152–164. Springer-
Verlag, Sept. 2002.

[6] M. A. Bender, J. T. Fineman, and S. Gilbert.
A new approach to incremental topological or-
dering. In Proceedings of the ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages
1108–1115. SIAM, 2009.

 0

 50

 100

 150

 200

 250

 0 40 80 120 160 200 240 280 320 360A
ve

ra
ge

 C
os

t P
er

 In
se

rt
io

n
(u

s)

Batch Size

|V|=2500, density=0.001

PK2
MNR
STS

PK
AHRSZ

 0

 5

 10

 15

 20

 0 40 80 120 160 200 240 280 320 360A
ve

ra
ge

 C
os

t P
er

 In
se

rt
io

n
(u

s)

Batch Size

|V|=2500, density=0.001 (close-up)

PK2
MNR
STS

PK
AHRSZ

 0

 50

 100

 150

 200

 250

 0 40 80 120 160 200 240 280 320 360A
ve

ra
ge

 C
os

t P
er

 In
se

rt
io

n
(u

s)

Batch Size

|V|=2500, density=0.01

PK2
MNR
STS

PK
AHRSZ

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0 40 80 120 160 200 240 280 320 360A
ve

ra
ge

 C
os

t P
er

 In
se

rt
io

n
(u

s)

Batch Size

|V|=2500, density=0.01 (close-up)

PK2
MNR
STS

PK
AHRSZ

Figure 4: Experimental results looking at the effect of increasing batch size for all three algorithms on random
DAGs with 2500 nodes at densities 0.001 and 0.01. For each, batch size is plotted against ACPI and we provide
close ups at each density to capture interesting features.

 0

 500

 1000

 1500

 2000

 2500

 0 40 80 120 160 200 240 280 320 360A
ve

ra
ge

 V
is

its
 P

er
 In

se
rt

io
n

Batch Size

|V|=2500, density=0.001

PK2
MNR
STS

PK
AHRSZ

 0

 50

 100

 150

 200

 250

 0 40 80 120 160 200 240 280 320 360A
ve

ra
ge

 V
is

its
 P

er
 In

se
rt

io
n

Batch Size

|V|=2500, density=0.001 (close-up)

PK2
MNR
STS

PK
AHRSZ

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 40 80 120 160 200 240 280 320 360A
ve

ra
ge

 V
is

its
 P

er
 In

se
rt

io
n

Batch Size

|V|=2500, density=0.01

PK2
MNR
STS

PK
AHRSZ

 0

 10

 20

 30

 40

 50

 0 40 80 120 160 200 240 280 320 360A
ve

ra
ge

 V
is

its
 P

er
 In

se
rt

io
n

Batch Size

|V|=2500, density=0.01 (close-up)

PK2
MNR
STS

PK
AHRSZ

Figure 5: Experimental results looking at the effect of increasing batch size for all three algorithms on random
DAGs with 2500 nodes at densities 0.001 and 0.01. For each, batch size is plotted against the average number
of nodes and edges visited or shifted when processing an edge insertion. We provide close ups at each density
to capture interesting features.

[7] R. K. Bradley, L. Pachter, and I. Holmes. Spe-
cific alignment of structured RNA: stochastic
grammars and sequence annealing. Bioinformat-
ics, 24(23):2677–2683, 2008.

[8] P. F. Dietz and D. D. Sleator. Two algorithms
for maintaining order in a list. In Proceedings of
the ACM Symposium on Theory of Computing
(STOC), pages 365–372. ACM Press, May 1987.

[9] M. Fähndrich, J. S. Foster, Z. Su, and A. Aiken.
Partial online cycle elimination in inclusion con-
straint graphs. In Proc. conference on Pro-
gramming Language Design and Implementa-
tion, pages 85–96. ACM Press, 1998.

[10] B. Haeupler, T. Kavitha, R. Mathew, S. Sen, and
R. E. Tarjan. Faster algorithms for incremen-
tal topological ordering. In International Col-
loquium on Automata, Languages and Program-
ming (ICALP), volume 5125 of Lecture Notes
in Computer Science, pages 421–433. Springer,
2008.

[11] B. Haeupler, T. Kavitha, R. Mathew, S. Sen, and
R. E. Tarjan. Incremental cycle detection, topo-
logical ordering, and strong component mainte-
nance. Technical report, Department of Com-
puter Science, Princeton University, 2008.

[12] I. Katriel and H. L. Bodlaender. Online topo-
logical ordering. In Proc. ACM Symposium on
Discrete Algorithms, pages 443–450. ACM Press,
2005.

[13] H.-F. Liu and K.-M. Chao. An Õ(n2.5)-time algo-
rithm for online topological ordering. Theoretical
Computer Science, 389(1-2):182–189, 2007.

[14] A. Marchetti-Spaccamela, U. Nanni, and
H. Rohnert. On-line graph algorithms for in-
cremental compilation. In Workshop on Graph-
Theoretic Concepts in Computer Science, pages
70–86, 1993.

[15] A. Marchetti-Spaccamela, U. Nanni, and
H. Rohnert. Maintaining a topological order un-
der edge insertions. Information Processing Let-
ters, 59(1):53–58, 1996.

[16] L. Michel and P. V. Hentenryck. A constraint-
based architecture for local search. In Proc. Con-
ference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, pages 83–
100. ACM Press, 2002.

[17] S. Omohundro, C.-C. Lim, and J. Bilmes. The
sather language compiler/debugger implementa-
tion. Technical report, International Computer
Science Institute, Berkely, 1992.

[18] D. J. Pearce. Some directed graph algorithms and
their application to pointer analysis. PhD thesis,
Imperial College, London, UK, 2005.

[19] D. J. Pearce and P. H. J. Kelly. A dynamic al-
gorithm for topologically sorting directed acyclic
graphs. In Proc. Workshop on Efficient and ex-
perimental Algorithms, volume 3059 of LNCS,
pages 383–398. Springer-Verlag, 2004.

[20] D. J. Pearce and P. H. J. Kelly. A dynamic
topological sort algorithm for directed acyclic
graphs. ACM Journal of Experimental Algorith-
mics, 11:1.7, 2007.

[21] D. J. Pearce, P. H. J. Kelly, and C. Hankin. On-
line cycle detection and difference propagation:
Applications to pointer analysis. Software Qual-
ity Journal, 12(4):309–335, 2004.

[22] D. J. Pearce, P. H. J. Kelly, and C. Hankin. Effi-
cient field-sensitive pointer analysis for C. ACM
Trans. Prog. Lang. Syst., 30(1), 2008.

[23] F. M. Q. Pereira and D. Berlin. Wave propaga-
tion and deep propagation for pointer analysis.
In Proceedings of the International Symposium
on Code Generation and Optimization (CGO),
pages 126–135. IEEE Computer Society, 2009.

[24] A. S. Schwartz. Posterior Decoding Methods for
Optimization and Accuracy Control of Multiple
Alignments. PhD thesis, University of California,
Berkeley, 2007.

[25] A. S. Schwartz and L. Pachter. Multiple align-
ment by sequence annealing. Bioinformatics,
23(2):24–29, 2007.

[26] J. Shen, L. Li, and W.-K. Wong. Markov blanket
feature selection for support vector machines. In
D. Fox and C. P. Gomes, editors, AAAI, pages
696–701. AAAI Press, 2008.

[27] O. Shmueli. Dynamic cycle detection. Infor-
mation Processing Letters, 17(4):185–188, Nov.
1983.

[28] J. Siek, L.-Q. Lee, and A. Lumsdaine. The Boost
Graph Library: User Guide and Reference Man-
ual. Addison-Wesley, 2002.

[29] J. Zhou and M. Müller. Depth-first discovery
algorithm for incremental topological sorting of
directed acyclic graphs. Information Processing
Letters, 88(4):195–200, 2003.

