
Whiley: a Platform for Research in
Software Verification

David J. Pearce and Lindsay Groves

School of Engineering and Computer Science
Victoria University of Wellington

http://whiley.org

http://whiley.org

Overview of Whiley (Brief)

Overview: What is Whiley?

Bytecode Load(int idx, JvmType type)

requires idx >= 0 && idx <= 255

A language designed specifically to simplify verifying software

Several trade offs e.g. performance for verifiability
- Unbounded Arithmetic, value semantics, etc

Goal: to statically verify functions meet their specifications

Overview: Types in Whiley

Primitives:
- e.g. any , null , bool , int , real , char

Collections (lists, maps, sets):

- e.g. [int] , {string} , {int=>string}

Records and Tuples:

- e.g. {int x, int y} , (int,int)

Unions and Negations:

- e.g. int|null , !int

Flow Typing

int sum([int] items):

r = 0

for item in items:

r = r + item

return r

A flow-sensitive approach to type checking

Types declared only for parameters and returns

Variables can have different types!

Conditionals and/or assignments cause retyping

Flow Typing: Example 1

define Circle as {int x, int y, int r}

define Rect as {int x, int y, int w, int h}

define Shape as Circle | Rect

real area(Shape s):

if s is Circle:

return PI * s.r * s.r

else:
return s.w * s.h

Variables are automatically retyped by type tests
- (even on the false branch)

Flow Typing: Example 2

null|int indexOf(string str, char c):

...

[string] split(string str, char c):

idx = indexOf(str,c)

if idx is int:
below = str[0..idx]

above = str[idx..]

return [below,above]

else:
return [str]

Here, union type protects against null dereference!

Flow Typing: Example 3

define LinkedList as null | Link

define Link as {int dat, LinkedList next}

int sum(LinkedList l):

if l == null:
return 0

else:
return l.dat + sum(l.next)

Support general tree-like structures, similar to ADTs

Value Semantics

define Point as {int x, int y}

Point translate(Point p, int x, int y):

p.x = p.x + x

p.y = p.y + y

return p

Everything is pass-by-value (a.k.a value semantics)

Data propagates only via return

I/O and other side-effects not permitted

Data may be updated in place

Value Semantics: Performance

define int18 as int where 1 <= $ && $ <= 8

define Pos as { int18 row, int18 col }

Board move(Board b, Pos o, Pos n, Piece p):

b[o.col][o.row] = null
b[n.col][n.row] = piece

return b

Value semantics (naÃŕve implementation):
» Copy board for call to move()
» Copy again for each assignment in move()
» This is very inefficient!!!

Reference counting can really help here...

Verification with Whiley

Verification: Example 1

A very simple example:

int f(int x) ensures $ >= 0:

return x

Above is invalid and does not verify. Can fix it like so:

int f(int x) requires x > 0, ensures $ >= 0:

return x

This will now verify

Verification: Example 2

Another simple example:

int abs(int x) ensures $ >= 0:

if x >= 0:

return x

else:
return -x

Above code is valid and will verify

Verifying compiler reasons precisely about information flow

Verification: Example 3

null|int indexOf(string str, char c):

for i in 0..|str|:

if str[i] == c:

return i

return null

Above code is valid and will verify

Verifying compiler proves array indices always within bounds

About Whiley

History of Whiley

2009 — Initial version of Whiley released (GPL Licence)
2010 — GitHub repository and http://whiley.org go live
2010 — Version 0.3.0 released (BSD Licence)
2013 — Latest version 0.3.20 (approx 81KLOC)
2014 — Version 0.4.0 released?

http://whiley.org

Architecture of the Whiley Compiler

Eclipse plugin for Whiley!

Update Site: http//whiley.org/eclipse

http//whiley.org/eclipse

Performance

http://whiley.org

http://whiley.org

