
School of Engineering and Computer Science
Te Kura Mātai Pūkaha, Pūrorohiko

PO Box 600
Wellington
New Zealand

Tel: +64 4 463 5341
Fax: +64 4 463 5045

Internet: office@ecs.vuw.ac.nz

Profiling the Java Compiler for
Improved Incremental Compiler

Design

Philip Oliver

Supervisor: David J. Pearce

Submitted in partial fulfilment of the requirements for
Bachelor of Engineering with Honours in Software.

Abstract
Compiling a program is a process which can take a long time, thereby break-

ing up a developer’s workflow and productivity. Incremental compilation is a
method which aims to solve this problem. Incremental compilers cache the re-
sults of previous compilations and reuse the compiled assembly or byte code of
unchanged sections of a program. When designing an incremental compiler, it
is vital to understand the estimated workload. Understanding which sections
of the compilation pipeline find the most errors can help the designer to iden-
tify which parts require the most resources. In this project a web application
has been developed to capture realistic compilation workloads using an instru-
mented Java compiler. Information about the stages encountered in a compila-
tion are printed to the console from the instrumented compiler. These workloads
are analysed to identify the effect on the compiler. This analysis gives insight into
where in the compilation pipeline the most time is spent, during an incremental
compilation session. In particular, most compilation errors occur in the pars-
ing stage, but a large number occur in type checking for programs with use of
complex type systems.

Acknowledgments

I want to acknowledge my supervisor, David J. Pearce, for his superb guidance throughout
this project. Furthermore, I want to acknowledge all my lecturers and internship mentors
throughout my degree. They have provided me with the knowledge and methodologies
required to tackle a project like this, and I am incredibly grateful.

i

ii

Contents

1 Introduction 1
1.1 The Compilation Problem . 1
1.2 Incremental Compilation . 2
1.3 This Project . 2
1.4 Contributions . 3
1.5 Covid-19 Effects on this Project . 3

2 Background 5
2.1 Incremental Compilation . 5
2.2 OpenJDK Compiler Pipeline Overview . 5
2.3 OpenJDK Compiler Analyse Phase . 6
2.4 Related Work . 8

3 Design 11
3.1 User Study . 11

3.1.1 Web Interface . 12
3.2 Architecture . 12

3.2.1 Compiling a Program . 12
3.2.2 Testing a Compiled Program . 14
3.2.3 Application Components . 14

3.3 Alternative Designs . 16

4 Implementation 17
4.1 Java Compiler . 17
4.2 Coding Challenges . 18
4.3 Web Server . 19

4.3.1 Server Actions . 19
4.3.2 Non-Functional Considerations . 22

4.4 Web Interface . 23
4.4.1 Components and Services . 23
4.4.2 Observer Pattern . 25
4.4.3 Auth Guards . 25
4.4.4 Code Editor . 25

4.5 Database . 26

5 Evaluation and Results 27
5.1 Web Interface Test Suite . 27
5.2 Logging . 29
5.3 Pilot Study . 29

5.3.1 Method . 29

iii

5.3.2 Findings . 30
5.4 User Study . 30

5.4.1 Method . 31
5.4.2 Results . 31
5.4.3 Threats to Validity . 36

6 Conclusions and Future Work 37
6.1 Future Work . 37
6.2 Conclusion . 38

A Figures 41

iv

Figures

2.1 OpenJDK Compiler Pipeline . 6

3.1 Mock-up of the Web Interface Main Page . 12
3.2 System Architecture . 13
3.3 Workflow of a Successful Compilation . 13
3.4 Workflow of a Testing Request . 14
3.5 Database Entity Relation Diagram . 15

4.1 Count Instructions . 19
4.2 Web Interface Page 2 . 24
4.3 Web Interface Page 3 . 24

5.1 Web Interface Test Suite Coverage . 28
5.2 Stages reached by compilation across all participants. 32
5.3 Illustrating number of edits failing at each stage. 32
5.4 Stages failed for the permutations challenge. 34
5.5 Stages failed for the generics challenge. 34
5.6 Stages failed for the generics 2 challenge. 35
5.7 Result of compilation by size of code edit. 35

A.1 Web Interface Page 1 . 42

v

vi

Chapter 1

Introduction

There have been a few different approaches to compilation throughout the history of soft-
ware development. Initially, programs were either written in machine-readable code, such
as assembly or compiled to machine-readable code by hand [1]. Grace Hopper developed
the first computer-aided compiler, which laid the foundations for languages such as COBOL
and Fortran [2]. After the invention of compilers, developers could write programs in
higher-level languages. These higher-level languages are closer to English than the assem-
bly code written prior and increased developer productivity [3]. Developers would now
edit code and compile the software before they debug it, leading to an edit-compile-debug
workflow. The traditional edit-compile-debug workflow tended to follow the approach:

1. The developer edits the code using a text editor such as Vi, Vim or Emacs.
2. The developer compiles the program using a build tool such as Make.
3. The developer then debugs the program by running it and testing it with certain inputs

or testing frameworks.
This workflow lead to the invention of tools to further improve developer productivity. For
example, integrated development environments (IDEs) combine all parts of the edit-compile-
debug lifecycle. Typically, IDEs have an editor and debugging tools built-in, with most either
providing their own compiler or use one present on the machine [4]. Furthermore, IDEs
such as these usually provide continuous building features where recompilation occurs au-
tomatically after an edit. Continuous building means the developer continually receives
feedback about mistakes in their code or sections which cannot compile. More recent de-
velopments in compiler design are distributed and web-based IDEs, such as Visual Studio
Code or Cloud9 IDE, which facilitate collaborative and multi user development. These IDEs
offer a web interface where developers can program and compile the code on a server. This
architecture requires sending software over a network for compilation. If the software is a
considerable size, this communication between the client and server will take some time,
depending on factors such as connection latency and bandwidth. With increasingly more
extensive programs and compiler workloads growing due to methods such as continuous
building, finding a new approach to software compilation is essential.

1.1 The Compilation Problem

When a developer is working on a program, often they are only changing a small section
of the software, and then recompiling and debugging [5]. Batch compilers are relatively
unintelligent compilers, and recompile the entire program after each change. Compiling
the entire program to debug a few small changes is resource-intensive and inefficient. The
below shows an example of how a typical batch compilation session may occur.

1

File 1

File 2
Time

Edit 1
Compile 1 Compile 2

Edit 2

Edit 3

Edit 4

Compile 3

At Compile 1 both files need compiling. However, between Compile 2 and Compile

3 only file 2 has changed. Compiling both of the files at this point would mean that file
1 is being compiled needlessly. Due to these unnecessarily large compilations, and IDEs
continually building software, there is a higher workload when using a batch compiler. Fur-
thermore, the time wasted in batch compilers will lower developers’ productivity. Make
offers a simple solution to this problem: it tracks file changes and only recompiles those
which have changed or have dependencies to the modified code [6]. This strategy is called
incremental compilation, and offers significant benefits to software development.

1.2 Incremental Compilation

Incremental compilers aim to reduce these workloads by compiling smaller sections of the
program [7]. This reduction is typically achieved by recompiling only the changed portions
of a program since the last compilation [4]. For example, when Rust developers asked Drop-
box what they wanted from Rust in production, they answered “faster compiles” [8]. Rust
has notoriously slow compile times, which without incremental compilation has been affect-
ing developers’ productivity. While Rust worked similarly to Make and avoided compiling
the entire program, compilations were still too slow and Rust developers started working
on an incremental compiler. The Rust incremental compiler works similarly, where ”In-
cremental compilation avoids redoing work when you recompile ..., which will ultimately
lead to a much faster edit-compile-debug cycle.” [8] The Eclipse IDE already has an in-
cremental compiler built-in; however, this is not much more sophisticated than Make [4].
The Eclipse incremental compiler only recompiles files with changes since the last compi-
lation [4]. Surprisingly, Eclipse does not support more sophisticated approaches such as
analysing whether a change will affect the program. For example, changing the line i =

i + 1 to i += 1 is a small change to the overall program and typically would not require
recompilation.

1.3 This Project

While incremental compilation by reduces the overall time of a compilation, there has not
been research into its effect on compilation pipelines. For example, not much is known
about the typical workloads of incremental compilers. Research into types of errors typi-
cally arising in programs, such as syntax, semantic and logic errors does exist [9, 10, 11, 12].
However, this literature does not investigate how these errors impact a compiler. For this
report, we consider a workload as a sequence of edits made by a user. An important analysis
of workloads is, if a workload is rejected by a compiler, why was it rejected? An example
of this is identifying which stages of a compilation pipeline caused the failure. Identify-
ing bottle-necks or common errors during these compilations would prove to be beneficial
in compiler design, particularly for incremental and distributed compilers. For example,

2

in a distributed web compiler, such as VS Code, Theia, or Ellie, compilation could occur on
either the client or the server-side of the web application. If the parsing stage finds errors fre-
quently in a development session, it could be beneficial to move the stage to the client-side
of the application. This shift to the client-side could catch parsing errors, without requiring
the client to send information to the server, thus reducing the overall compilation work-
load and capturing the most frequent errors on the client-side. This project aims to analyse
the compilation workloads in such a way as to discover how to improve incremental and
distributed compiler design.

1.4 Contributions

There have been a number of contributions to this project. These include:

1. A web application was developed to enable users to complete programming chal-
lenges and to capture the results of their compilations. To enable this, the OpenJDK
Java compiler has been instrumented to enable capturing compilation workloads. Ad-
ditionally, a web interface has been developed in AngularJS, a server in Java using
org.apache.http libraries, and PostgreSQL as a database. This report discusses the

design and implementation of this application.

2. User studies were completed to capture compilation workloads throughout users’ de-
velopment sessions. A total of 19 users participated in the study, generating 1151 com-
pilations. The results of the studies have been analysed and are presented through a
number of graphs. Some key findings from the study are that a majority of errors oc-
cur in the parsing stage of compilation, but with a larger number of type checking errors
when developers use complex type systems such as generics. Human Ethics approval
from Victoria University of Wellington was required for this project and granted under
the number 0000028477.

1.5 Covid-19 Effects on this Project

There have not been significant effects on the ability to run the user study for this project due
to the user study being run after the country-wide lockdown in March. However, there has
been significant effects to the implementation throughout this project, due to the pandemic.
The uncertainty and changing timelines of the University year have significantly increased
stress and decreased motivation for project and assessment work. Furthermore, as exams
have been removed, the assessment timeline compressed, and additional assessments added
to make up for the lack of exams, the amount of work required throughout the year has
significantly increased. This has lead to a less than ideal amount of time to dedicate to this
project, among others.

3

4

Chapter 2

Background
This chapter covers background surrounding incremental compilers and OpenJDK. This
chapter also discusses several relevant techniques from the literature.

2.1 Incremental Compilation

Software compilation is the process by which a computer translates a program from code
into instructions that are executable [13]. For example, the Java programming language com-
piles to Java byte code, which is then run on the Java Virtual Machine (JVM) [14]. Tradition-
ally compilers work in a pipeline, which is essentially a sequence of consecutive jobs [15].
A pipeline ensures that the execution of these jobs occurs in a defined order. Specific jobs
may depend on the outcome of previous stages, and the completion of prior tasks fulfils
these dependencies before subsequent phases of the pipeline run [15]. For example, before a
compiler can run checks and analysis, it must parse (process textual input) the program [7].

There have been implementations of incremental compilers since the 1960s [7]. Early
incremental compilers were more effective than current incremental compilers due to the
simplicity of programs at the time. For example, incremental BASIC was one of the first in-
cremental compilers in 1968 [7]. Programming languages such as BASIC were low level lan-
guages and were similar to assembly code. Due to the low level nature of these languages,
incremental compilers were trivial for them as they only required recompiling changed lines.
As programming languages became complicated with more language features, developing
incremental compilers for them became significantly more difficult.

As an example to illustrate, in 2016, the Rust programming language had an incremen-
tal compilation option added to its compiler [8]. The Rust incremental compiler tracks de-
pendencies through multiple stages of compilation. This tracking allows the compiler to
update cached data from previous compilations for only the segments which require updat-
ing. Analysis of the performance of the Rust incremental compiler shows slightly slower
initial compile times due to the caching required. However, further recompilation shows
dramatically reduced compilation times for most cases. This 2016 release of the Rust incre-
mental compiler is only an alpha version, and there is plans for significant work before a
fully incorporated incremental compiler will be completed. In the 2018 release of Rust, in-
cremental compilation is enabled by default. However, there is still a large amount of work
planned for incremental compilation in Rust [16].

2.2 OpenJDK Compiler Pipeline Overview

Compilers are traditionally structured in a pipeline with two sections relating to the main
goals of the compiler. The frontend and backend of a compiler confirm the code is correct

5

Code
File(s)
.java

Byte
Code
File(s)
.class

Parsing Annotation
Processing Analysing GeneratingLexing

Frontend Backend

Attribution Liveness Definite
Assignment

Exception
Flow Capture

Figure 2.1: OpenJDK Compiler Pipeline

and generate executable files, respectively. The frontend typically creates an abstract syntax
tree (AST) which represents the program in a structured way, with only relevant informa-
tion. The AST is then checked in a number of passes during the analysing phase of the
compiler. Finally, the backend of the compiler converts the AST into executable binary or
byte code files.

As seen in Figure 2.1, there are five main phases in the OpenJDK compiler pipeline.
These phases are lexing, parsing, annotation processing, analysing, and code generating [17]. The
lexer reads a source code file and converts it to a stream of tokens, which include variable
names, operators, keywords, etc. The parser converts the token stream into an AST. An-
notation processing is an iterative extension of the parser in which a developer can specify
particular behaviours from the compiler [17, 18]. Analyse performs a number of checks on
the AST to ensure the code is correct and to generate informative error messages when the
code is incorrect. Finally, the generate phase converts the checked AST to Java byte code,
which can be run on the Java Virtual Machine (JVM) [14].

2.3 OpenJDK Compiler Analyse Phase

The analyse phase in Figure 2.1 shows a breakdown of six analyses performed on the AST.
The attribution analysis checks variable names and type information [17]. This check in-
cludes ensuring variable types match throughout the variables’ scopes. For example, take a
variable of type String: this check ensures that such a variable is never assigned a different
type. Listing 2.1 shows a (correct) program where a variable of type String is assigned as a
String twice. Contrastingly Listing 2.2 shows another (incorrect) program where the vari-
able is assigned as a String and then as an Integer. The name resolution checking that occurs
in this phase ensures that a variable which is used exists in the program. Listing 2.3 shows
variable x being assigned, however it has not been declared in the program and will fail
name resolution.

String testString = "this is a string";

testString = "this is a different string";

Listing 2.1: Correct Type Assignment

String testString = "this is a string";

testString = 1;

Listing 2.2: Incorrect Type Assignment

int i = 0;

6

x = i + 2;

Listing 2.3: Failed Name Resolution

The liveness analysis performs a dead code analysis on the AST. This analysis searches for
unreachable code and raises an error if it finds any statements which are unreachable. An
example of unreachable code is any code listed after a block’s exit point. Listing 2.4 shows
this: the statement int y = 2; comes after the return; exit point.

f() { int i = 1; int x = i + 2; return; int y = 2; }

Listing 2.4: Unreachable Code

Definite assignment analysis ensures that variables are defined before they are used in
a program [19]. Listing 2.5 shows a program in which a variable is declared before its
use, but is not assigned. This program fails definite assignment checking as the expression
int x = i + 2; attempts to evaluate i before it is assigned.

f() { int i; int x = i + 2; i = 1; }

Listing 2.5: Variable Use Before Assignment

The exception flow analysis follows exception propagation paths to ensure that checked
exceptions which are thrown in the program are caught. Listing 2.6 shows an IOException

being thrown. In Java, these are checked exceptions and must be caught to ensure they do
not propagate to the root of the program. In Listing 2.6, the exception is not caught in the
main method and will propagate to the program root. To fix this error, the exception must

be explicitly declared by the main method, such as in Listing 2.7 or caught in a try-catch

block, such as in Listing 2.8.

public static void main(String args []){

if (args.length < 3) { throw new IOException (); } ...

}

Listing 2.6: Uncaught Checked Exception

public static void main(String args []) throws IOException {

if (args.length < 3) { throw new IOException (); } ...

}

Listing 2.7: Declared Exception

public static void main(String args []){

try{ if (args.length < 3) { throw new IOException (); } }

catch (IOException e) { ... } }

Listing 2.8: Caught Exception

Capture analysis checks that local variables in lambda bodies or local inner classes are
final or effectively final. Listing 2.9 shows a variable i being assigned from within a lambda
body. This assignment will fail the capture analysis, as i should be final and its value not
change within the lambda body.

int i = 2; stream.forEach(int item -> i = item;);

Listing 2.9: Non-Final Lambda Body Reference

7

2.4 Related Work

We now examine a selection of papers from the literature on incremental compilers.
Responsive Compilers
Nicholas Matsakis is a significant contributor to the Rust programming language and gave a
presentation about incremental compilation in Rust at PLISS 2019 [20]. Matsakis highlights
how interactions with compilers have changed due to the interactivity of IDEs. When a
developer makes a small change in an IDE, they expect fast feedback about the compilation
of that change. The Rust compiler (rustc) uses the language server protocol (LSP) as an
intermediate interface between a language and an IDE. The LSP abstracts calls between the
two, and reduces the need for multiple interfaces for different language-IDE combinations.
In the current IDE-compiler architecture, the compiler becomes an actor.

Rustc uses a framework called salsa to implement the compiler. Salsa is based around
queries, which are pure functions used to discover what other information and dependen-
cies the compiler need. Results from these queries are cached so that the cached result can
be returned instead of re-evaluating the query. This is similar to the abstract language used
in PECAN discussed in Generating an Incremental Compiler.

An internal database stores information about derived salsa queries. The database con-
tains a revision counter and a map for each query. The query map contains a cached result
for the latest revision, dependencies and the revision in which the last change was made.
When a query is invoked, if there is no cached result the query must be computed. Other-
wise, if the dependency is out of date, the compiler updates the query and latest revision.

Rustc can use these derived queries, and query maps for incremental compilation. Revi-
sions for AST nodes are only updated when the new result is different from the old result.
If the input file is updated, its revision number is increased. When the file is parsed to an
AST, if the AST is unchanged for that file, the revision number is not increased. In this case,
subsequent phases can simply use the cached results from the previous compilation.

Incremental Compilation for Continuous Integration
Guillaume Maudoux and Kim Mens discuss the possibility of applying incremental com-
pilation to continuous integration (CI) pipelines [21]. CI is the process of automatically
building and testing software on a repository check-in. The aim of the pipeline is to ensure
that the software is safe for deployment. The issue in applying incremental compilation to
CI is that the pipeline typically runs in a fresh environment from clean sources. This makes
incremental builds impossible, as there is no saved information from previous compilations.

Madoux and Mens claim that CI build environments could be improved using incre-
mental compilation. An analysis of compilation times for the Mozilla Firefox web browser
show that a large number of commits result in no change to the software. For these cases,
a full rebuild would be pointless and result in time wastage. For commits where the source
code changes, the median build time was approximately 20 times quicker than a full re-
build. Based on their experiment, about 90% of CPU time on CI workers is wasted, and
incremental builds could significantly improve performance and resource use.

The main barriers to adopting incremental compilation for CI environments include:
concerns that existing incremental compilers do not build software correctly, impurities may
be introduced to build environments due to caching of incorrect builds, and workers may
not have access to build results from other workers.

The proposed solution is to use the ‘correct’ algorithm from tup and the nix package
manager to implement an incremental build system with a shared cache between CI work-
ers. Tup is a build system which uses a list of file changes and a directed acyclic graph to
update dependent files [22]. Nix is a package manager for Unix systems which isolates pack-
ages to ensure software builds are reliable and reproducable [23]. Madoux and Mens caveat

8

the proposed solution by acknowledging that accessing the cache could be slower than a
local rebuild. Finally, they conclude that a “huge speedup in compilation time could make
[the incremental build system] attractive.”

Achieving Incremental Compilation through Fine-grained Builds
Tim Cooper and Michael Wise describe Make(), a procedure-level build tool which they de-
veloped [24]. Make() achieves incremental compilation by processing source code by proce-
dures instead of the entire source code. Build tools process dependencies between subsec-
tions of source code. A traditional build tool is make, which operates on the file-level, man-
aging dependencies between files. Make() expresses dependencies between objects, such
as procedures, types, global variables and macros. Make() is built for the C++ language,
with some language features omitted. Make() is intended to scale for large projects and the
methods described to be applied to other statically typed languages.

An optimisation for dependencies is discussed, but not implemented. In this optimi-
sation, an object’s interface is separated from its body. The interface is the surface of an
object, which can directly affect another object. This typically means the prototype for a
function. In this interface optimisation, dependencies only require updating if the interface
changes. This could mean the body of a function is updated, and any object calling the
function doesn’t require updating because the interface remains the same.

Make() handles recursive dependencies by marking objects as visited the first time they
are recompiled. This prevents expensive computation and infinitely recursive compilation.
However, dependencies may still require updating after the first pass, and so a number of
passes may occur to ensure the compilation is up to date.

Make() is shown to be significantly more efficient than gcc and Visual C++. For exam-
ple, to add a comment to the central header file for a project, 139,736 lines of code required
updating in gcc, 34,926 in Visual C++, but only 4 in Make(). This improvement occurs, as
file-based build tools will recognise the central header file has changed and will rebuild all
dependent modules. In Make(), all procedures in the central header file are recognised to be
unchanged, and only a comment object needs to be added. There are also good, albeit not
as significant improvements when rebuilding all modules (150,231 for gcc, 21,320 for Visual
C++, and 20,159 for Make()).

Build System with Lazy Retrieval for Java Projects
Molly is a build system which has lazy project dependency retrieval [25]. Traditional build
systems, such as Maven, typically require retrieval of all project dependencies prior to exe-
cuting other build steps such as testing. In CI pipelines, dependency retrieval can be signifi-
cantly time consuming, with some projects taking up to an hour to retrieve all dependencies.

Molly tightly couples the compiler, runtime, and build system and retrieves dependen-
cies lazily during execution of build targets. When a library is added to the Molly Central
Repository, the library is split into files, and trimmed to create a public API. This provides
a stripped-back version of the dependencies which can be used in compilation without the
unnecessary bloat of the full libraries. While the full dependencies are required for testing,
if only a build is occurring the content of these dependencies is not required. When the
software is run, Molly replaces the trimmed dependencies with the required files from the
library. Only using the required files reduces the size of the dependencies, as the whole
library is not retrieved.

Molly can also cache built class files for incremental CI builds. Merges are performed to
load cached class files and for replacing trimmed libraries with the required files. The merge
process is entirely transparent to the user, but is expensive. Because of this, an asynchronous
merge is implemented, which can replace trimmed libraries as a background process.

The overall system is shown to reduce dependency retrieval time by 44.28%, reduce disk

9

space use by 89.80%, and reduce retrieval time in standard cases by 93.81%.

Incremental Whole Program Optimisation and Compilation
Whole program analysis and optimisation is typically performed in modern compilers for
high level languages [26]. While this approach provides the compiler visibility to the entire
program, it makes recompilation a computationally expensive task, where the whole system
must be recompiled. An approach to whole program analysis and optimisation has been
incorporated into the commercial Visual C/C++ compiler.

In the existing compiler, whole program analysis (WPA) runs on a single thread and
takes approximately 30% of compile time. The incremental version runs WPA incremen-
tally across functions in the program. Functions which are changed and dependencies are
recompiled and WPA applied to these. If the current code is changed, then the function
requires recompilation.

To ensure incremental builds have the same output as a non-incremental build, the com-
piler must balance incremental efficiency and optimisation. Comparisons are drawn be-
tween functions whose dependencies have been updated, but whose code has not changed,
with regard to the dataflow throughout the program. If the function’s dataflow is found to
have moved in a ‘downwards’ direction, as determined by an implemented algorithm, the
function must be recompiled. However, if the dataflow moves in an ‘upwards’ direction, the
generated code could be improved if recompiled, but is not required to be correct. This anal-
ysis results in some functions being recompiled even if their source code has not changed,
in order to ensure that correct optimisation is achieved in the system.

The system was tested by building a number of libraries and executable files. Through
these tests, the system was shown to compile more than seven times faster than non-incremental
builds of the same artefacts.

Generating an Incremental Compiler
Steven Reiss describes an approach to generating an incremental compiler [27]. PECAN
development environments make the use of graphical user interfaces (GUIs) and are some
of the first integrated development environments (IDEs). The PECAN incremental compiler
uses an abstract language to allow incremental compilation for a number of languages.

The incremental compiler designed for PECAN consists of five modules. The primary
module stores a linear sequence of expressions generated from the AST. This module is
responsible for updating the linear sequence by catching change messages for the sequence.
Updating the sequence is completed by rolling back the actions from the existing sequence,
then playing the new actions on the sequence. The rest of the modules provide entries for
execution and rollback of actions for their subset of the linear representation. These modules
propagate any changes made to them through to the rest of the compiler.

The primary module of the incremental compiler updates the actions when the AST is
updated. When updating the actions, the compiler creates a list of actions for the change,
compares the list with the previous list of actions to find where it should be inserted, rolls
back the old list to the start point of the new changes, applies the new changes and finally,
executes the following actions to complete the compilation.

A number of actions occur when updating a compilation. First, the symbol table is up-
dated, then data types, expressions, and finally control flow. All changes in definitions are
resolved and the properties of all references to the definition are updated. When a symbol
changes, the rest of the compiler is sent a message to inform that the reference has been
changed and the changes that were made.

The approach was implemented in C and was used as a part of a programming envi-
ronment. Nothing other than the semantic specifications are required and the approach has
been shown to be efficient.

10

Chapter 3

Design

This project aimed to investigate how interactions between a user and a compiler happen
at a fundamental level. In particular, we examine edits to code produced by real users
and analyse how the compiler processes these edits and which compilation stages were in-
volved. The information generated from this analysis can be used to inform incremental
compiler design and development. Similarly, it will offer insight into the process of pro-
gramming. We developed a simple web application for writing and compiling Java code
and used the application to perform a user evaluation. This chapter discusses the design of
this tool, including the architecture and some alternative approaches considered.

3.1 User Study

The aim of the user study was to generate compilation workloads which one could imagine
occurring in a standard development session. A standard development session would be a
period of time in which a developer works on a project as they usually would in a workplace.
These challenges were completed in the web application created as a part of this project. A
variety of challenges have been created which attempt to replicate problems which may
arise in a development session. These challenges were designed as small algorithmic or
Java language puzzles which require the user to complete an algorithm or use a particular
language feature. Due to the small nature of the challenges, we do not expect the results
to be entirely representative of a standard development session. However, we believe the
challenges offer a reasonable attempt at replicating these sessions within the constraints of
this project. The challenges created include:

1. Counting the number of occurrences of an item in an array (Count).
2. Implementing a class hierarchy (Covariance).
3. Writing programs with exceptions and handling exceptions (Exception Handling and

Exception Handling 2).
4. Flattening a binary tree into an array (Flatten).
5. Exercises which require defining and using generic and wildcard types (Generics and

Generics 2).
6. Finding the maximum of three numbers (Max 3).
7. Finding the permutations of a string (Permutations).
8. Reversing an array (Reverse).
9. Searching for a subarray within a larger array (Search).

10. Sorting an array (Sort).
Each challenge is comprised of a number of components. The challenges each have a name,
a set of instructions, some template code, and a test suite. The instructions inform the user
of what they are trying to achieve in the challenge, and the template code provides a starting

11

Challenge Name

Challenge instructions

Optional image to help
describe the challenge

Code editor window

Compile button Run tests
button

Compilation errors

Draggable slider to resize windows

Figure 3.1: Mock-up of the Web Interface Main Page

point. Section 3.1.1 discusses how this information is presented to the user. When complet-
ing a challenge, a user writes code and presses the compile button. The user’s code is then
compiled and the user receives feedback as to whether the compilation succeeded or not.
If the compilation succeeds, the user can run the test suite associated with the challenge to
check if their code completes the challenge.

3.1.1 Web Interface

Figure 3.1 shows the design of the main page of the web interface. There are two main panes
on the page, which are separated by a draggable slider. The left pane has the instructions
for the current challenge and an optional image which could help clarify the instructions.
The right pane has a code editor, buttons for compiling the code and running tests, and a
window for displaying compilation errors. The draggable slider allows the user to move the
challenge instructions out of the way so they can focus on their code if they wish.

3.2 Architecture

The web application developed enables compilation and collection of the results of Java
programs written by users during the user study. The overall architecture of the system
is shown in Figure 3.2. The web server is the main part of the application, with the web
interface, database, and OpenJDK components loosely coupled to the server. The OpenJDK
component consists of two main sections, the compiler is used to compile the user’s code,
and the runtime is used to run tests on compiled code.

3.2.1 Compiling a Program

Figure 3.3 shows the workflow for a compilation request in the developed web application.
There are a number of steps to compile a Java program:

1. A user writes a program in the web interface and requests compilation of the program
by pressing the Compile button. The web interface sends the user’s code over a HTTP

POST request to the /compile API endpoint on the web server.
2. The web server reads the code sent from the web interface. The server adds any re-

quired imports and wraps the user’s code in a public class to enable compilation. The

12

Web Interface Web Server OpenJDK

Database

Java Runtime

Compiler

REST API

JDBC

CLI

Figure 3.2: System Architecture

server then writes the code to a file. The file’s name matches the public class which the
code has been wrapped in.

3. The Java compiler is used to compile the program. The compiler used is based upon
the OpenJDK Java compiler. We have altered the compiler to generate instrumentation
output which indicates the compilation stages which are passed or failed.

4. The Java compiler outputs the Java byte-code generated from the compilation to a class
file.

5. The web server parses stdout and stderr from the compiler process to find any
compilation errors and which stages of the compilation have passed or failed.

6. The web server stores the compilation information in a PostgreSQL database. The
information stored includes the user’s code and the stages of the compilation which
have passed or failed.

7. The web server responds to the /compile request with Compilation Successful if the
compilation succeeded. If the compilation failed, the server responds with the errors
which occurred in the compilation.

Web Interface Web Server

Code.java

Compiler

Code.class

Database

Step 1
Step 2

Step 3
Step 4

Step 5
Step 6

Step 7

Figure 3.3: Workflow of a Successful Compilation

13

Web Interface Web Server Java Runtime

Junit Testing
Library

Database

Code.class

Step 1 Step 2

Step 3
Step 4

Step 5

Figure 3.4: Workflow of a Testing Request

3.2.2 Testing a Compiled Program

Figure 3.4 shows the workflow for a user running tests on a successful compilation. The
web server dispatches the test request to the Java Runtime with use of a Junit testing library
to test the compiled code. The test results are stored in the database and are sent back to the
web interface. There are a number of similar steps involved in testing a compiled program:

1. After a user has successfully compiled a program, they can press the Run Tests but-
ton. The web interface sends an HTTP POST request to the /test endpoint on the
web server. This request includes a session key as a unique identifier for the user, and
the challenge which the user is working on.

2. The web server dispatches a command to the Java runtime, including a Junit testing
library and the compiled class file in the classpath. This command runs the test suite
associated with the specific challenge the user is working on in a sandboxed environ-
ment for security.

3. The web server parses stdout and stderr from the runtime process to find the
number of successful and unsuccessful tests.

4. The web server stores the test results in the PostgreSQL database. The information
stored includes an ID relating to the compilation to which the test request relates, the
session key, and the number of passed tests.

5. Finally, the web server responds to the /test request with the number of tests passed
and failed. The web interface displays this information to the user.

3.2.3 Application Components

Web Server

The web server provides a central interface for all the logic and actions required to imple-
ment the system. The other sections of the system are connected to the web server and are
loosely coupled to ensure that any of the other components can be replaced easily. A REST
API is used to receive requests from the web interface. The command line interface (CLI)
is used for compiling code and running tests. Finally, the Java Database Connection (JDBC)

14

compile_request

PK/FK user_id

PK timestamp

code

challenge

compile_result

PK id

FK timestamp

FK user_id

compilation_flag

flag_result

challenge

user_information

PK id

age

occupation

java_experience

education

other_langs

ide_experience

test_result

PK id

FK timestamp

FK user_id

challenge

test_result

Figure 3.5: Database Entity Relation Diagram

library provides the abstracted connection for the database. The database and compiler con-
nection is discussed further in the following sections.

Database

Connecting to a database should not be a hard-coded process. Abstracting connections to
the database enables the specific database instance used to be replaced. This loose coupling
allows programs to use multiple different database servers within a single program, or to
easily replace one database server with another.

The database provides storage for information the user provides, their compile requests,
and the outcomes of their compile and test requests. There are four tables in the database
which represent different aspects of the data generated in the system. Figure 3.5 shows the
tables and relationships between them. The data in all the tables is directly linked to a user
id. Due to database foreign key constraints, this means that data cannot be added to tables
other than user_information without a specific user_id existing in that table.

The user_information table stores information the user enters in a form on the web
interface. The non-primary fields in this table are information which the user enters as a
part of the user study. Collecting contextual information, such as the users’ occupation and
experience helps to draw more conclusions about the results of the user study.

The compile_request table holds information about a user’s compilation request. Im-
portantly, it holds a timestamp of the compilation, the code for the compilation, and the
name of the challenge the user is working on. The user_id field is used in the primary key,
along with the timestamp to ensure the uniqueness of each record in the table. The code

field holds the code which a user has requested to compile, and challenge is the challenge
name for the challenge which the user is completing.

The compile_result table holds the instrumentation generated by the compiler. The
name of the challenge which the user is completing is stored. Additionally, the compilation
stages and results generated from the instrumentation in the compiler are stored. Separating

15

the compile request and result tables enables conclusions about compilations to be drawn
for the whole dataset without requiring information about each specific compilation.

The test_result table contains the outcome of a testing request. The information
stored includes the number of tests passed and the total number of tests run on the user’s
code.

Compiler

Calls to the OpenJDK from the web server occur through the command line interface (CLI).
The web server specifies the CLI command to run, such as javac Code.java , and runs
this command as a user would in the CLI. The process is watched by the server and the
output of the process are collected. The server binds to the stdout and stderr to collect
compilation instrumentation, compilation errors, and test results. This abstract connection
through the CLI enables the specific OpenJDK version (including the compiler and runtime)
to be replaced with minimal effect on the server.

3.3 Alternative Designs

A proposed alternative to the implemented system was considered but disregarded as un-
suitable for the project. This approach would have been to use the altered OpenJDK com-
piler as the compiler in a preexisting IDE such as Eclipse or IntelliJ on the ECS machines at
the University. The main advantage of this approach is that it would have enabled users
to use all the tools these IDEs provide, such as debuggers, auto-complete features, and the
ability to write their own tests for the challenges they are asked to complete. There are, how-
ever, a number of disadvantages to this approach. While incorporating the altered compiler
into an IDE would work, this approach would require ensuring that the altered compiler
were accessible on the ECS machines. It would be difficult to find users to take part in the
study as they would be required to be present at the University to take part in the study.
This restriction would likely restrict the users to students, with few industry developers be-
ing able to take part. Additionally, this approach would require configuring the IDEs prior
to the user studies to ensure the correct compiler is used. Another issue is that the compiler
could be accidentally used for the compilation of projects not included in the user study
if the IDE were not reconfigured back to its original settings after the study. Furthermore,
given the restrictions on gathering due to Covid-19, it was decided that a web application
would be a better approach with no gathering required. It is also easier to include a more
diverse population for the user study.

Another design which was disregarded was for a more comprehensive user study. In-
stead of completing small coding challenges, which are not extremely representative of stan-
dard development, assessing workloads throughout development on a larger system was
discussed. While this would result in a more in depth and representative dataset, such
a study would require a more longitudinal approach. Due to the timeline restrictions of
this project being an honours project, this approach was disregarded as unachievable in the
timeframe.

16

Chapter 4

Implementation

This chapter describes the implementation of the web application for capturing compilation
workloads. The application has been implemented based on the design discussed in Chap-
ter 3. There are a number of components in the web application, including the Java com-
piler, coding challenges, web server, web interface, and the database. Furthermore, there are
a number of other ideas discussed such as concurrency, security, and handling long running
processes.

4.1 Java Compiler

The Java compiler (Javac) used is an altered version of the OpenJDK Java compiler, which
implements Java 15. OpenJDK is an open-source Java Development Kit, which includes a
Java compiler for compiling Java programs, and a Java Runtime to run compiled Java pro-
grams. Javac is a large program, with the source code consisting of 15 packages, 187 files,
and 128960 lines of code. Instrumentation has been added to record which pipeline stages
are reached during a compilation. This instrumentation provides key information about
which stages of compilations pass and fail. The instrumentation added to the compiler
mostly matches the phases described in Sections 2.2 and 2.3. These are parsing, attribution,
liveness, definite assignment, exception flow, and capture.

The implementation of instrumentation in Javac has been achieved by printing mes-
sages to the console. As discussed in Section 3.2.3, the web server attaches to compiler
processes using stdout and stderr . In Java code, this translates to method calls of
System.out.println and System.err.println . The instrumentation added to the com-

piler is printed only to stdout , leaving stderr free for compilation error messages gener-
ated from the compiler. Listing 4.1 shows a simple example of how the instrumentation has
been added to the source code of OpenJDK. This example is for capture, where the number of
errors already raised in the compiler are saved to the temporary variable prevErrors . The

line scan(tree); performs the capture analysis on the current AST which will increase the
error count if errors are raised. The if-else statement compares the number of errors be-
fore the capture analysis to the number after. If there are more errors after, the string stating
the analysis failed is printed to stdout , otherwise the string stating the analysis is complete
is printed.

17

public void analyzeTree(Env <AttrContext > env , JCTree tree ,

TreeMaker make) {

int prevErrors = log.nerrors;

scan(tree);

if (prevErrors < log.nerrors) {

System.out.println("Flag - Capture: Failed");

} else { System.out.println("Flag - Capture:

Complete");

}

}

Listing 4.1: Implementation of Compiler Flags

4.2 Coding Challenges

The coding challenges developed cover a number of language features and techniques as
discussed in Section 3.1. The challenges have been developed using Java 15 so they can be
used with the compiler discussed in Section 4.1. Each challenge includes a Markdown file
of the instructions, a Java file with template code, and two test files. Some challenges also
include images which clarify the instructions, and a file with the list of imports allowed for
the challenge. For example, Figure 4.1 and Listing 4.2 show the instructions and template
code for the Count challenge. Of the two test files, one file contains the actual tests which
should all pass when the user completes the challenge correctly. The other test file contains
very basic tests which ensure that the user is compiling their code against a skeleton for the
class or method signatures. Compiling against the skeleton cases ensures that the user’s
code will run with the actual test cases. Furthermore, any error messages from the compiler
which arise when the user compiles against the skeleton code will not have information
about the logic of the tests. This ensures that the user receives error messages if their code
will not work with the test cases, while also ensuring the user is not inadvertently given
the solutions for the challenges. When the user runs the tests for a challenge, their code
is run using the actual test case. Compiling against the skeleton code initially ensures the
code does not require compiling again as it will already have the required method or class
signatures. Therefore, the tests can be run and the user will receive information about the
number of test cases which pass.

public static int count(int[] arr , int item) {

return 0;

}

Listing 4.2: Count Template Code

Listings 4.3 and 4.4 show the difference between test cases in the main and skeleton test
files. As can be seen in Listing 4.3, there is the body of an entire test case. An array is created
and populated with integers between 0 and 15. The expected count value is calculated in
a helper method call: count(arr, countInt); . The actual count calculated from the user
code occurs in the static method call: Count.count(arr, countInt); . Finally, an assertion
is called to check that the expected and actual count values are the same. If they are the same
the test passes, otherwise the test fails. The skeleton test case in Listing 4.4 differs from the
main test case, as it has no assertion or logic in it. The case only has the call to the user’s

18

Figure 4.1: Count Instructions

code. This skeleton test case requires the user’s count method signature to match the tem-
plate code provided. In this case, from the skeleton test case, we can tell that user’s method
must be static, called count , take parameters of types int[] and int , and return an int .

int[] arr = new int [100];

for (int j=0; j <100; j++) {

arr[j] = r.nextInt (15);

}

int countInt = r.nextInt (15);

int expectedCount = count(arr , countInt);

int actualCount = Count.count(arr , countInt);

assertEquals(expectedCount , actualCount);

Listing 4.3: An Example Count Test Case

int actualCount = Count.count(new int[5], 1);

Listing 4.4: An Example Count Skeleton Test Case

4.3 Web Server

The web server provides the core functionality of the application and connects the other
components of the system together. As discussed in Section 3.2.3, the web server provides
loosely coupled interfaces for the web interface, OpenJDK, and database. The web server
itself is written in Java and uses org.apache.http libraries to implement the server func-
tionality such as exposing endpoints and persistent execution of the server.

4.3.1 Server Actions

There are a number of API endpoints provided by the web server. These endpoints are used
to specify actions in a simple, understandable format. These include challenges, compile, test,

19

storeUser. Additionally, the server also provides handling for static html , js , css files.
Finally, the server also provides an endpoint for images included in challenge instructions.
Each of these endpoints is implemented as an HttpRequestHandler object for ease of use
with the apache libraries. All requests and responses with bodies are JavaScript Object No-
tation (JSON) encoded. JSON provides a simple and understandable format for encoding
web request and response bodies. An example of JSON is provided in Listing 4.5.

{ ‘id ’: ‘a user id ’, ‘data ’: [‘an ’, ‘array ’] }

Listing 4.5: A JSON Object

Challenges Endpoint

The challenges endpoint provides a handler to return the coding challenges described in Sec-
tion 4.2. This handler builds a JSON array of the challenges. Each item in this array is a JSON
object including the challenge name, starter code, and instructions for the challenge. Addi-
tionally, due to the challenge instructions being written in Markdown, the instructions will
not render correctly in a web format. Before the instructions are stored in the JSON object,
they are compiled to HTML. org.commonmark libraries are used to compile the Markdown
instructions. Initially, the Markdown is parsed using org.commonmark.parser.Parser ,
and then org.commonmark.renderer.html.HtmlRenderer is used to render the parsed file
to HTML. This enables a web interface to simply display the instructions in a browser and
they will display correctly.

Compile Endpoint

The compile endpoint receives compile requests which include a JSON object request body.
Listing 4.6 shows an example of a compile request body. The sessionKey is a random
UUID generated in the web interface which uniquely identifies a user of the application.
The challengeName is the name of the challenge which this compile request relates to. Fi-
nally, code is the user’s code which they are compiling.

{
‘sessionKey ’: ‘user id hash ’,

‘challengeName ’: ‘Count ’,

‘code ’: ‘public static int count (...) { ... }’
}

Listing 4.6: Compile Request Body

When the server receives a compile request, a directory path is constructed based on the
session key and challenge name. A user’s compilations are stored under their session key,
thus creating the file path: sessionKey/challengeName . If the required directories do not
exist, the server creates them and copies the imports and testing files into each directory.
The server constructs the contents of the code file for compilation by including the contents
of the imports file (if one exists), a package declaration, and wrapping the user’s code in a
public class. The name of the public class is the challenge name, which in turn is the name
of the file to which the code will be written. Once the server has written the contents to the
code file, a process is created to compile the code file and the skeleton test file described in
Section 4.2.

The server reads the output from the process on stdout and stderr . Instrumentation
which has been written to stdout by the compiler is parsed and added to the database.

20

This requires creating a timestamp to serve as part of the database ID for the compilation.
The error lines are read from stderr . Error lines are edited to ensure the line numbers in
the messages are not offset due to the extra lines of code added to wrap the user’s code for
writing to the file. Additionally, the line numbers which have errors are added to an array.
If there are no error lines, ‘Compilation Successful’ is returned.

{
‘compileResult ’: ‘Compilation Successful ’,

‘errorLines ’: [],

‘timestamp ’: ‘timestamp ’

}

Listing 4.7: Compile Response Body

Finally, the server constructs a JSON object to use in the response body to the HTTP re-
quest. Listing 4.7 shows an example response JSON object. compileResult holds the result
of the compilation. This is either ‘Compilation Successful’ or the error messages written to
stderr by the compiler. errorLines is an array of the lines which contain compilation

errors. Finally, timestamp is the timestamp of the compilation.

Test Endpoint

The test endpoint is similar to the compile endpoint discussed in Section 4.3.1. Listing 4.8
shows an example of the request body for a test request. The sessionKey and challengeName

are the same as those for the test request. The compileTimestamp is the timestamp gener-
ated during a compile request and returned from the compile endpoint. This timestamp is
used to ensure the code which is tested matches the compilation which has occurred.

{
‘sessionKey ’: ‘user id hash ’,

‘challengeName ’: ‘Count ’,

‘compileTimestamp ’: ‘timestamp ’

}

Listing 4.8: Test Request Body

Similar to the compile request, when a test request is received the server builds the di-
rectory path based on the sessionKey and challengeName . The server compiles the test
file to ensure that it can be correctly run against the user’s compiled code. If the compilation
succeeds, the server starts a process to run the tests. The server then adds the test results
to the database and responds to the request. Listing 4.9 shows an example of the JSON re-
sponse body.

{
‘compileErrors ’?: ‘Errors from compiling the test

class ’,

‘testResults ’?: ‘4/6’

}

Listing 4.9: Test Response Body

21

Both compileErrors and testResults are optional keys in the response. If the test
class compilation fails the compileErrors key is set. This case should not happen due
to compiling the user’s code against the skeleton test cases as described in Section 4.3.1.
However, this flag exists to ensure any cases which bypass the skeleton test compilation are
caught before running the tests. Once the tests have been run the testResults flag is set
with the number of tests passed over the total number of tests. This is used to inform the
user if their solution to the challenge is correct.

Store User Endpoint

The storeUser endpoint allows both POST and DELETE HTTP requests and is used to
handle a user’s session on the server. When the user completes the information form de-
scribed in Section 4.4 the server receives a POST request with the information the user has
entered. This endpoint adds the user’s information into the database. When the server re-
ceives a DELETE request, the server checks if the user directory exists on the system and
deletes it. This ensures that there are no unused directories and code stored on the system
as they are not needed once the user has completed their challenges. DELETE requests are
sent from the web interface when a user finished the challenges, or closes the tab with the
application open. There are some scenarios where a DELETE request would not get sent,
such as if a user’s computer crashed, or they turn off their computer without exiting the
application. In these cases, the directories would not be deleted. However, this is a rela-
tively minor issue and not a cause for concern here. In particular, during the user study, the
deployment server was manually checked periodically to remove any stale directories.

4.3.2 Non-Functional Considerations

There were a number of considerations involved when implementing the server. These
include concurrency, security, and process and connection orchestration.

Concurrency

Concurrency considerations were required to ensure the system would run robustly when
multiple users are completing challenges at the same time. The org.apache.http libraries
automatically handle concurrent requests and spawn a new thread for each request, ensur-
ing that there is no bottleneck or timeout on these HTTP requests. The directory paths for
users discussed above are a method of ensuring concurrent users do not have interfering
processes when writing to files, compiling code, or running tests. A singular user could
attempt to break the system by sending concurrent compilation requests to the server under
the same user id, however this would likely involve some malicious scripting and was not
regarded as a major point of concern. Storing a user’s code files under their session key
ensures that files created will not be accessible by users with different session keys. Ad-
ditionally, writing information to the database occurs concurrently. When compiling code
or running tests the user doesn’t need to wait for the compilation flags or test results to be
written to the database, as these do not affect their experience. Implementing these concur-
rent database actions simply required encapsulating database writes in a Java Runnable

thread instance. This runs the database actions in a separate thread and the execution of
responding to the user’s request can be completed before the action is completed.

Security

As this project requires running user’s code on the server the system is deployed on, there
are a number of security concerns. Users could perform denial-of-service or other security

22

attacks on the system, whether intentionally or otherwise. Users could attempt to write,
read, or delete files from the deployment server. This could result in the server breaking,
sensitive files on the system being read, or files and directories being deleted.

These security concerns are addressed through the use of a Java Security Policy. This is
a file which acts as a form of capability list. A small number of permissions are granted to
the process, and if the code attempts to use other privileges, it will be prevented. The main
permissions granted include access to the code files and Java environment variables, such as
the user directory and class path. Other permissions granted include runtime and property
permissions which are required for the Junit testing library.

Orchestration

There are a number of scenarios which could break the system due to long running pro-
cesses. For example, a user could write an infinite loop which would create an infinite test-
ing process, thus breaking the system. Another example is that database connections could
break and become stuck open, forever holding a connection while the database has a finite
number of connections allowed. To prevent long running processes from the users’ code,
including infinite loops, a timeout has been attached to each testing process spawned. If the
tests do not complete within 30 seconds, the process is killed and an exception occurs. This
prevents any testing processes from using system resources for an extended period of time.
Likewise, a connect timeout has been added to the database connections. If any database
connection is not closed within 60 seconds, the connection is automatically killed to prevent
the database’s connections buffer from becoming full.

4.4 Web Interface

The web interface is the interface through which the user interacts with the system. Angu-
larJS has been used to create the web interface and was chosen over other alternatives such
as React and vanilla JavaScript due to its stability as a framework and functionality over
no framework (vanilla JavaScript). The interface has three main pages, is component-based
and uses a service-oriented architecture. Service oriented architectures separate components
from data stored in the web interface. Typically services will be injected into components,
which will then call functions in the services to receive the data they require to display or
use. The first page is a simple declaration, it provides the user with information about the
user study and requires the user to click an I Agree button to continue. The second page
is a form where the user can enter details about their programming experience and relevant
qualifications for the study. The third page is where the user completes coding challenges.
The three pages are shown in Figures 4.2, 4.3, and Figure A.1 in the appendix.

4.4.1 Components and Services

The third page (Figure 4.3) utilises the component-based and service-oriented design. Two
main components comprise the page. The first component displays instructions for each
coding challenge, and the second is a code editor and mock-terminal which displays com-
pilation errors. Additionally, there are back and forward buttons to allow the user to move
between challenges. Each challenge has a different set of instructions and starter code as-
sociated with it. This requires the instructions and editor components to change values
displayed when a user changes to a new challenge. All the information required for the
challenges are stored in a service. Abstracting the content from the components reduces
how frequently the components are rendered. The abstraction also reduces the time the
components take to render, as they are significantly thinner, with minimal data stored in
them.

23

Figure 4.2: Web Interface Page 2

Figure 4.3: Web Interface Page 3

24

4.4.2 Observer Pattern

Communication between the components and challenge service on the editor page occurs
through the observer pattern. The editor and instructions components are subscribed to the
challenges service. When the user navigates to the next or previous challenge, the service is
notified and changes the current challenge. After the current challenge has been changed,
the service notifies its subscribers (the editor and instruction components) that there have
been changes and the new challenge information. The components then update their chal-
lenge data and render the new challenge. Listing 4.10 shows the implementation for sub-
scribing to the challenges service. A callback function is defined: res => { ... } , which
updates the challenge when the challenge is changed. Additionally, in the challenge service,
when the next challenge is requested the service calls challenge.next(...) and passes
the next challenge. The next function informs the challenge to perform the callback on all
subscribed objects.

this.challenges = this.challengesService.getCurrentChallenge ();

this.s = this.challenges.subscribe(res => {

this.challenge = res;

this.code = res.starterCode;

});

this.challengesService.initChallenges ();

Listing 4.10: Subscription to Challenges Service

4.4.3 Auth Guards

Due to the foreign key constraints in the database discussed in Section 3.2.3, where compi-
lations and test results cannot exist without a user_id , information must be added to the
database in a particular order. Additionally, as the application is being used for a user study,
users must accept a declaration before they can proceed with the study. As every table in the
database requires a user id to be present, users are prevented from accessing the challenges
and editor unless they have both accepted the declaration (which generates a session key to
be used as the user_id) and completed the information form (which adds the user id and
information to the user_information table in the database).

To prevent users from accessing the challenges, or entering details before they have ac-
cepted the declaration, two Auth Guards are used. These guards implement the CanActivate

interface from Angular Routing (an in-built component routing system within AngularJS),
which requires a canActivate function. The function returns a boolean: true if the user
can proceed and false if they cannot. The first guard prevents users from proceeding
past the declaration page unless they have accepted the terms of the user study. This guard
uses a service which handles session information and returns true if a session key exists. A
session key is only generated once a user has accepted the declaration. The second guard
both checks that the user has accepted the declaration and that they have completed the
information form on the second page of the web interface.

4.4.4 Code Editor

The code editor used is an Angular component for the Ace editor [28]. Ace is a widely
used, JavaScript embeddable code editor which can be used in any web page. The Ama-
zon Cloud9 online IDE uses Ace as the primary editor. The component provides handles

25

as HTML/Angular attributes for a number of configurations, including updating the code
and the style of the editor. Listing 4.11 shows how the editor is embedded into the web
interface. The config attribute is set to a configuration JSON object holding the language
and syntax highlighting information. The value attribute is a two-way binding. The code

variable is a string which holds the code in the editor. When the code is either updated
by the challenges service or by the user in the editor, the editor and variable are updated,
respectively.

<ace [config]="config" [(value)]="code" id="editor"></ace>

Listing 4.11: Embedded Ace Editor

4.5 Database

The database for the application is implemented using PostgreSQL. The architecture of the
database has been described in Section 3.2.3.

Connecting to the database is managed using the JDBC library and prepared statements.
JDBC uses a connection string specifying the server, port and database name to abstract the
connection to the database. Prepared statements used help to manage the security of the
database. These statements pre-compile the SQL statements and then add the values into
the statements after. As user entered data and code is added to the database, ensuring users
do not perform an SQL injection attack is crucial. Prepared statements also convert all data
added into a query to a string before adding them, thus preventing an injection attack. List-
ing 4.12 shows how a prepared statement is implemented in Java. The SQL query is created
with question marks (?) in place of values, which then compiles the statement so that data
can be added to the query after. This also increases the speed of the query as it does not
require compiling every time it is used. After the query is prepared, the data is set using the
setString(...) method calls, and then the query is executed.

db = DriverManager.getConnection(Main.DATABASE_CONN_STRING ,

Main.DATABASE_PROPERTIES);

PreparedStatement stmt = db.prepareStatement("INSERT INTO

user_information" +

"(id , age , occupation , java_experience , education ,

other_langs , ide_experience , magic_number) " +

"VALUES (?, ?, ?, ?, ?, ?, ?, ?)");

stmt.setString (1, id);

stmt.setString (2, age);

stmt.setString (3, occupation);

stmt.setString (4, java_experience);

stmt.setString (5, education);

stmt.setString (6, other_langs);

stmt.setString (7, ide_experience);

stmt.setString (8, magic_number);

stmt.executeUpdate ();

Listing 4.12: Prepared Statement Example

26

Chapter 5

Evaluation and Results

A number of methods of evaluation have been used throughout this project. The web inter-
face has been evaluated through the use of software tests, the web server through the use of
logging, and the overall system has been checked for robustness and ease of use through a
pilot study before completing a full user study. We now examine in more detail and present
the overall results from the study.

5.1 Web Interface Test Suite

The Angular web framework provides a testing framework in the standard install and auto-
matically generates some tests on the creation of components and services. This framework
is called Karma, and the tests generated simply test if a component or service is successfully
created. By default a number of these tests will fail as components and services may have
dependencies to other services which will not be injected in the test suite. Fixing these tests
involved configuring the test bed to inject required services and modules. Additionally, a
number of tests have been added to ensure that the main logic of the web interface code is
tested. Overall, there are 55 tests in the test suite, which aim to ensure the correctness of
the code. These tests also aim to prevent any future changes to the codebase from breaking
existing functionality.

Figure 5.1 shows the coverage of the test suite when performed on the web interface.
Overall statement coverage is at 95.97%, with branch coverage at 88.16%. There are a few
cases which could be added in the editor component to increase these numbers, but overall
the coverage is good. The low branch coverage in the declaration component include safety
checks for handling identifiers assigned to users. The two branches not covered are the
?.id and mag || 0 checks. These checks exist as users can navigate to the application

with or without an identifier in the url. In the case that there is no identifier in the url, the
mag variable is set to 0 to handle this. Adding a test case for this would be trivial, however

it does not affect the execution of the interface for the user so it is not a crucial test.

const mag = this.route.snapshot.queryParams ?.id;

localStorage.setItem(’mag’, mag || 0);

Listing 5.1: Declaration Missing Branches

The main cases in the editor component which are not covered include handling of a time
interval for auto-compilation, and sending DELETE requests to the storeUser endpoint.
Both of these cases relate to non-required features which will not affect the application sig-
nificantly if they were to break. While this could eventually affect the quality of the data

27

Figure 5.1: Web Interface Test Suite Coverage

28

produced, or the storage on the web server, these are not critical and can be fixed in the case
that they do break.

The test suite has been incorporated into a continuous integration (CI) pipeline on Git-
Lab. This pipeline ensures that when any code is pushed to the repository, the test suite is
run. If any of the tests fail in the CI pipeline, the branch the code has been checked into is
unable to be merged to the master branch. Additionally, a notification is sent to the devel-
oper who introduced the error in the code that the pipeline has failed. Over the duration of
the project there has been 83 CI pipelines run on the web interface. Of these 83 pipelines,
there have been 68 successful pipelines and 14 failed. Of the failed pipelines, a number were
due to errors being introduced to the code. A small number of the pipelines failed due to
tests becoming outdated. These pipelines required the test suite to be updated, ensuring the
tests would still be useful for future pipelines. Overall, the test suite and CI pipeline has
been shown to prevent bugs from being added to the master branch and deployed into the
final application available for the user study.

5.2 Logging

The quality of the web server is assessed through the use of logging. Rather than writing
tests for the server, which could be an arduous process due to the number of files written and
processes created, logging offers insight into any errors which occur through the execution
of the server. A logger has been added to the server which allows logging of messages
throughout the execution. The server logs actions such as compile and testing requests,
adding and deleting users, and adding information to the database. Additionally, the logger
also logs the stack trace of any errors which occur throughout execution of the program.

Between 1st September and 10th October 2020, a log file with 6924 lines has been gener-
ated. Of these 6924 lines, 210 are errors from the server. This is an error rate of approximately
3%, which initially appears to be high. However, upon closer analysis of these error mes-
sages, they all appear to be the same type. The errors raised throughout execution occur
due to web connections to the server being ended before the server expects. These errors
are fairly innocuous and in no way affect the execution of the server. As the server has been
running since the 1st September and has not reported any major errors, no users have re-
ported any issues with the application, and the server has never crashed, we can conclude
that the server is significantly robust for the purpose of the user study.

5.3 Pilot Study

Prior to the main user study, a number of users took part in a pilot study. The aim of this
pilot study was to evaluate the application to ensure it was fit for use in the main user study.
The pilot study resulted in three main discoveries about the system.

5.3.1 Method

This pilot study was conducted with the developed web application deployed on a server at
the School of Engineering and Computer Science at Victoria University of Wellington. The
server used runs Arch Linux, version 5.7.7 and the Java version used is OpenJDK Java 15.
A group of four students from the Engineering Project (ENGR489) course at the University
were selected to participate and evaluate the application. For these students, the author
observed the experimental sessions, allowing the students to ask questions. Additionally,
their use of the application was monitored to ensure they used it correctly, and to discover

29

any issues with the user experience of the application which could be changed before the
main user study.

5.3.2 Findings

Firstly, the time for completing the challenges exceeded the expected amount of time. We
expected the challenges to take somewhere between 30 and 45 minutes to complete. Partici-
pants found that the challenges could take up to two hours to complete. To ensure we were
not asking too much of our participants, we amended the instructions for the main user
study. Instead of stating ‘the challenges should take approximately 30 to 35 minutes’, we now
state ‘you are only required to spend 30 to 45 minutes participating.’ This amendment ensured
our users knew our expectations for the study, while also allowing them to spend longer on
the challenges if they wished.

Secondly, we found that some of the constraints on the database were too restrictive
for participants to enter their information in the information form on the second page of
the web interface. For example, there was a restriction on the number of characters a par-
ticipantscould have for their occupation. Initially, this field was set to 15 characters. This
caused an issue when a participant tried to enter ‘Software Engineering Student’ as this was
more than 15 characters. Another issue raised because of this was that participants could
enter more characters in the web interface than are allowed in the database. To fix the char-
acter limit, the length of the occupation field was increased to 40 characters. This provided a
suitable fix to allow the participant who raised this issue to enter their information. If more
participants had brought up similar issues, a fix which could have been implemented would
have been to add validation to the user information form on the web interface. This vali-
dation would ensure that participants could not enter more characters into any field than
are allowed in the database. This would prevent cases where a participant enters too much
information and an error occurs when trying to add the information to the database. The
web interface currently handles these errors to ensure it doesn’t break, however the inter-
face doesn’t proceed from the page with the form and does not inform the participant of the
error. As no participants since the pilot study have had any issues with this, we conclude
that increasing the character limit on the occupation field was sufficient to resolve this issue.

Finally, the pilot study resulted in a less than ideal amount of data being generated.
We were concerned that not enough edits would be generated as a part of the main user
study. Additionally, we were also concerned about participants using third-party tools such
as Eclipse or IntelliJ to complete the challenges, and pasting their results back into the web
application. This would also result in minimal data being generated. As a result of these,
we updated the web interface to add an automatic compilation feature. This feature sends
a compile request to the web server when a participant stops writing code for five seconds.
Automatic compilation is a similar feature to the continuous building feature included in
most IDEs. For example, the Eclipse IDE allows users to configure the time interval between
writing code and automatic compilation. This results in both more data being generated,
and participants being provided more feedback on the code they are writing, as they usually
would in a standard development session.

5.4 User Study

Prior to the user study, Human Ethic approval was obtained. The Victoria University of
Wellington Human Ethics Committee approved this user study under the application num-
ber 0000028477.

30

5.4.1 Method

The main user study followed a similar method to the pilot study, with a few key differences.
There was no observation of users throughout the main study. Users were sent a URL to
the web application so they could access and complete the coding challenges in their own
time. A total of 19 users participated in the study, with ten of these sourced by word of
mouth or internal mailing lists and supplied vouchers as required by the Human Ethics
Committee. The other nine participants were sourced through social media: LinkedIn and
Twitter. Participants sourced via social media were not offered vouchers, as it would have
been too difficult to contact and distribute the vouchers. Ten of the participants identified
themselves as students, with the other nine identifying as developers or engineers. 11 of the
participants had one to three years of Java experience, five had between 4 and 6, with three
having greater than seven years Java experience.

5.4.2 Results

There are a number of interesting results from the user study. This section will discuss and
explain some of these results.

Data Generated

A total of 1151 edits, 192 test requests, and 5503 pieces of instrumentation data have been
generated as a part of the main study. Table 5.1 shows the breakdown of compilations per
challenge in the study. The programmatically larger and more difficult challenges such as
Flatten, Covariance, and Permutations have the largest number of compilations. Similarly,
the smaller challenges such as Max 3 have the least number of compilations. This is to be
expected, as the more difficult a challenge, the more time a user will spend on it, which will
then result in a larger number of compilations.

Table 5.1: Number of Compilations Collected per Challenge

Challenge Number of Compilations
Count 82

Covariance 184
Exception Handling 73

Exception Handling 2 131
Flatten 169

Generics 57
Generics 2 107

Max 3 33
Permutations 123

Reverse 48
Search 73

Sort 71

Overall Stages

Figure 5.2 shows a representation of the proportion of edits which reach each stage of compi-
lation. Code edits are shown on the y-axis, with compilation stages being represented along
the x-axis. The stages shown are in the compiler pipeline order described in Section 2.2.
Additionally, the attribution stage has been split into Attribution (Name Resolution) and Attri-
bution (Type Checking).

31

Figure 5.2: Stages reached by compilation across all participants.

Figure 5.3: Illustrating number of edits failing at each stage.

32

The main band of edits across the top of Figure 5.2 show successful compilations, with
all other bands showing failed compilations and the respective stage at which they failed.
While a slight majority of compilations are shown to fail (63.2%), there is a significant num-
ber of compilations which succeed. We can see that, of the compilations which fail, the
majority are in the parsing (46%) and type checking (43%) stages. Overall, the number of
failures decreases, with more errors occurring in the earlier stages of the compiler. This is
further illustrated in Figure 5.3. Most of the compilation errors occurred in parsing and type
checking, with only a few in name resolution and liveness. No compilation errors arose during
definite assignment, exception flow or capture.

Parsing errors tend to be users missing semicolons at the end of lines in their code, ac-
cidentally using the wrong syntax, or typos. Typos also contribute to failures in name res-
olution, as a user may incorrectly type a variable or method name, resulting in a failed
compilation. Overall, it appears that the majority of errors come from users compiling code
with typos, missing syntax or incorrect types. An interesting observation here is that name
resolution doesn’t trigger often. One might expect failures to reduce as a compilation passes
further through the pipeline. However, this data shows that for name resolution, this is not
the case.

Stages in Specific Challenges

There are some interesting observations about compilation errors in different challenges.
Most of the challenges follow a similar distribution as the overall errors shown in Figure 5.3.
Figure 5.4 shows the results for the permutations challenge to illustrate one example. The
most errors by far occurred in the parsing stage of compilation, followed by type checking.
This shows a very similar distribution to the overall population, which is to be expected.

Perhaps a more interesting observation is the distribution of errors for the generics chal-
lenges. Figures 5.5 and 5.6 show the distributions for the generics and generics 2 challenges.
In these challenges, the user is asked to use the Java language’s complex generic type sys-
tem. This system allows users to specify objects and methods which have a generic type.
This generic type can later be specified as any other subtype of the declared upper bound,
which is java.lang.Object by default. In these challenges, the stage which has the most
errors is type checking as opposed to parsing for the overall population. This result is likely
due to the nature of these two challenges testing one of the most complex aspects of the Java
language. A possible scenario is that users may not be extremely familiar with the generic
type system in Java. Another possibility is that the code to pass these challenges is not ex-
tremely complex for the parsing stage, but the type system is. However, the large number of
parsing errors could also occur as a result of the syntax for declaring generic classes. List-
ing 5.2 shows an incorrect placement of a generic declaration which a user attempted to
compile during the user study. This error would not be classified as a type checking error
even though the error arises because of misuse of the type system. The error would, in fact,
be classified as a parsing error. A higher number of parsing errors could be reported when
errors are occurring because of this kind of type system misuse.

class <T> Box { ... }

Listing 5.2: Incorrect Generic Class Declaration

33

Figure 5.4: Stages failed for the permutations challenge.

Figure 5.5: Stages failed for the generics challenge.

34

Figure 5.6: Stages failed for the generics 2 challenge.

Figure 5.7: Result of compilation by size of code edit.

35

Size of Code Edits

Another metric we explored was to see how failures in compilations relate to the size of an
edit to a user’s code. Figure 5.7 shows the compilation results by the size of the difference
between two edits. To compute this analysis, we generated the size of an edit through a code
diff. The Python 3 difflib library and SequenceMatcher object were used for this. Code
differences in SequenceMatcher are generated following the formula: 1.0− 2.0×M

T where T
is the total number of characters in the code from two edits, and M is the number of matches
between edits. The result is a number between 0.0 and 1.0, where 0.0 is no changes to the
code and 1.0 is when the code is entirely changed. We see that the edits are grouped towards
0.0, with a tail towards 1.0. This shows that the majority of edits tend to have fewer changes.
We note there is a more consistent spread across the size of edits for parsing, type checking,
and successful compilations than liveness and name resolution. This data could potentially show
some correlation between edit size and these compilation stages, however the current data
set is likely too small to draw any conclusions here.

5.4.3 Threats to Validity

There are a number of threats to the validity of this study. A few of these are discussed
below:

Challenges

As previously discussed, the challenges created for this project are limited and are likely
not to fully replicate a standard development session. While the challenges were used as a
feasible way to produce this data in the timeframe for the project, completing a user study
in a development workplace or with larger projects could produce different results.

Automatic Compilation

The automatic compilation feature added to the web application could affect the validity of
the instrumentation produced from the compiler. If a user stops to think while they have
not completed a line of code and automatic compilation occurs, this could lead to a higher
number of parsing errors. We note, however, that several modern IDEs such as Eclipse and
IntelliJ also offer this feature.

Web Application Simplicity

We acknowledge the simplicity of the web application developed for this study. There are a
number of features such as debuggers and code automatic completion which are not present
in the web application. These features, however, are present in most modern IDEs. Be-
cause of this simplicity, developers may behave differently when they have access to these
tools. Another threat due to the simplicity is the order of the coding challenges. Developers
may behave differently when completing challenges in a particular order. As the challenges
were presented to all participants in the same order, there could be different results for a
randomised set of challenges.

User Selection

The number of participants in this study was quite low and the majority were related to the
University. This could cause some hidden trends in the data due to the users having similar
programming backgrounds. Additionally, a study with a larger number of participants is
likely to be more representative, could result in more data being generated and different
conclusions.

36

Chapter 6

Conclusions and Future Work

6.1 Future Work

While the application and user study have been successful for this project, there are a num-
ber of areas for improvement and future work.

User Study

There are several places where the user study could be improved. For example, randomis-
ing the order of challenges the participant receives could ensure that participants complete
more of the challenges. Additionally, participants may behave differently when they com-
plete challenges in different orders. Another user study could be undertaken to generate
more data and compare with the findings of this report. Furthermore, analysis of the data
generated in this project has been constrained by time and therefore more in-depth analyses
and conclusions could be drawn about the data. In future studies, a larger number of par-
ticipants could be involved. This would result in more diversity and a more representative
sample of the developer population, allowing for better conclusions to be drawn. Addi-
tionally, more instrumentation could be added to Javac and more variety of data generated.
For example, full logs of compilation errors could be saved and analysed to discover the
main causes of errors in compilation stages. An example of this sort of analysis could be
discovering what percentage of parsing errors occur because a user misses a semicolon.

Using the Findings

As discussed in Section 1.3, the findings from this report can be used to improve the design
of incremental and distributed compilers. Experiments in using these findings for compiler
design is a logical next step. For example, as we have shown, the majority of errors in com-
pilation occur in the parsing and type checking phases of compilation. A distributed compiler
could use these findings to inform how the compiler is separated between a web interface
and web server. Parsing and type checking could all be moved into a web interface, separate
from the web server and performed on the user’s computer when they compile a program.
The web interface could then pass the generated and attributed AST to the web server for
the final checks and code generation, thus improving the performance of the compiler and
reducing the network workloads.

37

Web Application Improvements

The web interface test suite can be improved and extended to more comprehensively cover
the code. While the current test suite covers a significant amount of the code in the web
interface, there is always room for improvement. High branch coverage and further thought
into cases which could arise throughout use of the application could improve the test suite.
The error logs discussed in Section 5.2 could be improved. The issue where the server is
not expecting connections to be ended when they are could be fixed to improve the overall
logging in the application. Removing these error logs would allow logs of more critical
errors to be easily found and addressed in the case they do arise.

6.2 Conclusion

This project has focused on generating realistic compiler workloads through the use of a
web application and user study. This user study involved 19 participants from both ed-
ucational and professional backgrounds. The web application developed allows users to
complete a number of coding challenges while compiling and testing their code. A range of
coding challenges have provided a variety of scenarios which a developer may experience
in a standard workplace and cover both algorithmic challenges and language feature use.
Throughout development of the web application, a testing suite and CI pipeline ensured
that bugs have not been introduced to the codebase. Similarly, during the user study, log-
ging has been used to ensure that no critical errors have occurred in the web server. Finally, a
number of interesting results have been discovered across 1151 compilations and 5503 lines
of instrumentation generated from the compiler. Overall, the size of a code edit appears
to affect name resolution and liveness but not other stages such as parsing and type checking.
Furthermore, parsing and type checking are the most frequent stages of compilation failed
for the majority of challenges. However, for those challenges involving more complex type
systems, such as generics, type checking becomes a more prominent failure for compilation.

38

Bibliography

[1] E. C. Berkeley, “Counting holes: Punch-card calculating machines,” in Giant brains; or,
Machines that think. Wiley, NY, 1949, pp. 42–65.

[2] E. G. Nilges, “A brief history of compiler technology,” in Build Your Own .NET
Language and Compiler. Berkeley, CA: Apress, 2004, pp. 1–13. [Online]. Available:
https://doi.org/10.1007/978-1-4302-0698-9 1

[3] J. L. Tripp, M. B. Gokhale, and K. D. Peterson, “Trident: From high-level language to
hardware circuitry,” Computer, vol. 40, no. 3, pp. 28–37, 2007.

[4] International Business Machines Corp., “Eclipse platform technical overview,”
Eclipse, Tech. Rep., 2006, available at eclipse.org/articles/Whitepaper-Platform-3.1/
eclipse-platform-whitepaper.pdf.

[5] M. A. Hammer, J. Dunfield, K. Headley, M. Narasimhamurthy, and D. J. Economou,
“Fungi: Typed incremental computation with names,” CoRR, vol. abs/1808.07826,
2018.

[6] R. Mecklenburg, Managing Projects with GNU Make, 3rd Edition. O’Reilly Media, Inc.,
2004.

[7] J. Popple, “Incremental compilation and its implementation in the PECAN program-
ming environment generator,” B.A. (hons) thesis, Australian National University, Nov.
1987.

[8] M. Woerister. Incremental Compilation. rust-lang.org. (accessed May. 24, 2020).
[Online]. Available: https://blog.rust-lang.org/2016/09/08/incremental.html

[9] M. Hristova, A. Misra, M. Rutter, and R. Mercuri, “Identifying and correcting java pro-
gramming errors for introductory computer science students.” Association for Com-
puting Machinery, 2003, p. 153156.

[10] H. Seo, C. Sadowski, S. Elbaum, E. Aftandilian, and R. Bowdidge, “Programmers’ build
errors: A case study (at google),” in Proceedings of the 36th International Conference on
Software Engineering. Association for Computing Machinery, 2014, p. 724734.

[11] D. McCall and M. Kölling, “A new look at novice programmer errors,” ACM Transac-
tions on Computing Education, vol. 19, no. 4, Jul. 2019.

[12] D. McCall and M. Klling, “Meaningful categorisation of novice programmer errors,” in
2014 IEEE Frontiers in Education Conference (FIE) Proceedings, 2014, pp. 1–8.

[13] Y. Liang and L. Yansheng, “An incremental compilation algorithm for the java pro-
gramming language,” in 2012 7th International Conference on Computer Science Education
(ICCSE), 2012, pp. 1121–1124.

39

[14] T. Lindhold, F. Yellin, G. Bracha, A. Buckley, and D. Smith, The Java Virtual Machine
Specification, Oracle Corporation Std., Feb. 2020.

[15] M. A. Ertl and A. Krall, “Instruction scheduling for complex pipelines,” in Compiler
Construction, U. Kastens and P. Pfahler, Eds. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 1992, pp. 207–218.

[16] Rust Lang. ”Incremental Compilation”. rust-lang.org. (accessed Oct. 13, 2020). [On-
line]. Available: https://doc.rust-lang.org/edition-guide/rust-2018/the-compiler/
incremental-compilation-for-faster-compiles.html

[17] Oracle Corporation. ”Compilation Overview”. openjdk.java.net. (accessed May.
24, 2020). [Online]. Available: https://openjdk.java.net/groups/compiler/doc/
compilation-overview

[18] ——. ”Annotations Basics”. oracle.com. (accessed May. 31, 2020). [Online]. Available:
https://docs.oracle.com/javase/tutorial/java/annotations/basics.html

[19] “Variable scoping and definite assignment,” in A Programmer’s Introduction to C# 2.0,
E. Gunnerson and N. Wienholt, Eds. Berkeley, CA: Apress, 2005, pp. 113–117.

[20] N. Matsakis, Responsive Compilers, 2020. [Online]. Available: https://www.youtube.
com/watch?v=N6b44kMS6OM

[21] G. Maudoux and K. Mens, “Bringing incremental builds to continuous integration,” in
Proc. 10th Seminar Series Advanced Techniques & Tools for Software Evolution, 2017, pp. 1–6.

[22] M. Shal. What is tup? gittup. (accessed Sep. 18, 2020). [Online]. Available:
http://gittup.org/tup/

[23] NixOS.org. Reproducible builds and deployments. NixOS.org. (accessed Sep. 18, 2020).
[Online]. Available: https://nixos.org/

[24] T. Cooper and M. Wise, “Achieving incremental compilation through fine-grained
builds,” Software: Practice and Experience, vol. 27, no. 5, pp. 497–517, 1997.

[25] A. Celik, A. Knaust, A. Milicevic, and M. Gligoric, “Build system with lazy retrieval
for java projects,” in Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering. Association for Computing Machinery, 2016, p.
643654.

[26] P. W. Sathyanathan, W. He, and T. H. Tzen, “Incremental whole program optimization
and compilation,” in 2017 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), 2017, pp. 221–232.

[27] S. P. Reiss, “An approach to incremental compilation,” in Proceedings of the 1984 SIG-
PLAN Symposium on Compiler Construction, ser. SIGPLAN ’84. Association for Com-
puting Machinery, 1984, p. 144156.

[28] ace.c9.io. ”Ace: The High Performance Code Editor For The Web”. ace.c9.io. (accessed
Oct. 13, 2020). [Online]. Available: https://ace.c9.io/

40

Appendix A

Figures

41

Figure A.1: Web Interface Page 1

42

