
Profiling Field Initialisation in Java

Stephen Nelson, David J. Pearce, and James Noble

Victoria University of Wellington
Wellington, New Zealand

{stephen,djp,kjx}@ecs.vuw.ac.nz

Abstract. Java encourages programmers to use constructor methods to
initialise objects, supports final modifiers for documenting fields which
are never modified and employs static checking to ensure such fields
are only ever initialised inside constructors. Unkel and Lam observed
that relatively few fields are actually declared final and showed using
static analysis that many more fields have final behaviour, and even more
fields are stationary (i.e. all writes occur before all reads). We present
results from a runtime analysis of 14 real-world Java programs which
not only replicates Unkel and Lam’s results, but suggests their analysis
may have under-approximated the true figure. Our results indicate a
remarkable 72-82% of fields are stationary, that final is poorly utilised by
Java programmers, and that initialisation of immutable fields frequently
occurs after constructor return. This suggests that the final modifier for
fields does a poor job of supporting common programming practices.

1 Introduction

The notion of immutability has been well-studied in the programming language
community (e.g. [1,2,3]). Modern statically typed languages, such as Java and
C#, typically support immutable fields (e.g. final in Java) though, curiously,
explicit support for immutable classes is often missing. Bloch advises Java pro-
grammers to “Favour Immutability” as “Immutable classes are easier to design,
implement, and use than mutable classes” [4]. This leads to a natural question of
how well immutability modifiers (such as Java’s final) match common program-
ming idioms.

To examine this question, Unkel and Lam developed the term stationary
field to describe fields which are never observed to change, that is, all writes
precede all reads [5]. Their intuition was that programmers are often forced to
perform late initialisation of objects (i.e initialisation after the constructor has
returned), meaning some fields cannot be declared final. A common idiom where
this happens is with the initialisation of cyclic data structures [6].

Unkel and Lam performed a static analysis over a corpus of 26 Java applica-
tions, and found that 40-60% of Java fields were stationary. Their analysis was
necessarily conservative and, hence, under-reported the number of stationary
fields. In this paper, we report on an experiment to identify stationary fields



using runtime profiling. Our results from 14 Java applications indicates that 72-
82% of fields are stationary — thereby supporting the conclusion of Unkel and
Lam, but suggesting that it is an underestimate.

2 Background

Java provides a special modifier for immutable fields: final. Java itself ensures
that fields annotated with final are only modified once and only within construc-
tors. Java encourages programmers to use constructors for initialising fields and
establishing invariants. Constructors are distinct from regular methods in one
significant way: they can initialise final fields. Unfortunately, programmers are
sometimes forced (or voluntarily choose) to initialise fields late (i.e. after the
constructor has completed). This prevents such fields from being marked final

even when they are designed to be immutable. The following illustrates a common
patten which exemplifies this scenario:

abstract class Parent {
private final Child child;
public Parent(Child c) { this.child = c; }
}

abstract class Child {
private Parent parent; // cannot be marked as final
public void setParent(Parent p) { this.parent = p; }
}

The programmer intends that every Parent has a Child and vice-versa and,
furthermore, that these do not change for the life of the program. He/she has
marked the field Parent.child as final in an effort to enforce this. However, he/she
is unable to mark the field Child.parent as final because one object must be con-
structed before the other. We have marked Parent and Child abstract to indicate
the intention that different subclasses will be used.

In the above example, the method Child.setParent(Parent) is used as a late ini-
tialiser. This is a method which runs after the constructor has completed and be-
fore which the object is not considered properly initialised. Once the Child.parent

field is late initialised by this method, the programmer does not intend that
it will change again. Such a field — where all reads occur after all writes —
is referred to as stationary [5]. Another common situation where this arises is
for classes with many configurable parameters. In such case, the programmer is
faced with providing a single large constructor and/or enumerating many con-
structors with different combinations of parameters. Typically, late initialisation
offers a simpler and more elegant solution.

3 Implementation

We have developed a profiler called rprof to track (amongst other things) all
reads and writes to object fields in an executing program. The key advantages of



rprof are that it runs on a commodity JVM (e.g. Oracle’s HotSpot JVM), catches
reads/writes to almost all objects (including those in the standard library), pro-
files large real-world applications with manageable overhead and processes event
traces (containing potentially billions of events) using a parallel, distributed
map/reduce computation. There are four main components:

– Agent: a JVMTI [7] C++ agent loaded by the JVM running the target
application.

– Profiler: a Java application running in a separate JVM that performs byte-
code rewriting, and provides other utility functions for the agent.

– Workers: Java applications that aggregate the event stream and handle stor-
ing the results.

– mongodb: a commercial nosql database server that the profiler and worker
applications use to store persistent data.

The profiler and workers perform tasks in parallel using multiple threads on
multiple computers, minimising overheads on the profiled application. To enable
profiling, rprof performs bytecode rewriting on the target application. When the
JVM loads a class, it is intercepted by the agent which inserts instrumentation
using the ASM bytecode modification library [8]. To increase the range of objects
which can be profiled, bytecode rewriting is performed by the profiler in a sepa-
rate JVM from the target application. The agent passes classes to be rewritten
to the profiler (potentially across the network) running in another JVM which
rewrites them, and passes them back. Without this, classes needed by the ASM
library could not be profiled as they would have to be loaded before rewriting.

Due to lack of space, unfortunately we cannot discuss every aspect of the
rprof profiler. A more complete discussion of the operation of rprof can be found
in [9]. We will now give a high-level overview of the main issues.

3.1 Object Tracking

The first challenge faced in rprof is the unique identification of objects in the
target application. Three options exist for uniquely identifying objects within
the JVM:

– Using Object References. This approach is commonly used with weak ref-
erences to ensure garbage collection proceeds as normal (see e.g. [10,11]).
Since we store profiling data in the mongodb database, we require a con-
crete ID rather than a reference. Unfortunately, Java itself provides no easy
mechanism for converting references into IDs1.

1 Some works (e.g. [12,13]) employ System.identityHashCode(Object) to generate object
IDs. The value returned from this method is derived from the object’s physical ad-
dress, and then stored for subsequent calls. Consequently, it is unsuitable for uniquely
identifying objects because, in standard VMs (using generational garbage collectors)
objects initially reside within the nursery. This is a relatively small region of memory
and we found many live objects which shared the same identityHashCode().



– Using Physical Memory Addresses. Since object references correspond to
physical memory addresses in the JVM, a logical option is to use them as
unique IDs. Through the JVMTI it is possible to convert an object reference
into a physical address. Whilst this may seem straightforward, it is fraught
with difficulty since an object can change its physical location during garbage
collection. In other words, we would need to intercept garbage collection
events to determine which objects were moved and now have a new physical
address (hence, ID).

– Storing unique ID’s with every object. The JVMTI provides a mechanism
whereby agents can associate a 64bit (long) tag with any object. The JVM
maintains this tag and handles all issues related to garbage collection, etc.

In our context, the only viable solution is to associate unique IDs with objects
via the JVMTI — which is the approach taken in rprof.

Tracking System Objects. Before the JVM loads native agents, it performs
some basic bootstrapping including loading classes such as java.lang.Object and
java.lang.String. Agents have a chance to modify previously loaded classes, but
JVMTI facilities such as object tagging remain unavailable until the JVM reaches
the end of its bootstrapping phase. Once the JVM has completed bootstrapping,
the agent uses JVMTI to iterate over all the Java objects, and adds unique ID
tags to them.

3.2 Tracking Methods and Constructors

rprof is capable of generating events for all method and constructor calls and
returns (inc. exceptional returns), although this analysis only requires method
return tracking for constructors. Since the JVMTI does not provide any facility
for tracking method calls, rprof uses bytecode modification to instrument classes
as the JVM loads them. Consider the following Java method:

public boolean isHello(String message) { return message.equals(”Hello!”); }

This takes a string as input and returns true if the message is ”Hello!”. rprof
can generate three different events for this method: a ‘Method Enter’ event,
a ‘Method Return’ event, and/or an ‘Exceptional Return’ to catch any thrown
exceptions (e.g. because message is null). Figure 1 shows how rprof instruments
this method by inserting bytecodes to generate these three events. For example,
the inserted code at the beginning pushes class and method identifiers onto
the stack, constructs an array containing the arguments to the method, then
invokes a static rprof method for tracking method entry events. rprof handles
method returns similarly to method calls. rprof generates exceptional returns by
wrapping the method body in a try block, and inserting a finally handler at the
end of the method which signals to rprof an exceptional return. rprof inserts the
try block last so that any other catch or finally blocks run first. If a block consumes
the exception and returns normally then rprof’s exceptional return handler will
not run.



public boolean isHello(java.lang.String);
flags: ACC PUBLIC
Code:

stack=6, locals=2, args size=2

0: sipush classid
3: sipush methodid
6: iconst 2
7: anewarray java.lang.Object

10: dup
11: iconst 0
12: aload 0
13: aastore
14: dup
15: iconst 1
16: aload 1
17: aastore
18: invokestatic enter(..)

Enter

21: aload 1
22: ldc ”Hello!”
24: invokevirtual String.equals(..)

27: sipush classid
29: sipush methodid
32: aload 0
33: invokestatic exit(..)

Return

36: ireturn

37: astore 1
38: sipush classid
40: sipush methodid
42: aload 1
43: invokestatic exception(..)
46: aload 1
47: athrow

Exception

Exception table:
from to target type
0 37 37 Class java/lang/Exception

Fig. 1: The byte code resulting from modifying an example method to track method
entry, exit, and exceptional return.



3.3 Tracking Fields

rprof supports tracking both field writes and field reads. This is simpler than for
methods, since the JVMTI provides a callback mechanism to notify agents of
these events. The callback provides a reference to the object that owns the field,
the value of the read or write, and the JVM-internal field ID. Unfortunately,
JVM field IDs are unique to a given class, but are not guaranteed unique across
all classes. rprof requires program-wide unique field IDs for persistence and,
hence, maintains a map between JVM-internal field IDs and rprof’s persistent
field IDs. Finally, rprof tracks all objects created within the JVM, but it is not
able to track all fields. rprof does not track fields of the following classes:

– java.nio.charset.CharsetDecoder, java.nio.charset.CharsetEncoder, java.util.zip.ZipFile.
These three classes use some form of JVM optimisation which causes seg-
faults if rprof tracks them.

– java.lang.Throwable. The JVM generates an additional field at runtime which
causes off-by-one errors in our tracking code.

– java.lang.String. Excluded because it is so common: Strings are actually im-
mutable but they use internal fields to track access behaviour and generated
properties, resulting in a disproportionate number of events which are not
interesting for this experiment.

3.4 Data Aggregation and Analysis

rprof event streams contain billions of events which would take days or even
weeks to store on disk. Reducing this event stream to a more compact form
suitable for analysis or visualisation is a computational challenge. To address
this, rprof processes the event stream as it is generated using a map-reduce style
computation. rprof parallelises this computation across a cluster of machines,
dramatically reducing the time and space taken to store the results.

The worker processes operate on the event stream as it is being generated,
reducing it to a form amenable for analysis or visualisation. This reduction is
specific to the experiment being performed, and discards information not di-
rectly relevant. For example, in the experiments discussed in this paper, it is not
necessary to count how many field accesses there were — we only need to note
when the first and last field reads and writes occurred.

As the profiled application runs the agent generates event records. These are
mapped and reduced to instance records which, in turn, are then mapped and
reduced to result records. Figure 2 presents the information contained in these
records (roughly speaking) for the experiment presented in this paper. On the
left of the figure, we see the event records emitted by the agent. One of these
is emitted for every event being monitored in the profiled application which
includes constructor method exit and field read/write. These events are then
mapped and reduced to a set of complete instance records (shown in the middle),
which capture information about a given object relevant to this experiment. The
complete instance records are then mapped and reduced again to form the final
result records (shown on the right).



Event

EventId id
EventType event
ClassId class
MethodId method
FieldId field
InstanceId inst

Instance

InstanceId id
ClassId class
EventID conRet
[FieldInst] fields

FieldInst

FieldId id
EventId firstRead
EventId firstWrite
EventId lastWrite

Result

FieldId id
boolean isStationary
boolean isFinal

Fig. 2: Illustrating the event records emitted by the agent (left), which are mapped and
reduced to instance records (middle) and then again into the final result records (right).

// Map event into instance record
void map(Event e) {

InstanceId id = e.inst;
Instance inst = new Instance();
switch(e.type) {

case FIELD READ:
FieldInst fi = new FieldInst(e.field);
fi.firstRead = fi.lastRead = e.id;
inst.fields.add(fi);
break;

case FIELD WRITE:
FieldInst fi = new FieldInst(e.field);
fi.firstWrite = fi.lastWrite = e.id;
inst.fields.add(fi);
break;

case METHOD RETURN:
case METHOD EXCEPTION:

if(isConstructor(e.clazz,e.method)) {
inst.conRet = e.id;
break;

}
default:

return; // don’t emit anything
}
emit(id, inst);
}

// Reduce two instances with same ID
Instance reduce(Instance l, Instance r) {

// Update constructor return ID
l.conRet = max(l.conRet,r.conRet);

// Merge field instance records
for(int i=0;i<l.fields.size();++i) {

FieldInst fi = l.fields.get(i);
for(int j=i+1;j<l.fields.size();++j) {

FieldInst fj = l.fields.get(j);
if(fi.id == fj.id) {

fi.firstRead = min(fi.firstRead,fj.firstRead);
fi.firstWrite = min(fi.firstWrite,fj.firstWrite);
fi.lastWrite = max(fi.lastWrite,fj.lastWrite);
l.fields.remove(j);
j = j − 1;
}
}
}

return l;
}

Fig. 3: Illustrating how Event records are mapped to (incomplete) Instance records,
which are then reduced to form complete records. Not every Event maps to an Instance
record; for example, most method entry events are ignored, with only method re-
turn and exceptional return events on constructors emitting Instances. The methods
min(EventID,EventID) and max(EventID,EventID) operated as expected — by return the
earlier (resp. later) of the two parameters and handling null values correctly. Finally,
please note that, in practice, these methods are further optimised for performance.



Consider the process of converting Event records into Instance records. Initially,
each Event record is either ignored (if not relevant) or mapped to an (incomplete)
Instance record. These Instance records are then reduced to form complete instance
records. Here, Instance.conRet gives the EventID for the object’s constructor return,
whilst Instance.fields contains records for its fields. For each field, firstWrite and
lastWrite give the EventIDs for the first and last write and, similarly, for firstRead.
Figure 3 illustrates the map and reduce procedures.

Consider now the process for converting complete Instance records into com-
plete Result records. This is similar to before. Given a complete instance record
we can determine which of its fields were stationary (i.e. all writes before all
reads) and/or final (i.e. one write which occurred before constructor return). We
then reduce all Result records for a given class to determine which fields were
stationary and final across all instances. The reduce procedure is thus:

// Reduce result records with same field ID
Result reduce(Result left, Result right) {

left.isStationary &= right.isStationary;
left.isFinal &= right.isFinal;
return left;
}

Here, we see how two Result records with the same FieldID are reduced. All Result

records for a given field are reduced to a single Result record capturing its sta-
tionary and final status across all instances.

4 Experimental Results

We now present our experimental results looking at final and stationary fields.
We begin with a more detailed definition of these terms.

Final (F). A Final field is an object instance field which is modified once, before
the object’s constructor method returns. A field is not final if, for any object
which reads the field, the field is written to after the object’s constructor returns
or the field is written to more than once. Final fields may be Declared Final (dF)
or Undeclared Final (uF). A declared final field is any field whose declaration
in Java code is annotated with the final modifier. A field which is not annotated
with this modifier but nevertheless conforms to this definition is undeclared final.

Stationary (S). A Stationary field is an object instance field which is not mod-
ified after it has been read. A field is not stationary if there exists an object
which modifies that field after it has been read. The set of stationary fields has
no relationship with that of declared or undeclared final fields. A field which
has been declared final may have its state read before it is initialised (while it
is in its default state). This is valid behaviour for declared final fields but not
stationary fields. Likewise, stationary fields may be initialised after constructor
return, which is not valid behaviour for final fields.



Name Description Classes Methods

avrora Simulates a number of programs run on a grid of AVR
microcontrollers.

999 10685

batik Produces a number of Scalable Vector Graphics (SVG)
images based on the unit tests in Apache Batik.

1814 21710

eclipse Executes some of the (non-gui) jdt performance tests for
the Eclipse IDE.

2653 37949

fop Takes an XSL-FO file, parses it and formats it, generat-
ing a PDF file.

1703 20133

h2 Executes a JDBCbench-like in-memory benchmark, ex-
ecuting a number of transactions against a model of a
banking application.

934 14622

jython Inteprets the pybench Python benchmark. 2953 34167

luindex Uses lucene to indexes a set of documents; the works of
Shakespeare and the King James Bible.

788 10887

lusearch Uses lucene to do a text search of keywords over a corpus
of data comprising the works of Shakespeare and the
King James Bible.

701 9640

pmd Analyzes a set of Java classes for a range of source code
problems.

1328 18281

sunflow Renders a set of images using ray tracing. 907 12854

tomcat Runs a set of queries against a Tomcat server retrieving
and verifying the resulting webpages.

2373 32369

tradebeans Runs the daytrader benchmark via a Jave Beans to a
GERONIMO backend with an in memory h2 as the un-
derlying database.

8155 96250

tradesoap Runs the daytrader benchmark via a SOAP to a
GERONIMO backend with in memory h2 as the under-
lying database.

8246 97026

xalan Transforms XML documents into HTML. 1125 14260

Table 1: List of programs in the Dacapo benchmarks suite (dacapo−9.12−bach) in-
cluding a brief summary (from [14]). Also included are statistics on each benchmark
obtained using rprof giving the number of classes loaded during the experiment run
(including interfaces) and the number of methods they contained (including static).

4.1 Benchmarks

Unkel and Lam analysed a selection of Java programs and also the SpecJVM98
benchmark suite. Unlike their static analysis, our dynamic analysis needs to
execute each program with a set of inputs that will exercise the program’s func-
tionality in a reproducible manner. We decided to analyse the dacapo bench-
mark suite, a compilation of non-trivial real world Java applications designed
for benchmarking that includes non-trivial inputs for each application [14]. The
dacapo suite consists of the 14 applications listed in Table 1. Each benchmark
was executed using the default input size for a single iteration. We used the
following command to execute benchmarks:

java [rprof−opts] −Xint −Xmx1024m −jar dacapo−9.12−bach.jar −n 1 −t 1 [benchmark]



4.2 Experimental Setup

The benchmarks were profiled executing on an Opteron 254 (2.8GHz) dual-CPU
machine with 4GB of memory running Ubuntu 10.04.3 LTS (64 bit server) using
OpenJDK 1.8.0-ea-b372. We used the preview Java 8 build because our analysis
is not stable on previous JDK versions. OpenJDK 1.8.0-ea-b37 includes a bug
fix for a problem with JVMTI which we identified and reported3.

4.3 Results

The results in this section are directly comparable to the Unkel and Lam’s work
on stationary fields so we use a consistent format to present our results [5].
Figure 4 presents the results of our analysis for all fields. The first column shows
the name of the benchmark, the second shows the total number of unique fields
contributed by each benchmark (i.e. which were read or written at least once
during the run), all other columns show the percentage of the total number
of fields in that category (rounded to whole numbers). Results are separated
broadly into stationary and non-stationary fields, then into declared final (dF),
undeclared final (uF) and not final (¬F). The final three columns show summary
information: the total number of declared final (dF) fields, final fields (F = dF
∪ uF), and stationary fields (S).

Figure 4 shows that between 70% and 86% of the fields declared in dacapo
benchmarks are stationary (S) and between 50% and 68% are final (F). The
number of final fields which are declared final (dF) varies between benchmarks
but, in most cases, is less than half the number of fields whose behaviour was
observed to be final.

Finally, Figures 5 and 6 show the results across fields of reference type and
fields of primitive type. The format is largely the same as before, comparing final
field behaviour between stationary and non-stationary fields in each case.

4.4 Discussion

Comparing our results to Unkel and Lam’s [5], we can make the following main
observations:

1. Declared v Undeclared Final. Consistent with the findings of Unkel and
Lam, we find many undeclared final fields. This suggests that programmers
are not making good use of the final modifier. The most obvious reason it that
some programmers may simply be “lazy” and choose not to use it even when
they could. However, other possibilities exist. For example, such undeclared
final fields may be protected, where the programmer anticipated subclasses
that would mutate them but which never eventuated in the given application.

2 The batik benchmark which relies on a proprietary jpeg class which is not included in
the pre-release JDK 8 build. For this benchmark we used Oracle JDK 1.7.0 03-b04.

3 http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=7162645

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=7162645


Program Total
S (%) ¬S (%) % % %

dF uF ¬F dF uF ¬F dF F S

avrora 1,702 36 31 16 0 0 17 36 67 82
batik 3,272 8 52 17 0 0 23 8 60 77
eclipse 6,779 10 37 25 0 0 28 10 46 72
fop 3,390 9 43 28 0 0 19 9 53 81
h2 2,014 17 39 22 0 0 22 17 56 78
jython 2,501 14 46 19 0 0 22 14 60 78
luindex 1,674 18 38 16 0 0 26 18 57 73
lusearch 1,303 14 43 21 0 0 21 14 58 78
pmd 1,962 14 41 24 0 0 20 14 55 79
sunflow 1,831 14 43 20 0 0 23 14 57 77
tradebeans 15,404 25 35 21 0 0 19 25 60 81
tradesoap 15,611 25 35 21 0 0 19 25 60 81
tomcat 6,279 9 40 25 0 0 26 9 50 74
xalan 2,063 11 41 27 0 0 21 11 52 78

Total 65,785 18 38 22 0 0 21 18 57 78

0%

20%

40%

60%

80%

100%

avrora batik
eclipse fop h2

jython
luindex

lusearch
pmd

sunflow

tradebeans

tradesoap
tomcat

xalan

S ∩ dF S ∩ uF S ∩ ¬F

Fig. 4: Stationary vs Final for All Fields

2. Stationary v Final. Our results show a significantly higher proportion of
stationary fields than reported by Unkel and Lam. Furthermore, we detect
far fewer fields which are final but not stationary4 — indeed, fewer than
0.5% in Figure 4. These results suggests that the final modifier is doing a
poor job of supporting common programming practices.

3. Reference v Primitives. Our results show that reference fields are more
likely than primitive fields to be declared final, undeclared final, and/or
stationary. This is consistent with Unkel and Lam, though the differences

4 Such behaviour is possible in Java if a field read occurs indirectly via dynamic
dispatch from a super-constructor [6].



Program Total
S (%) ¬S (%) % % %

dF uF ¬F dF uF ¬F dF F S

avrora 880 47 31 12 0 0 9 47 78 90
batik 1,593 9 54 17 0 1 19 9 64 81
eclipse 3,324 15 43 20 0 0 22 15 58 78
fop 1,760 12 45 28 0 0 14 12 58 86
h2 990 21 41 20 0 0 18 21 62 82
jython 1,354 16 49 18 0 0 16 16 66 83
luindex 812 28 42 16 0 0 14 28 70 85
lusearch 598 20 48 18 0 1 14 20 69 86
pmd 1,048 18 45 22 0 1 15 18 63 85
sunflow 831 18 47 20 0 0 15 18 66 85
tradebeans 9,451 33 34 19 0 0 14 33 67 86
tradesoap 9,619 33 34 19 0 0 14 33 67 86
tomcat 3,393 12 43 26 0 0 18 12 55 82
xalan 1,095 14 46 24 0 1 16 14 60 83

Total 36,748 25 39 20 0 0 16 25 64 84

0%

20%

40%

60%

80%

100%

avrora batik
eclipse fop h2

jython
luindex

lusearch
pmd

sunflow

tradebeans

tradesoap
tomcat

xalan

S ∩ dF S ∩ uF S ∩ ¬F

Fig. 5: Stationary versus Final for fields with reference type.

between groups is more modest in our results. This suggests a distinct dif-
ference in the way programmers treat reference and primitive fields.

4.5 Threats to Validity

Any experiment of this nature has limitations with respect to the scope of the
experiment itself. We now identify the main limitations:

– Benchmark Inputs. As discussed in Section 4.1, each of our benchmarks
was profiled using the workflow provided by Dacapo. This ensures that our
results are reproducible, but effectively constitutes running the benchmark
using a single set of inputs. Clearly, we cannot generalise program behaviour
from one set of inputs to all possible inputs, and it is possible that the Dacapo
inputs are not representative of the benchmark program’s general behaviour.
In particular, fields identified as undeclared final or stationary may receive



Program Total
S (%) ¬S (%) % % %

dF uF ¬F dF uF ¬F dF F S

avrora 822 23 30 20 0 0 26 23 54 74
batik 1,679 6 50 17 0 0 26 6 56 74
eclipse 3,455 5 30 31 0 0 34 5 35 66
fop 1,630 6 42 28 0 0 25 6 47 75
h2 1,024 12 38 23 0 0 26 12 50 73
jython 1,147 11 41 19 0 0 28 11 53 72
luindex 862 10 35 17 0 0 38 10 45 62
lusearch 705 10 38 24 0 0 28 10 48 72
pmd 914 9 36 27 0 0 27 9 46 73
sunflow 1000 11 40 20 0 0 29 11 50 70
tradebeans 5,953 12 36 25 0 0 26 12 49 73
tradesoap 5,992 12 36 25 0 0 27 12 48 73
tomcat 2,886 6 37 22 0 0 34 6 43 65
xalan 968 8 36 30 0 0 27 8 43 73

Total 29,037 10 37 25 0 0 29 10 47 71

0%

20%

40%

60%

80%

100%

avrora batik
eclipse fop h2

jython
luindex

lusearch
pmd

sunflow

tradebeans

tradesoap
tomcat

xalan

S ∩ dF S ∩ uF S ∩ ¬F

Fig. 6: Stationary versus Final for fields with primitive type.

different classifications for different inputs. This contrasts with the work of
Unkel and Lam, whose static analysis was a conservative approximation of
all possible program behaviours.

– Benchmark Scope. The Dacapo benchmark suit is well-known and widely
used for experiments such as this. However, it remains unclear how represen-
tative Dacapo is of the general population consisting of all programs. Indeed,
there is work which suggests Dacapo programs do have observably different
behaviour from other benchmark suites [15].

Despite these limitations, we believe our work compliments that of Unkel and
Lam. Being a conservative static analysis, their results necessarily under approx-
imate the true number of stationary fields. In contrast, being a runtime analysis



our results necessarily over approximate the true number of stationary fields.
This provides insight into how conservative the results of Unkel and Lam were.

5 Related Work

Various OO languages have support for immutability via, for example, final
or const fields. CLU [16] also supports immutable versions of primitive data
structures — although clusters (classes) are always mutable. A similar design
has been adopted in Scala, where the library provides mutable and immutable
versions of most collections [17].

As discussed already, Unkel and Lam also examined stationary fields [5]. Un-
like us, they employed a static analysis which is necessarily conservative. For a
corpus of 26 Java applications, they found that 40-60% of Java fields were station-
ary which is a similar, but consistently lower, figure than we have found. Given
that their result is an under-approximation and ours an over-approximation, it
seems reasonable to conclude that the true figure lies somewhere inbetween. Ear-
lier, Porat et al. [18] conducted a similar analysis looking for “deeply immutable”
fields (where neither the field itself nor any object reachable from that field is
modified after the object’s constructor completes) and found that around 60% of
static fields were immutable. These results compare with our (dynamic) profile
finding that a large fraction of Java objects are immutable after full construc-
tion. Previously, we examined object behaviours and found significant differences
depending on whether or not they entered a Java collection [19]. This is particu-
larly relevant for collections such as e.g. HashSet and HashMap which restrict how
contained objects may be modified.

Pechtchanski and Sarkar present an interesting study of field immutabil-
ity [20]. Their work includes a framework for specifying and verifying both shal-
low and deep field immutability, as well as a runtime study that found that
at least 61% of field accesses were immutable, a similar property to stationary
fields. Their analysis computed exhaustive lists of field and array read and write
operations using a modified Jikes JVM, but their analysis was limited to much
smaller programs than the Dacapo suite. Nevertheless, they find similar results
to ours and additionally use those results for performance optimisations, yielding
5-10% speedups for some benchmarks.

Several works have looked at permitting type-safe late initialisation of ob-
jects in a programming language. Summers and Müller presented a lightweight
system for type checking delayed object initialiation which is sufficiently expres-
sive to handle cyclic initialisation [6]. Fähndrich and Xia’s Delayed Types [2]
use dynamically nested regions in an ownership-style type system to represent
this post-construction initialisation phase, and ensure that programs do not ac-
cess uninitialised fields. Haack and Poll [1] have shown how these techniques can
be applied specifically to immutability, and Leino et al. [3] show how owner-
ship transfer (rather than nesting) can achieve a similar result. Qi and Myers’
Masked Types [21] use type-states to address this problem by incorporating a
list of uninitialised fields (“masked fields”) into object types. Gil and Shragai [22]



address the related problem of ensuring correct initialisation between subclass
and superclass constructors within individual objects. Based on our results, we
would expect such type systems to be of benefit to real programs.

6 Conclusion

We have reported the results from an experiment examining final and stationary
fields across 14 real-world benchmarks. Our work compliments the earlier work
of Unkel and Lam which employed static analysis, and supports their general
conclusions. However, our findings indicate a larger proportion of stationary
fields which, in part at least, stems from the differences between our approaches.

Like Unkel and Lam, we conclude that final fields annotations are used far
less often than they could be, while a stationary annotation could be used even
more. The extremely high number of stationary fields that we found (around
80%) suggests that language authors should make fields stationary by default,
while VM authors should optimise for immutability. These results also support
the use of type systems for immutability, e.g. Masked Types [21] could be used
to track fields requiring additional initialisation.

Finally, there are many additional studies that are motivated from these
results. For example, it would be interesting to examine whether protection
modifiers (e.g. public, protected, private) had any bearing on the likelihood of a
field being declared or undeclared final. It would also be interesting to extend
our analysis to detect deep stationary behaviour, similar to the smaller analysis
of Pechtchanski and Sarkar [20].

References

1. Haack, C., Poll, E.: Type-based object immutability with flexible initialization.
Technical Report ICIS-R09001, Radboud University Nijmegen (January 2009)

2. Fähndrich, M., Xia, S.: Establishing object invariants with delayed types. In:
OOPSLA. (2007) 337–350

3. Leino, K.R.M., Müller, P., Wallenburg, A.: Flexible immutability with frozen ob-
jects. In: VSTTE. (2008) 192–208

4. Bloch, J.: Effective Java. Prentice Hall PTR (2008)
5. Unkel, C., Lam, M.S.: Automatic inference of stationary fields: a generalization of

Java’s final fields. In: POPL. (2008) 183–195
6. Summers, A.J., Müller, P.: Freedom before commitment: a lightweight type system

for object initialisation. In: OOPSLA, ACM (2011) 1013–1032
7. : Jdk 6 java virtual machine tool interface (JVMTI) (2008)
8. Bruneton, E.: Asm 3.0 a java bytecode engineering library. URL: http://download.

forge. objectweb. org/asm/asmguide. pdf (2007)
9. Nelson, S.: Measuring Equality and Immutability in Object-Oriented Programs.

PhD thesis, School of Engineering and Computer Science, Victoria University of
Wellington, NZ (2012, Submitted)

10. Agesen, O., Garthwaite, A.: Efficient object sampling via weak references. In:
Proc. ISMM. (2000) 121–126



11. Pearce, D.J., Webster, M., Berry, R., Kelly, P.H.J.: Profiling with AspectJ. Soft-
ware: Pracice and Experience 37(7) (2007) 747–777

12. Goldberg, A., Havelund, K.: Instrumentation of java bytecode for runtime analysis.
In: FTfJP. (2003)

13. Xu, G.H., Rountev, A.: Precise memory leak detection for java software using
container profiling. In: ICSE, ACM (2008) 151–160

14. Blackburn, S.M., Garner, R., Hoffmann, C., Khang, A.M., McKinley, K.S.,
Bentzur, R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M.,
Hosking, A., Jump, M., Lee, H., Moss, J.E.B., Phansalkar, A., Stefanović, D.,
VanDrunen, T., von Dincklage, D., Wiedermann, B.: The dacapo benchmarks:
java benchmarking development and analysis. (2006) 169–190

15. Mitchell, N.: The runtime structure of object ownership. In: Proc. ECOOP. Volume
4067 of Lecture Notes in Computer Science., Springer (2006) 74–98

16. Liskov, B., Guttag, J.V.: Abstraction and Specification in Program Development.
MIT Press/McGraw-Hill (1986)

17. Odersky, M.: Programming in Scala. Artima, Inc (2008)
18. Porat, S., Biberstein, M., Koved, L., Mendelson, B.: Automatic detection of im-

mutable fields in Java. In: Proc. CASCON. (1990)
19. Nelson, S., Pearce, D.J., Noble, J.: Understanding the impact of collection contracts

on design. In: TOOLS Europe. (2010)
20. Pechtchanski, I., Sarkar, V.: Immutability specification and its applications. Con-

currency and Computation: Practice and Experience (2005) 639–662
21. Qi, X., Myers, A.C.: Masked types for sound object initialization. In: POPL.

(2009) 53–65
22. Gil, J., Shragai, T.: Are we ready for a safer construction environment? In:

ECOOP. (2009)


	Profiling Field Initialisation in Java

