Extended Abstract: Towards a Semiotics of Object- and
Aspect-Oriented Design

James Noblg Robert Biddlé, Ewan Temperd and David Pearce

1 Computer Science
Victoria University of Wellington
New Zealand
2 Human-Oriented Technology Lab
Carleton University
Ottawa, Canada
3 Software Engineering
The University of Auckland

New Zealand

Abstract. Object-oriented design is based on the argument that slijeetpro-
gram act as a simulation of objects in the real world. Thisepagill provide
a semiotic account of object-oriented design patternstitrg an object as a
sign comprised of some part of the real world, its realisafio the program,
and the programmers intent about the program design (thaitiject model the
world). The paper will then go on to discuss the developirggigiine of aspect-
orientation affects the representational discourses jgfctlorientation. Consid-
ering the semiotics of object-oriented design can addiessetquetsions, both
helping programmers design their programs, understandvélyetheir designs
“work”, and informing the general philosophy of computeiesce.

1 Introduction

An object-oriented design is @éscription of communicating objet{d3, p.3]. In this
paper, we will provide a semiotic account of object-orieindesign. Semiotics is the
study of signs in society, that investigates the way meaisirogirried by communica-
tion, treating communication as an exchange of signs. Wkematics began in the
early years of the last century, most work was concerned edgtiventional signs —
first speech, and then writing [11]. Since then, the scopeofistics has widened to
cover all kinds of signs, to the point where semiotics unidsnnuch of structuralist
and post-structuralist literary theory, film studies, atdd studies, advertising, and even
the theory of popular music and studies of communicatiohséxen animals (zoosemi-
otics) and within them (biosemiotics) [21].

2 Semiotics

Semiotics, as defined by Saussure [8], is the study of sigisediety; where a&ign
is “something standing for something elsgl'l]. Since Saussure, semiotics has been

applied to a wide range of different kind of signs, and for mgeof diverse purposes
[1,7,10-12,6].

For the analysis in this paper, we will follow Eco [11] and ptithe Peirce’s triadic
model of the sign [19] shown in Fig. 1.

representamen refere

NS

intrepretant
Fig. 1. Peirce’s Sign

Peirce’s sign is a three-part relationship betweespsesentamerareferentand a
interpretant The representamen is some phenomenon that an individualesg hear,
sense, or imagine. The referent (Peirce’s termblifect we shall use referent in this
article to avoid confusion between semiotic objects andbttjects in object-oriented
programs) is the a concept or entity to which the refererreethe “something else”
for which the referent stands. Finally, the interpretanthis mental concept that the
representamen produces.

For example, consider the English word “chocolate” as adrairsign. The spoken
or written word “chocolate” is the representamen; a solichpound of cocoa beans,
cocoa butter, sugar and milk is the referent; the resultiegtal concept of chocolate
in the reader or hearer of the word is the interpretant.

3 Object-Oriented Design

A program execution is regarded as a physical model, sirmgahe be-
haviour of either a real or imaginary part of the world.

Object-Oriented Programming in the BETA Programming Laaggi
Ole Lehrmann Madsen, Birger Mgller-Pedersen and Kristegdsyd [15]

This quote from Lehrmann Madsen et al. outlines the corecjpie underlying
object-oriented design, that an object-oriented progieralates (or models) the world.
To model a farm, for example, a program could have a Bovireschahere each object
represented a cow; an Ovine class where each object reprdseisheep; a Porcine
class where each object represented a pig, and so on [1,18]1Following a Peir-
cian approach we can take this simulation or modellingiiahip to be semiotic: that
is, we can treat a program as a sign where the representartiendst of objects and
classes in the program; the referent the set of entitiesenatbrld that the program
models, and the interpretant the concept that a particutegram models a particular
real or imaginary subpart of the world [2]. For an objecteated program, we go fur-
ther, taking a particular object in the program as a repsesathe part of the world

that object models as a referent; and the idea that a pantiohject models a particular
piece of the world (that the Bovine instance at memory leceix DEADBEEF models
Daisy the cow in the field somewhere) as the interpretantesitn. (see figure 2).

object entity in the world

NS

object—-models—entity

Fig. 2. An Object as a Sign

4 Implicit Signs

Unfortunately the question of what is an object in the pragaad an object in the world
are rarely so simple. Figure 3 shows the almost generic aiiagf students attending
university courses. Versions of this diagram are found imyraublications on object-
oriented design [18, 3, 4, 20, 9]. Many students attend manyses; Courses have a
course code, a title string and a teacher; students havearsrabd (reluctantly, at least
at our university’s registry) names.

Prerequisite

*

Student Course |,
* Attends * -
Name Title

Number Code
Fee
Workload

Amount [--------1 Teaches

Faculty

Name
Office

Fig. 3. A more complex design, describing part of a university

The problems arise when we consider a classical objectrtedémplementation of
such a design. The student class, for example, starts wdthaead obvious declarations

for attributes (and signatures for methods) that providectintral functionality for each
class. These are relatively simple, storing the key atieand doing basic calculations.
In Java, for example, the code may be as follows:

class Student {

String nane;

I nt eger nunber;

HashSet <Cour se> att ends;
}

The course class is similar — but at the bottom, we also finbuampieces of code
for explicitly representing and maintaining the relatibips between these classes.

cl ass Course {
String code;
String title;
i nt worKkl oad;

HashSet <St udent > att endees;
HashSet <Cour se> prerequi sites;
HashMap<Facul ty, Anount > t eacher;

void enrol (Student s) {
attendees. add(s); s.attends.add(this); }
void withdraw Student s) {
attendees. renove(s); s.addends.renove(this); }
}

This includes, for exampléjashSet objects to record which student is attending
which course (and vice versa), as well as code for enrollimhwithdrawing students,
whilst ensuring that all data structures remain consistedtcorrect. In fact, looking
back at Student, things like tlag t ends hash-set and theot al Wor k| oad are prob-
ably more to do with relationships with courses too.

But, consider the UML design from Figure 3 again: we havedlutasses, each with
a few attributes, and simple straightforward relationshiptween them. This is not well
described by our simple semiotic model: first, objects likeif3es, now contain Hash-
Sets and other subsidiary objects that implement interangdiata structures; second,
concepts such as the “attends” relationship, that are @xplia UML diagram such
as Figure 3, are split or tangled into the implementationtbéoobjects. Whatever the
semiotic position of that t ends HashSet, it is not representing an individual object,
an individual “part of the world” that the program is modedi

5 Agpect-Oriented Modelling

In some cases, such as that above, adoptingspect-orienteadpproch can resolve the
tension in semiotic structure of the programiriiplementatiolerms, aspect-orientation

[14,5] is generally described as including a second kindro§mmming construct, an
aspect that can include extra code and data structures into airgxiskass definition.
From our point of view, however, an aspect, like a class cedbjs simply an artifiact,
a representamen, within a program, which can participageiniotic relations with the
world the program will mode.

For example, using aspects in a programming language subbpest to imple-
ment the relationships from Figure 3 allows their definitiéo be made quite explicit:

aspect Attends extends
Si npl eSt ati cRel <St udent, Course> {}

aspect Teaches extends
St ati cRel <Cour se, Facul ty, Anount >{}

aspect Prerequisites extends
Si npl eSt ati cRef | exi veRel <Cour se>{}

This code introduces three aspects which correspond Witecthe three relation-
shipsAttends Prerequisitesand Teachesn the UML design: these aspects can incor-
porate the code necessary to add and remove objects froralgti®nships. Then, the
class definitions, say for the Student and Course classelsnger need to have the
extraneous code or data to implement the relationships.

cl ass Student { cl ass Course {
String namne; String code;
I nt eger nunber; String title;
} i nt workl oad;
}

In this way, the full paper will show that aspect-orientaté@n produce designs with
more straightfoward semiotic properties than objectriggon: once again, a single
element in the program — now either an object or an aspeetrinstis a representamen
for a part of the real world (the semiotic referent); the pesgmer’s interpretant being
precisely this modelling relationship: that this objediuaily models some part of the
world.

6 Conclusion

To conclude, in this paper we will demonstrate how obje@t+tied designs can be anal-
ysed as signs, and the worth of that analysis. Treating tdhgecsigns provides us with
an analytic framework that is based on semiotics, ratherlibgic, mathematics, or ad-
hoc practice. Using this framework, we can address addiess@en questions about
software design — particularly explicating the relatioipshetween program designs
an the external worlds they are designed to model. We hopethisaframework can
provide a platform for future progress in the semiotic aniigglophical analyses of the
practices of programming.

References

10.

11.
12.

13.

14.

15.
16.
17.
18.
19.

20.

21.

Peter Bagh AnderseA. Theory of Computer SemiotidgSambridge University Press, second
edition, 1997.

. Peter Bggh Andersen. Semiotic models of algorithmicssign Karl-Heinz Rodiger, edi-

tor, Algorithmik—Kunst—Semiotik. Hommage fiir Frieder Ngdages 165-211. Synchron,
Heidelberg, 2003.

. Gavin Bierman and Alisdair Wren. First-class relatidpstin an object-oriented language.

In ECOOP Proceedings/olume 3586 ofecture Notes in Computer Sciengages 262—
282. Springer-Verlag, 2005.

. Grady Booch, lvar Jacobson, and James Rumbatiga.Unified Modeling Language User

Guide Addison-Wesley, 1998.

. Siobhan Clarke and Elisa Baniassaéspect-Oriented Analysis and Design: The Theme

Approach Addison-Wesley, 2005.

. Paul Cobley, editor.The Routledge Companion to Semiotics and LinguistReutledge,

New Fetter Lane, London, 2001.

. Paul Cobley and Litza Jans&emiotics for Beginnersicon Books, Cambridge, England,

1997.

. Ferdinand de Saussureours de linguistique général®&.C. Bally and A. Sechehaye (eds.),

Paris/Lausanne, 1916.

. Desmond Francis D’'Souza and Alan Cameron Wilkjects, Components, and Frameworks

With Uml: The Catalysis Approacthddison-Wesley, 1998.

Anthony Easthope and Kate McGowan, editofs Critical And Cultural Theory Reader
Allen & Unwin, 1992.

Umberto EcoA Theory of Semioticdndiana University Press, 1976.

Andrew Edgar and Peter Sedgwick, editdfgey Concepts in Curtural ThearyRoutledge,
New Fetter Lane, London, 1999.

Erich Gamma, Richard Helm, Ralph E. Johnson, and Jotssidés. Design Patterns
Addison-Wesley, 1994.

Gregor Kiczales, John Lamping, Anurag Mendhekar, QWiasda, Cristina Videira Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect oriented paogming. INECOOP Proceed-
ings 1997.

Ole Lehrmann Madsen, Birger Mgller-Pedersen, and érilstygaardObject-Oriented Pro-
gramming in the BETA Programming Languageddison-Wesley, 1993.

James Noble and Robert Biddle. Patterns as sigriSsCIDOP Proceeding2002.

James Noble, Robert Biddle, and Ewan Tempero. Metaphdrnzetonymy in object-
oriented design patterns. IRroceedings of Australian Computer Science Conference
(ACSC) Australian Computer Society, 2002.

David Pearce and James Noble. Relationship aspects.dppear in AOSD’062006.
Charles Sanders Peirc€ollected Papersfour volumes. Harvard University Press, 1934—
1948.

Rob Pooley and Perdita Stevebksing UML: Software Engineering with Objects and Com-
ponents Addison-Wesley, 1999.

Thomas A. Sebeok. Nonverbal communication. In Coblgycltapter 1.

