
Extended Abstract: Towards a Semiotics of Object- and
Aspect-Oriented Design

James Noble1, Robert Biddle2, Ewan Tempero3, and David Pearce1

1 Computer Science
Victoria University of Wellington

New Zealand
2 Human-Oriented Technology Lab

Carleton University
Ottawa, Canada

3 Software Engineering
The University of Auckland

New Zealand

Abstract. Object-oriented design is based on the argument that objects in a pro-
gram act as a simulation of objects in the real world. This paper will provide
a semiotic account of object-oriented design patterns, treating an object as a
sign comprised of some part of the real world, its realisation in the program,
and the programmers intent about the program design (that the object model the
world). The paper will then go on to discuss the developing discipline of aspect-
orientation affects the representational discourses of object-orientation. Consid-
ering the semiotics of object-oriented design can address these quetsions, both
helping programmers design their programs, understand theway their designs
“work”, and informing the general philosophy of computer science.

1 Introduction

An object-oriented design is a “description of communicating objects” [13, p.3]. In this
paper, we will provide a semiotic account of object-oriented design. Semiotics is the
study of signs in society, that investigates the way meaningis carried by communica-
tion, treating communication as an exchange of signs. When semiotics began in the
early years of the last century, most work was concerned withconventional signs —
first speech, and then writing [11]. Since then, the scope of semiotics has widened to
cover all kinds of signs, to the point where semiotics underlies much of structuralist
and post-structuralist literary theory, film studies, cultural studies, advertising, and even
the theory of popular music and studies of communications between animals (zoosemi-
otics) and within them (biosemiotics) [21].

2 Semiotics

Semiotics, as defined by Saussure [8], is the study of signs insociety; where asign
is “something standing for something else”[11]. Since Saussure, semiotics has been

applied to a wide range of different kind of signs, and for a range of diverse purposes
[1, 7, 10–12,6].

For the analysis in this paper, we will follow Eco [11] and adopt the Peirce’s triadic
model of the sign [19] shown in Fig. 1.

representamen referent

intrepretant

Fig. 1. Peirce’s Sign

Peirce’s sign is a three-part relationship between arepresentamen, a referentand a
interpretant. The representamen is some phenomenon that an individual can see, hear,
sense, or imagine. The referent (Peirce’s term isobject: we shall use referent in this
article to avoid confusion between semiotic objects and theobjects in object-oriented
programs) is the a concept or entity to which the referent refers: the “something else”
for which the referent stands. Finally, the interpretant isthe mental concept that the
representamen produces.

For example, consider the English word “chocolate” as a Peircian sign. The spoken
or written word “chocolate” is the representamen; a solid compound of cocoa beans,
cocoa butter, sugar and milk is the referent; the resulting mental concept of chocolate
in the reader or hearer of the word is the interpretant.

3 Object-Oriented Design

A program execution is regarded as a physical model, simulating the be-
haviour of either a real or imaginary part of the world.

Object-Oriented Programming in the BETA Programming Language.
Ole Lehrmann Madsen, Birger Møller-Pedersen and Kristen Nygaard [15]

This quote from Lehrmann Madsen et al. outlines the core principle underlying
object-oriented design, that an object-oriented program simulates (or models) the world.
To model a farm, for example, a program could have a Bovine class, where each object
represented a cow; an Ovine class where each object represented a sheep; a Porcine
class where each object represented a pig, and so on [1, 2, 17,16]. Following a Peir-
cian approach we can take this simulation or modelling relationship to be semiotic: that
is, we can treat a program as a sign where the representamen isthe set of objects and
classes in the program; the referent the set of entities in the world that the program
models, and the interpretant the concept that a particular program models a particular
real or imaginary subpart of the world [2]. For an object-oriented program, we go fur-
ther, taking a particular object in the program as a repsentamen; the part of the world

that object models as a referent; and the idea that a particular object models a particular
piece of the world (that the Bovine instance at memory locationOxDEADBEEFmodels
Daisy the cow in the field somewhere) as the interpretant of the sign. (see figure 2).

object

object−models−entity

entity in the world

Fig. 2. An Object as a Sign

4 Implicit Signs

Unfortunately the question of what is an object in the program and an object in the world
are rarely so simple. Figure 3 shows the almost generic diagram of students attending
university courses. Versions of this diagram are found in many publications on object-
oriented design [18, 3, 4, 20, 9]. Many students attend many courses; Courses have a
course code, a title string and a teacher; students have numbers and (reluctantly, at least
at our university’s registry) names.

*

*

Prerequisite

Course

Code
Title

Fee
Workload

Faculty
Name
Office

*

Name
Number

Student
**Attends*

Amount Teaches

Fig. 3. A more complex design, describing part of a university

The problems arise when we consider a classical object-oriented implementation of
such a design. The student class, for example, starts with easy and obvious declarations

for attributes (and signatures for methods) that provide the central functionality for each
class. These are relatively simple, storing the key attributes and doing basic calculations.
In Java, for example, the code may be as follows:

class Student {
String name;
Integer number;
HashSet<Course> attends;

}

The course class is similar — but at the bottom, we also find various pieces of code
for explicitly representing and maintaining the relationships between these classes.

class Course {
String code;
String title;
int workload;

HashSet<Student> attendees;
HashSet<Course> prerequisites;
HashMap<Faculty,Amount> teacher;

void enrol(Student s) {
attendees.add(s); s.attends.add(this); }

void withdraw(Student s) {
attendees.remove(s); s.addends.remove(this); }

}

This includes, for example,HashSet objects to record which student is attending
which course (and vice versa), as well as code for enrolling and withdrawing students,
whilst ensuring that all data structures remain consistentand correct. In fact, looking
back at Student, things like theattends hash-set and thetotalWorkload are prob-
ably more to do with relationships with courses too.

But, consider the UML design from Figure 3 again: we have three classes, each with
a few attributes, and simple straightforward relationships between them. This is not well
described by our simple semiotic model: first, objects like Courses, now contain Hash-
Sets and other subsidiary objects that implement intermediary data structures; second,
concepts such as the “attends” relationship, that are explicit in a UML diagram such
as Figure 3, are split or tangled into the implementation of other objects. Whatever the
semiotic position of theattends HashSet, it is not representing an individual object,
an individual “part of the world” that the program is modelling.

5 Aspect-Oriented Modelling

In some cases, such as that above, adopting anaspect-orientedapproch can resolve the
tension in semiotic structure of the program. Inimplementationterms, aspect-orientation

[14, 5] is generally described as including a second kind of programming construct, an
aspect, that can include extra code and data structures into a existing class definition.
From our point of view, however, an aspect, like a class or object, is simply an artifiact,
a representamen, within a program, which can participate insemiotic relations with the
world the program will mode.

For example, using aspects in a programming language such asAspectJ to imple-
ment the relationships from Figure 3 allows their definitions to be made quite explicit:

aspect Attends extends
SimpleStaticRel<Student,Course> {}

aspect Teaches extends
StaticRel<Course,Faculty,Amount>{}

aspect Prerequisites extends
SimpleStaticReflexiveRel<Course>{}

This code introduces three aspects which correspond directly to the three relation-
shipsAttends, PrerequisitesandTeachesin the UML design: these aspects can incor-
porate the code necessary to add and remove objects from the relationships. Then, the
class definitions, say for the Student and Course classes, nolonger need to have the
extraneous code or data to implement the relationships.

class Student { class Course {
String name; String code;
Integer number; String title;

} int workload;
}

In this way, the full paper will show that aspect-orientation can produce designs with
more straightfoward semiotic properties than object-orientation: once again, a single
element in the program — now either an object or an aspect instance is a representamen
for a part of the real world (the semiotic referent); the programmer’s interpretant being
precisely this modelling relationship: that this object actually models some part of the
world.

6 Conclusion

To conclude, in this paper we will demonstrate how object-oriented designs can be anal-
ysed as signs, and the worth of that analysis. Treating objects as signs provides us with
an analytic framework that is based on semiotics, rather than logic, mathematics, or ad-
hoc practice. Using this framework, we can address addressed a open questions about
software design — particularly explicating the relationship between program designs
an the external worlds they are designed to model. We hope that this framework can
provide a platform for future progress in the semiotic and philosophical analyses of the
practices of programming.

References

1. Peter Bøgh Andersen.A Theory of Computer Semiotics. Cambridge University Press, second
edition, 1997.

2. Peter Bøgh Andersen. Semiotic models of algorithmic signs. In Karl-Heinz Rödiger, edi-
tor, Algorithmik—Kunst—Semiotik. Hommage für Frieder Nake, pages 165–211. Synchron,
Heidelberg, 2003.

3. Gavin Bierman and Alisdair Wren. First-class relationships in an object-oriented language.
In ECOOP Proceedings, volume 3586 ofLecture Notes in Computer Science, pages 262–
282. Springer-Verlag, 2005.

4. Grady Booch, Ivar Jacobson, and James Rumbaugh.The Unified Modeling Language User
Guide. Addison-Wesley, 1998.

5. Siobhán Clarke and Elisa Baniassad.Aspect-Oriented Analysis and Design: The Theme
Approach. Addison-Wesley, 2005.

6. Paul Cobley, editor.The Routledge Companion to Semiotics and Linguistics. Routledge,
New Fetter Lane, London, 2001.

7. Paul Cobley and Litza Jansz.Semiotics for Beginners. Icon Books, Cambridge, England,
1997.

8. Ferdinand de Saussure.Cours de linguistique générale. V.C. Bally and A. Sechehaye (eds.),
Paris/Lausanne, 1916.

9. Desmond Francis D’Souza and Alan Cameron Wills.Objects, Components, and Frameworks
With Uml: The Catalysis Approach. Addison-Wesley, 1998.

10. Anthony Easthope and Kate McGowan, editors.A Critical And Cultural Theory Reader.
Allen & Unwin, 1992.

11. Umberto Eco.A Theory of Semiotics. Indiana University Press, 1976.
12. Andrew Edgar and Peter Sedgwick, editors.Key Concepts in Curtural Theory. Routledge,

New Fetter Lane, London, 1999.
13. Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides. Design Patterns.

Addison-Wesley, 1994.
14. Gregor Kiczales, John Lamping, Anurag Mendhekar, ChrisMaeda, Cristina Videira Lopes,

Jean-Marc Loingtier, and John Irwin. Aspect oriented programming. InECOOP Proceed-
ings, 1997.

15. Ole Lehrmann Madsen, Birger Møller-Pedersen, and Kristen Nygaard.Object-Oriented Pro-
gramming in the BETA Programming Language. Addison-Wesley, 1993.

16. James Noble and Robert Biddle. Patterns as signs. InECOOP Proceedings, 2002.
17. James Noble, Robert Biddle, and Ewan Tempero. Metaphor and metonymy in object-

oriented design patterns. InProceedings of Australian Computer Science Conference
(ACSC). Australian Computer Society, 2002.

18. David Pearce and James Noble. Relationship aspects. InTo appear in AOSD’06, 2006.
19. Charles Sanders Peirce.Collected Papers. four volumes. Harvard University Press, 1934–

1948.
20. Rob Pooley and Perdita Stevens.Using UML: Software Engineering with Objects and Com-

ponents. Addison-Wesley, 1999.
21. Thomas A. Sebeok. Nonverbal communication. In Cobley [6], chapter 1.

