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Abstract

Ethereum is a blockchain based platform that supports a Turing complete
contract language. However, methods of writing smart contracts have been error
prone. This has resulted in many historically expensive bugs such as the DAO.
Whiley is a programming language which allows you to verify code. This project
looks at compiling Whiley to Ethereum bytecode in order to utilise Whiley’s ver-
ification tools to make writing smart contracts safer. Finally, we run some cover-
age tests to see how the developed method adheres to the Whiley language.
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Chapter 1

Introduction

In recent years Cryptocurrencies have seen widespread adoption particularly with the rise of
Bitcoin. At its peak, Bitcoin had a market capitalization of over 300 billion dollars USD [7].
Bitcoin [24] solved the problem of distributed consensus with the idea of proof of work,
where updates in the state of the application would be collectively agreed upon. This idea
is an integral one to a technology called the Blockchain which is the foundation of Bitcoin
and many other Cryptocurrencies.

A Blockchain is a chain of records, where each record is named a block, and each block
is connected to a previous block through a hash. The Blockchain takes the idea of a Merkle
Patricia (hash) tree [39] and utilises a peer to peer approach in deciding whether a change
to the tree is valid or not. This means the Blockchain allows for a decentralized system
whereby no single entity is able to decide who controls the network [24].

Bitcoin has a primitive smart contract and scripting language, which allows code to be
written and executed on the Blockchain [2]. Ethereum [39] is a decentralized blockchain-
based platform that makes improvements on its predecessors such as Bitcoin. One way it
does this is through providing a Turning complete Virtual Machine, with persistent state
and improved storage efficiencies over its predecessor. This allows code to be written and
deployed as ”smart contracts”. Smart contracts are a type of contract that are enforced by
code and are executed upon meeting certain conditions. Being a code based irreversible
contract, smart contracts do not require a third party to ensure credibility, and therefore re-
move the service fees and obligation to a middle man, as well as enable benefits in security.
Popular examples of smart contracts include mortgages, insurance claims, payments and
settlements, prediction or financial markets, or a Decentralized Autonomous Organization
(DAO). A DAO is a decentralized organization that has rules enforced by its smart contract
code. These rules are maintained in the Blockchain as well as financial records of the orga-
nization. “The DAO” was a DAO with the purpose of providing a crowdfunding platform
for businesses and investors that utilized the Ethereum blockchain. The DAO had vulner-
abilities in its smart contract, resulting in it being hacked and over 3.6 million ETH tokens
being stolen in June 2016, which was worth over $70 million USD at the time [14]. The DAO
showed the community the importance of code correctness in smart contracts, especially
when dealing with large sums of money. Furthermore, as a contract cannot be “patched” or
modified once deployed to the blockchain, any bugs that exist in a contract could have dev-
astating effects. This resulted in a greater emphasis in producing bug-free code, with static
program analysis techniques being created, such as MadMax, which automatically detects
gas-focused vulnerabilities [17].

Popular Ethereum smart contract languages include Solidity, Vyper, LLL, and many
more. These languages currently lack the tools that help to eliminate errors or vulnerabil-
ities in smart contracts. Whiley [34] is a programming language designed to employ static
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type checking to eliminate certain errors at compile time, such as divide-by-zero, array out-
of-bounds and null dereference errors. Whiley makes use of pre, and post conditions that
the programmer must specify to aid its automated theorem prover in detecting errors at
compile time.

The code below illustrates a Whiley function, abs() which finds the absolute value of an
integer x and returns it as a natural number, r. The function has two postconditions which
are the two ensures clauses. The first postcondition checks that the return value, r is greater
or equal to 0, and the second postcondition checks that it equals the value of x or negative
x. For example, executing abs(-4) returns us the value 4 which is the absolute value of -4.

1 abs(int x) -> (int r)

2 / / Must r e t u r n n a t u r a l numbers
3 ensures r >= 0

4 / / Must r e t u r n x o r n e g a t i v e x
5 ensures r == x || r == -x:

6 if x >=0:

7 return x

8 else:

9 return -x

Listing 1.1: Whiley program for absolute value function

Whiley was first developed by David Pearce at Victoria University of Wellington and is
an open-source project that has a small community of contributors. From catastrophes such
as ‘the DAO’, we see there is a need to produce tools that assist in reducing bugs in smart
contract code. The purpose of this project is to utilize Whiley’s verification capabilities to
explore ways to make Ethereum smart contracts safer. This project is going to move towards
this goal by allowing us to compile Whiley programs into Ethereum bytecode. Compiling to
EVM bytecode is one step in the bigger picture of making smart contracts safer by allowing
us to explore the use of Whiley to find bugs in smart contracts.

1.1 Organisation

This report will begin by providing background information on the current state of Ethereum
smart contracts. Through this, we will see existing solutions and how they tackle the prob-
lems Ethereum presents. We also contrast our solution with the existing solutions presented,
and where the limitations of those may be remedied through our project. Through this con-
trast, we can also view the advantages of existing solutions over this project and potential
limitations of them. We will then presents the work accomplished over this project, by first
examining the architecture of Whiley and how our project fits within the current system,
before delving into the details of the software implementation. Finally, we explore areas of
future work, before concluding this report.

1.2 Contributions

� We have designed and implemented a translator from the Whiley programming lan-
guage to Ethereum bytecode.

� We have performed an experimental evaluation using the existing Whiley test suite to
identify which tests pass.
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Chapter 2

Background

We begin by providing detailed definitions of key concepts related to the background of our
work.

2.1 Introduction to Whiley

1 type nat is (int n) where n > 0 / / Nominal
2 type ExposedSquare is { int rank , bool holdsBomb }

3 type HiddenSquare is { bool holdsBomb , bool flagged }

4 type Square is ExposedSquare | HiddenSquare

5

6 / / E x p o s e d S q u a r e c o n s t r u c t o r
7 function ExposedSquare (int rank , bool bomb) -> ExposedSquare :

8 return { rank: rank , holdsBomb : bomb }

9

10 / / H i d d e n S q u a r e c o n s t r u c t o r
11 function HiddenSquare (bool bomb , bool flag) -> HiddenSquare :

12 return { holdsBomb : bomb , flagged : flag }

13

14 type Board is {

15 Square [] squares , / / Array o f s q u a r e s making up t h e b o a r d
16 int width , / / Width o f t h e game b o a r d ( i n s q u a r e s )
17 int height / / H e i g h t o f t h e game b o a r d ( i n s q u a r e s )
18 }

19

20 function add(int [] v1 , int [] v2) -> (int [] v3)

21 requires |v1| == |v2|

22 ensures |v1| == |v3 |:

23 int i=0

24 while i < |v1 |:

25 v1[i] = v1[i] + v2[i]

26 i = i + 1

27 return v1

Listing 2.1: Whiley program for Minesweeper game [31]

Whiley is a programming language that combines functional and imperative paradigms
and allows for formal specification through preconditions, postconditions and loop invari-
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ants [32]. Through these explicit specifications, Whiley is able to automatically reason about
the validity of statements by making use of tools such as an SMT solver. Whiley uses inden-
tation syntax over braces for statement blocks. However, although visually resembling a
python-like syntax, the core of Whiley is functional and pure. Whiley has many data types,
including integers, booleans, bytes, arrays, records, unions, nominals, references and func-
tions. Listing 2.1 shows some of these datatypes in code. This code excerpt, taken from a
Minesweeper game, illustrates the building blocks for the Minesweeper board.

Whiley programs are composed of functions and methods. The function keyword indi-
cates a pure function, which refers to a function that always returns the same output given
an input, as seen from lines 7 and 11. Methods are impure meaning an input may not al-
ways result in the same output and side effects may be observed, e.g. modification of input
parameters or state outside the method.

A record opens with curly braces and ends with curly braces, and is comparable to a
struct in C. Lines 2 and 3, show the record datatype which are composed of multiple fields.
These records can be instantiated through their constructor as seen in lines 7 and 11. Line 4
shows us an example of a union type, which is a type that accepts any value held by its com-
ponents. In this example, Square can either be an ExposedSquare or HiddenSquare. Line
15 shows the declaration of an array, and below it we see two integer datatypes. Nominal
types are named types composed of an underlying type. Nominal types are often used to
enforce certain rules or enforce information hiding. For example, on line 1, the nominal nat

is an integer type that is required to be greater than 0 (natural number). This example also
shows booleans (line 3).

The add() function on line 20 illustrates some of the Whiley verification focused lan-
guage features. On line 21 the requires clause is used to impose a precondition on the
function, whilst line 22 uses the ensures clause as a post condition. Through explicit speci-
fications such as these clauses, asserts, assumes, and loop invariants, Whiley is able to rea-
son about the validity of a program and its inputs. Before executing a Whiley program, the
whiley file is first compiled into the Whiley Intermediate Language (WyIL) which repre-
sents the abstract syntax tree of the program. From this, the verifying compiler checks that
the methods and functions meet the explicit specifications in the program, and reports any
failures to the user.

2.2 The Ethereum Virtual Machine

The Ethereum Virtual Machine (EVM) is a virtual machine that can execute tasks to program
some functionality on the Ethereum blockchain [39]. The EVM creates an environment that
manages smart contract execution.

2.2.1 EVM Memory

Ethereum Bytecode is similar to Java Bytecode as both the Ethereum Virtual Machine (EVM)
and Java Virtual Machine (JVM) utilize a stack machine. The Ethereum Virtual Machine is
defined in the yellow paper [39], which defines the architecture and use cases of Ethereum.
The Virtual Machine operates by pushing operations onto its Stack. Operations consist of an
operation code (opcode) and operand (depending on whether the specific opcode requires
it). The operation is the task to perform, and the operand is the value of the data input to
allocated.

The EVM [40] has three types of memory, Stack, Memory, Storage. In the stack, new data
is pushed onto it during execution. Memory is an expandable byte array and comparable
to JVM’s heap. Long term storage is a key value store that persists data. Both the stack

4



and memory (heap) are reset after computation ends with the EVM. The size of each item in
EVM memory and storage, which is also called wordsize is 256 bits.

2.2.2 EVM Bytecode

EVM has 140 different opcodes which represent the instructions or specific tasks to be exe-
cuted [18]. As classified by Hollander, the most commonly used opcode types can be split
into the following categories for simplicity [18]:

� Stack-manipulating opcodes: (POP, PUSH, DUP, SWAP)

� Arithmetic/comparison/bitwise opcodes: (ADD, SUB, GT, LT, AND, OR)

� Environmental opcodes: (CALLER, CALLVALUE, NUMBER)

� Memory-manipulating opcodes (MLOAD, MSTORE, MSTORE8, MSIZE)

� Storage-manipulating: opcodes (SLOAD, SSTORE)

� Program counter related opcodes: (JUMP, JUMPI, PC, JUMPDEST)

� Halting opcodes: (STOP, RETURN, REVERT, INVALID, SELFDESTRUCT)

Opcodes are encoded to bytecode for efficient storage. Bytecodes are stored in hexidem-
ical format. For example, PUSH1 is 0x60, or the integer 96.

The following bytecode shows the integer 6 being subtracted from the integer 9. EVM
executes this by pushing on the second value (6), pushing on the first value (9), and then
executing the arithmetic operator which in this case is SUB, which pushes the result.

1 PUSH1 0x06

2 PUSH1 0x09

3 SUB

Listing 2.2: Subtracting two numbers in EVM bytecode

2.2.3 Gas in Ethereum

There are two types of tokens in Ethereum: ether, and gas [39]. Ether is a cryptocurrency
that holds some intrinsic value based off of the supply and demand of the token. Ether can
be used to purchase gas. Having gas as a separate resource to Ether was done for a variety
of reasons, e.g. allowing Ether to fluctuate in price and not affect the price of gas, and vice
versa [6].

Ethereum uses the concept of gas as a commodity or resource that allows operations to
be executed [9, 6]. The purpose of gas is to constrain what can be executed on the EVM
to decentivize overwhelming the network and executing costly transactions. This helps to
protect against Denial of Service attacks (DoS). Furthermore, by requiring a cost to execute
transactions Ethereum incentives minimising the number of instructions in a contract.

During execution, Ethereum contracts only run as long as there is sufficient gas to exe-
cute contract code. An out of gas operation is when a contract runs out of gas during execu-
tion and therefore the Ethereum Virtual Machine throws an out of gas execution and aborts
contract execution. If the contract runs out of gas during execution, and the transaction is
terminated, the caller loses all provided gas. On the other hand, the successful termination
of a transaction results in any excess/remaining gas being returned to the caller [9].
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2.3 Introduction to Solidity

Solidity is an object-oriented, high level programming language for writing smart contracts
that compiles to Ethereum Bytecode. Solidity is the most popular programming language
for implementing smart contracts on Ethereum. Solidity utilizes a JavaScript-like syntax, as
we see below from the following example smart contract [16].

1 pragma solidity ^0.4.22;

2 contract SimpleBank {

3 uint8 private clientCount ;

4 mapping ( address => uint) private balances ;

5 address public owner ;

6

7 constructor () public payable {

8 require (msg. value == 30 ether , "30 ether initial

funding required ");

9 / � S e t t h e owner t o t h e c r e a t o r o f t h i s c o n t r a c t � /
10 owner = msg. sender ;

11 clientCount = 0;

12 }

13

14 / / / @ n o t i c e E n r o l l a c u s t o m e r w i t h t h e bank ,
15 / / / g i v i n g t h e f i r s t 3 o f them 10 e t h e r a s r e w a r d
16 / / / @ r e t u r n The b a l a n c e o f t h e u s e r a f t e r e n r o l l i n g
17 function enroll () public returns (uint) {

18 if ( clientCount < 3) {

19 clientCount ++;

20 balances [msg. sender ] = 10 ether ;

21 }

22 return balances [msg. sender ];

23 }

24

25 / / / @ n o t i c e D e p o s i t e t h e r i n t o bank
26 / / / @ r e t u r n The b a l a n c e o f t h e u s e r a f t e r t h e d e p o s i t i s

made
27 function deposit () public payable returns (uint) {

28 balances [msg. sender ] += msg. value ;

29 emit LogDepositMade (msg.sender , msg. value );

30 return balances [msg. sender ];

31 }

32 }

Listing 2.3: Simple banking contract in Solidity

This smart contract acts as a simple banking system, where customers can enroll and
deposit ether into the bank. As seen in line 17, the public identifier sets the visibility of the
function enroll() to public. This means that anybody who has access to SimpleBank on the
Blockchain that contract has been deployed to can invoke this function. The constructor, on
line 7, is called whenever the smart contract is deployed to the blockchain. In the constructor
we require 30 ether to be funded to the contract for it to be deployed, and following that
set the owner of the bank to the sender of those funds, and set clientCount to 0. The
keyword payable as seen on line 27 and 7 is required to allow ether to be received by the
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contract. The returns (uint) on enroll() and deposit tell Solidity that an unsigned-
integer (uint) needs to be returned from these functions. balances provides the mapping
of user addresses to the amount of ether stored in the account. There are many special
variables and functions which exist in the global name space such as msg.value, msg.sender

and block.number [1]. msg.sender as seen on line 5 is one of these implicit parameters that
indicates who called this contract. msg.value on line 28 provides us with the “number of
wei sent with the message”[1] (wei is a denomination of ether). Overall, SimpleBank is a
contract where users can enroll and deposit either.

2.4 Attacks that can be executed on Ethereum smart contracts

Atzei, Bartoletti, Cimoli and others discuss a variety of different ways Ethereum smart con-
tracts can be attacked [9, 38]. I am now going to discuss some of these in more detail.

2.4.1 Unchecked Send

The send function can be used to send Ether to an address [38]. However, the send function
can fail. If this happens, the code following the invocation will still be executed if the return
of the send function is unchecked. For example, consider the following illustration where
prizePaidOut will be set to true whether or not winner.send(1000) succeeds.

1 if ( gameHasEnded && !( prizePaidOut )) {

2 winner .send (1000) ; / / s e n d a p r i z e t o t h e w i n n e r
3 prizePaidOut = True;

4 }

Listing 2.4: Unchecked send in Solidity contract [38]

The send() function may fail if winner is not correctly defined, e.g. if winner is a contract
that throws an exception resulting in the send failing [38]. However, the send() may also
fail even if winner is correctly defined. EVM manages its operations through a callstack
which is limited to a max depth of 1024 [39] so the send() function may fail if EVM is
at the callstack limit. This is called a ‘callstack attack’. ‘BTC Relay’, ‘King of the Ether
Throne’, and etherpot are all examples of famous contracts that have exhibited this bug
[23, 36, 22]. As Solidity limits gas usage to 2300 for a send function, the send may also fail
given a computationally intensive fallback function, though this was later patched as will
be discussed in the following section.

2.4.2 Call to the Unknown

As EVM bytecode does not support the concept of functions, Solidity uses a simple function
dispatching mechanism where each function is identified by a signature. If a contract is
called and the function signature is matched, the EVM jumps to the area of the functions
code, but if no signature is matched the EVM jumps to the fallback function. The fallback
function is a function without name/arguments and does not return anything [37], as seen
in Listing 2.5.

In Solidity there may only be one callback function. This fallback function is represented
by function(), as seen in the example above. If the address at the function signature that is
called does not exist, or incorrect parameters are supplied, the fallback function is invoked
instead. This means that the fallback function can be unintentionally called given the incor-
rect invocation of a function. This may be as simple as specifying the wrong parameter type,
or failing to provide a parameter.
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1 contract Fallback {

2 function () payable {

3 / / empty f a l l b a c k f u n c t i o n
4 }

5 }

Listing 2.5: Fallback function in Solidity

‘The DAO’ attack, explained simply, was caused using repeated invocations to the con-
tracts fallback function [9]. Another popular case, ‘King of Ether Throne’ was also attacked
through the fallback function to steal ether, in combination with other vulnerabilities. We
will not go into detail in how the fallback function can be attacked. These attacks can be
examined in more detail in the paper [9].

Subsequently, Solidity made changes from v4.0.0 [37, 26], which now require the payable

modifier to be supplied in order for the fallback function to be able to accept ether. The ex-
ample above uses the payable modifier. It’s exclusion means that the fallback function can-
not accept ether transfer. Although this helps minimise the risk of losing money given the
invocation of a wrong function in a contract, it does not mitigate the risk of attaching ether
to a transaction on a wrong contract that has a payable fallback function. Updates were also
made so that if the fallback function was not explicitly defined, the default fallback func-
tion would throw which returns an error, and reverts state changes. This helps to prevent
ether being incorrectly transferred to a contracts account where the contract does not have a
payable fallback function explicitly defined.

Solidity also limited the available gas to the fallback function to 2300, which is only
enough to do basic logging operations [37]. The purpose of this was to stop contract makers
from implementing business logic in their fallback function, as the fallback function can be
invoked by anyone that has access to the contract.

2.4.3 Reentrancy

EVM does not allow concurrent function executions. In EVM, when a contract calls another,
the current contract waits for the caller to finish executing before proceeding. A reentrancy
attack can be executed by repeatably calling a single function before the invocation of that
function had finished [9, 21]. Because the current execution will wait for the caller to finish
executing before continuing, a contract’s state can be partially altered at some point without
finishing execution. This can cause unintended consequences. For example, consider Listing
2.6.

In an attempt to send funds to the sender (withdraw funds), msg.sender.call() is used
to call the fallback function on the contract referenced by msg.sender. On line 6, the callee
contract Attacker can call withdrawBalance() again using its fallback function resulting in
balance being withdrawn again and again. As the users balance is only set to 0 after the invo-
cation of the function, repeated invocations prior to this would succeed. Although not obvi-
ous, a solution would be to set the users balance to 0 before the invocation of the call, hence
preventing repeated invocations from succeeding in withdrawing funds. Cross-function
reentrancy attacks are also possible, where a similar thing is done but with two functions
and/or contracts that share the same global state. ‘The DAO’ attack mentioned prior, is an
example of an attack that used both reentrancy and cross-function reentrancy [21].

8



1 contract Fund {

2 mapping ( address => uint) private userBalances ;

3 function withdrawBalance () public {

4 uint amountToWithdraw = userBalances [msg. sender ];

5 (bool success , ) = msg. sender .call. value (

amountToWithdraw )(); / / At t h i s p o i n t , t h e c a l l e r
’ s c o d e i s e x e c u t e d , and can c a l l w i t h d r a w B a l a n c e

a g a i n
6 require ( success );

7 userBalances [msg. sender ] = 0;

8 }

9 }

10 contract Attacker {

11 Fund f;

12 / / C o n s t r u c t o r
13 function Attacker ( address fund) payable {

14 f = Fund(fund);

15 }

16 / / F a l l b a c k F u n c t i o n
17 function () payable {

18 f. withdrawBalance ();

19 }

20 }

Listing 2.6: Reentrancy Attack through repeated calls [5]

2.4.4 Integer overflow/underflow

Integers on the EVM are bounded to a fixed size [20]. For example, an 8 bit integer (uint8

in Solidity) would represent the numbers from 0 to 255. This means that storing 256 into
a uint8 would store the value 0. An underflow is where the value flows below the lower
bounds [10]. For example, subtracting 1 from a uint8 that holds the value 0 will give us the
value 255. An overflow is where the value flows above the upper bounds [10]. For example,
adding 1 to a uint8 that holds the value 255 or assigning a value above the upper bounds.

Integer over/under flows cause the value to wrap around. This can be problematic if
the programmer is not paying careful attention and exceed the bounds of an integer in some
way, perhaps by adding two large numbers together for instance.

A popular case of this is Proof of Weak Hands Coin (PoWHC), which was a satire con-
tract devised as a Ponzi scheme by users on the website 4chan [11]. It’s value grew to close
to a thousand Ether within days, before being exploited and 886 Ether being transferred out
of the contract [11].

PoWHC used an implementation of ERC-20 as their coin, which is a popular token stan-
dard for Ethereum [11]. However, their implementation contained a vulnerability. Their
system could allow for users to approve selected users to transfer tokens on their behalf.
This meant that another user could sell tokens for that user. However, there was a bug in
the contract meaning that selling account A’s tokens from account B would result in the sold
token amount being subtracted from the account B’s balance, not A. If the balance resulted
in an integer underflow, account B would be left with an extremely large balance of tokens.
This can be seen in Listing 2.7. On line 5 msg.sender is assumed to be the seller, instead of
the actual seller being passed into the sell function from the method that calls it. Therefore,
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msg.sender refers to the current account, B, instead of A.

1 function sell( uint256 amount ) internal {

2 var numEthers = getEtherForTokens ( amount );

3 / / r e m o v e t o k e n s
4 totalSupply -= amount ;

5 balanceOfOld [msg. sender ] -= amount ;

6

7 ...

8 }

Listing 2.7: PoWHC Vulnerability [11]

Whilst Overflow checking could be done at runtime it would be quite expensive for the
EVM, and as gas is used for operations, it is important to be as computationally efficient as
possible. This is one reason for why most Solidity smart contracts are 200 lines or less [19].
However, in Soldity 0.4.16, the Solidity Compiler, “now include experimental support for
automated overflow and assertion checking at compile-time using the SMT solver Z3” [13],
which helps to mitigate this problem.

2.5 Existing Solutions

Following the DAO incident, many attempts have been made to reduce the amount of bugs
in writing smart contracts, and a variety of verification tools have been produced. The tools
either perform verification prior to contract deployment, or after, with the majority pro-
viding post analysis at the bytecode level. This background Survey will present existing
solutions, and look at how they verify smart contracts.

2.6 MadMax

MadMax is a static program analysis technique that helps to identify gas-focused vulnera-
bilities in Ethereum [17]. MadMax uses a decompiler to provide static program analysis on
EVM bytecode by taking EVM bytecode and converting it to structured intermediate lan-
guage. MadMax identifies a variety of vulnerabilities that result in out of gas exceptions,
such as unbounded mass operations, unbounded externally controlled data structures, non
external isolated calls, and integer overflows.

Performing static analysis on EVM bytecode is challenging because EVM bytecode has
many differences to other bytecode languages such as JVM. For example, lacking the concept
of functions, differences with jump positions and destinations and control flow edges [17].
Some of the challenges with decompiling EVM bytecode include [17]:

� JVM has clearly defined jump targets independent from the stack, whilst EVM jump
destinations are variables read from the stack, and depend on the order of stack con-
tents.

� JVM uses defined jump destinations as above point, for method invocation and return
instructions. In Ethereum bytecode there is no concept of a function, instead EVM
makes use of unstructured control flow that requires you to branch to a particular
destination in code when that operation is reached.

� EVM bytecode does not have the concept of structures or objects, unlike JVM bytecode.
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Due to these challenges, the MadMax decompiler performs value-flow analysis and
detects function boundaries with a high-fidelity analysis in order to produce control flow
graphs [17]. From these CFGs, analysis can be performed on the semantics, memory layout,
and other areas that may result in vulnerabilities.

Unlike with MadMax and other tools we will discuss, our project does not face the dif-
ficulties of flow-analysis, as Whiley provides static analysis on the Whiley language level.
Therefore, analysis is not done on or during the conversion from Whiley to EVM bytecode.
Whether this could be in fact limiting could be a topic for future research.

Maxmax was tested by validating all 6.3 million contracts deployed on the Ethereum
blockchain. With a reported precision of 80% based on a manual inspection of samples,
“The analysis reports vulnerabilities for contracts holding a total value of over $2.8B” [17].
A positive of MadMax’s analysis techniques are that it provides analysis on EVM bytecode
hence contracts can be written in any language that compiles to EVM and be analysed. This
means MadMax does not require contract source code, so bytecode analysis can be applied
on new and prior contracts deployed on a blockchain. Furthermore, it means that using
MadMax, EVM smart contracts written in Whiley could be validated for vulnerabilities.

2.7 Formal Verification of Smart Contracts

‘Formal Verification of Smart Contracts’ [12] discuses a framework that can be used for the
analysis and verification of the runtime safety and functional correctness of Ethereum Smart
Contracts. This was achieved in a similar way to MadMax, by making use of a decompiler
to translate contracts to a functional programming language called F*. The majority of con-
tracts on the Ethereum blockchain do not have publicly available source code. “At the mo-
ment of this writing, only 396 out of 112,802 contracts have their source code available on
http://etherscan.io” [12]. This means that analysing lower-level EVM bytecode is necessary
to get a full picture of the vulnerabilities that most smart contracts have on the Ethereum
Blockchain.

The paper presents two tools for converting contract code to F* for verification. Solidity*
and EVM*. Solidity* converts Solidity to F* which allows the source level verification of
“functional correctness specifications (such as contract invariants) and safety with respect
to runtime errors” [12]. EVM* converts EVM bytecode to F* which allows for analysis of
“low-level properties, such as bounds on the amount of gas required to complete a call or a
transaction” [12]. This is partly done by evaluating jump destinations and detecting stack
under or overflows. Furthermore, as EVM uses JUMPDEST to identify a jump destination,
any jumps to invalid jump destinations can be highlighted. The F* language generates au-
tomated queries for an SMT solver which statically verifies pertinent properties of a smart
contract. F* can be used to detect vulnerabilities such as reentrancy type errors, as the tool
checks vulnerable patterns such as not checking the result of external calls.

2.8 Towards Verifying Ethereum Smart Contract Bytecode in Is-
abelle/HOL

In this paper, Samani, Bortin, et al. discuss their work extending an existing EVM formal
model in Isabelle/HOL [8]. Isabelle/HOL is an interactive and higher order logic theorem
prover that uses handwritten theorems composed pre and post conditions to verify program
correctness. The extension presented is an attempt to verify smart contract based on correct-
ness properties and support automated generation of verification conditions. Isabelle/HOL,
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like other contract verification tools such as MadMax and F*, also chose to target unstruc-
tured bytecode for similar reasons that we’ve discussed. However, unlike MadMax which
decompiles to an intermediate language, the authors argue that a more general approach
means that there is less reliance on the correctness of ”higher-level tools”, such as the trans-
lation to one formalism to another.

The purpose of this project is to set the ground work for “full functional correctness of
Ethereum smart contracts” [8]. The tool verifies 36 commonly used instructions (compared
to 70+ instructions that EVM provides). Furthermore, the project has been “accepted in the
official EVM formalisation repository maintained by the Ethereum foundation” [8].

Isabelle/HOL provides decompilation through extraction of Control Flow Graphs (CFG)
by splitting a program into ‘basic blocks’ which are a sequences of instructions without
jumps. Based on the basic blocks, the authors created a series of rules that specify the correct
behaviour of basic blocks and the connections between them, taking into account properties
such as the program counter, stack height, gas, and other properties.

To verify a contract, a specification of theorems tailored to that contract must be written.
This requires making statements about properties of the EVM program at a low level, which
involves referring to low level properties such as where the address is located in storage.
Because these theorem’s are written for contracts after a contract is written/deployed, the
pre/post conditions can be more difficult to read than in-code specifications in Whiley and
require manual identification of variables in contract storage as opposed to referencing a
variable name. So whilst the use of pre/post conditions appears similar to be similar to
how Whiley can verify contracts, this tool appears to be complicated. Whether this provides
better contract correctness than Whiley however is a question that could be later explored.

2.9 Oyente

The Oyente verification tool is based on “symbolic execution” [21] which refers to represent-
ing the different paths of the program and statically reasoning about it to work out which
paths are feasible and infeasible. It does this generating a control flow graph based on the
EVM bytecode. The control flow graph is then passed into the symbolic explorer which
explores all the possible paths of the program. Every path that can be explored is passed
into the core analysis which detects whether that part of the program has some potential
vulnerability. If there is, this result is forwarded to the validator which validates whether
the result is positive. The control flow graph is used to visit every execution trace of the
program. To ascertain whether an input satisfies a certain condition, a theorem prover (Z3
Bit-Vector Solver) is passed the equation of the condition which returns whether such an
input exists.

Two unique contributions the authors made at the time were the detection of the times-
tamp dependence and transaction ordering dependence vulnerabilities.

2.10 ZEUS: Analyzing Safety of Smart Contracts

ZEUS is another verification tool [20]. There are 4 primary stages in ZEUS’s verification
pipeline, as see in Figure 2.1. Firstly, a user must write out a set of criteria which will act
as pre/post conditions for the contract. This is achieved through a file with a XML style
format/syntax that describes the conditions/predicates where the asserts should be placed.
Next, the contract is converted into an intermediate representation (IR), such as LLVM bit-
code where the policy specifications are inserted into the contract bitcode as asserts. The
points at which the asserts/predicates are placed are determined through static analysis on
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Figure 2.1: The pipeline of ZEUS [19]

Figure 2.2: Zeus vs Oyente Verification Time
[19]

the IR. The modified IR is then fed into the verification engine which uses “constrained horn
clauses (CHCs) to quickly ascertain the safety of the smart contract” [20]. Another advan-
tage of using LLVM bitcode is that any verifier that works with LLVM bitcode can be used.

The authors discuss several motivations for creating ZEUS. They mention the limitations
of Oyente, including its bug detection at bytecode level being neither sound or complete. F*
on the other hand leaves out constructs such as loops. “93% of contracts contain loops” [20],
so this is an important aspect to consider. Finally F* requires manual proofs, which have to
be written out per contract; something people may not want to do.

Zeus is considerably faster at verification than Oytene, as can be seen in Figure 2.2. ZEUS
boasts zero false negatives due to conservative taint analysis, with far less false positives
than Oyente [20]. Furthermore, ZEUS is more scalable due to less verification overhead and
quicker speeds. For example, the send construct can no longer cause reentrancy due to send
limiting the fallback function to 2300 gas. This is not enough gas for storage or function
calls. However, Oyente examines CALL bytecodes when checking for reentrancy, which both
send and call map to. The authors of ZEUS argue that this is the cause of the false positives
that Oyente generates. Examining CALL’s further for their differences is one improvement
ZEUS has made to reduce false positives in reentrancy vulnerability detection.
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Chapter 3

Design

We will now give an overview of the design behind our Ethereum translator, in particular
focusing on the layout of memory through a callstack and heap.

3.1 Building upon Existing Architecture

The current architecture of the Whiley compilation process involves Whiley files being con-
verted through the language compiler (WyC) into Wyil files. Wyil files are an intermediate
language.

Figure 3.1: Whiley Compilation Process

Whiley currently compiles to JavaScript and Java Bytecode, and attempts have been
made to compile to other languages such as C. The overall architecture can be seen in Figure
3.1. Our Ethereum compiler visits all parts of the Abstract Syntax Tree of the Whiley In-
termediate Language file, and translates them into Ethereum bytecode. As typechecking is
already completed by the Whiley language Compiler, my implementation has been purely
focused on the translation to bytecode, rather than ensuring the validity of a particular pro-
gram.
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Figure 3.2: Example dispatcher code

Figure 3.3: Dispatcher

3.1.1 Overview of Contract Execution

To call contract code, there needs to be some way of interacting with the deployed contract
which is stored as bytecode on the blockchain. An Application Binary interface (ABI) is
the common approach used to provide the information needed to call a contract. An ABI
is an interface that allows you to encode contract calls for the EVM or decode data out of
transactions. An ABI tells us the parameters required to invoke a specific function when
calling a contract, and provides the return data in an expected format. The Solidity ABI is
a popular example of an ABI for the EVM [3]. Functions in Solidity contracts are identified
through a unique hash based on their function identifier. The Solidity ABI can be used to
hash the identifier of the function we wish to invoke, so we can dispatch to this function in
bytecode.

A dispatcher allows you to jump to a specific function. The Solidity dispatcher takes the
the hash of the function identifier in a switch-like block and jumps to the associated position
of that function in bytecode. Figure 3.2 shows some example code that provides an idea of
what this could look like, where if the input matches any of the hashes, we jump to that
function, otherwise invoke the fallback function. These jumps are visualised in Figure 3.3.

Our Compiler made use of an in compiler-ABI which records function information, and
a primitive dispatcher that jumps to a compile time specified function. The implementation
of this will be discussed in Section 4.1.

3.2 Memory Layout

The Ethereum virtual machine provides no mechanism for allocating space for variables or
other data structures that we need. Therefore, we have to implement this ourselves. Storing
into memory is important as using EVM stack memory would not allow us to access any
particular element when we need it. Furthermore, Whiley has dynamically sized data struc-
tures such as unlimited sized arrays and open records. This means there needs to be some
way of storing these such as in a heap. EVM memory was partitioned into two sections. The
callstack, and the heap. This layout can be seen in Figure 3.4.
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Figure 3.4: Memory in Ethereum Virtual Machine

1 / / main f u n c t i o n
2 function P1 ():

3 int LV1 = 1

4 P2(l1 , 5)

5

6 function P2(int p1 , int p2):

7 int LV1 = 7

8 bool LV2 = false

9 P3 ()

10

11 function P3 ():

12 bool LV1 = true

Listing 3.1: Three functions in Whiley code

3.2.1 Call Stack

A callstack is a typical approach to representing the state of a machine code program. A
callstack allows for keeping track of the state and variables of multiple different functions
in memory, as they are invoked during the lifetime of a program [35]. The callstack is com-
prised of stackframes, each of which represent a function call and its arguments. When a
function is invoked, a new frame is pushed onto the stack which contains the function return
address, arguments and local variables.
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Figure 3.5: The Callstack in Memory

It is common on the EVM to use the concept of a free memory pointer to maintain a
record of the position that the next byte of memory can be allocated to. Memory in EVM
can be allocated through the operation MSTORE and loaded through MLOAD. Our system uses a
free memory pointer called the stack pointer to maintain this position, which is a component
of the call stack. A callstack makes use of a stack pointer, and frame pointer. The stack
pointer stores an address that points to the top of the stack. This position is where the next
stackframe will be allocated to, and is the end of the active (highest) stack frame. The frame
pointer, is used to point to the start of the active frame in the stack.

Within the scope of a particular function in the compiler, variable names are associated
with an offset. This offset indicates how far along the active stackframe the variable is stored
at. Therefore, the frame pointer added to the offset will provide the variable location in
memory. Each function is abstracted in my translator using a FunctionScope object. Hence
duplicate variable names within different functions of a program are uniquely associated
with the function scope they belongs to, meaning variables of the same name within differ-
ent functions will not point to the same position in memory.

For instance, consider the Whiley code in Listing 3.1. In this code we have 3 functions,
each of which are visualised as procedures in the callstack in Figure 3.5, where Procedure 1
represents P1, Procedure 2 represents P2(), and so on. Notice that in both P1(), P2() and
P3() there is a variable named LV1. However, LV1 is of different types and values in each
function, and are stored in their associated stackframe in the callstack as seen from their
associated procedure. Despite having the same variable name, their position in memory is
distinct, and these positions are maintained in the FunctionScope object which holds their
offset in memory in their stackframe. The procedure also maintains the return address of the
previous procedure so after that function has been invoked the EVM can jump to where that
function was called before proceeding. Notice that P1() doesn’t have this return address
however, as it is the first function called (main function). Also notice that, the function P2()
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takes in two parameters which are held in Procedure 2 after the return address of P1().
After the invocation of a function, the frame pointer is set to the value of the stack pointer,

and the stack pointer is incremented based on the amount of memory it needs to allocate.
Likewise, after the function has been invoked, the frame is popped off the stack, which
results in the stack pointer being set to the value of the frame pointer, and the frame pointer
is moved down to the start of the previous frame.

3.2.2 Heap

Whiley has dynamically sized data structures, such as arrays and records, so a heap was
used for the allocation of these. The heap is a region in EVM memory set aside for the
allocation of arrays and records, as well as scratch space. The heap begins at a user-defined
index in EVM memory after the callstack, which allows for the callstack to be expanded or
contracted depending on where the heap begins. This was set to word 25 in EVM memory,
which is sufficient for the test cases. If a larger callstack was needed, this value can be
changed easily. The heap utilises a heap pointer which maintains the position for the next
free position in heap memory. After the heap pointer, another 10 words are reserved as
scratch space for various operations. The use of the heap will be discussed in Section 3.3.

Using a separate section of memory for dynamically sized data structures (composite
types), means that these structures can be resized/reallocated without impacting the vari-
ables within a stackframe. Although composite types could be stored on the callstack, be-
cause they can be of arbitrary length this could be difficult to achieve as you would have to
copy the whole composite structure as the EVM exits from one function into another func-
tion. Instead, a pointer to the section of memory in the heap can be maintained, and this
pointer can be copied. Furthermore, as the stackframe holds references to composite struc-
tures stored in the heap, a reallocation of one of these structures would mean the current
stackframe would only need to update its reference to point to the newly allocated struc-
ture.

3.3 Composite Data Structures

Arrays and records (composite data structures) are both stored in the heap using a uniform
representation for simplicity. Creating a composite data structure results in memory alloca-
tion from the next available slot (heap pointer value). The first (256 bit) word of a composite
data structure holds its length (number of values). For each value of the composite structure,
the next word is used to hold a value, followed by a word that indicates the type of value.
This second word indicates the type of the value, primitive types hold 0, whilst pointer types
store 1. Figure 3.6 shows an array that is allocated on the heap, where the first word holds
the length of the array, and each following holds a value and type of value respectively. As
the array holds 3 values (integers 1, 2 and 3) which are all primitives, the type of each is
indicated as primitive with 0 at each type word.

Each value is stored in a word for simplicity, as storing multiple values in one word can
be difficult in EVM and result in more complex operations. This is not an optimal solution,
and is inefficient because 255 extra bits are being utilised within each type word (1 bit is
sufficient to represent two types). It was done this way so that the uniform representation
of composite structures could be iterated over in the same way, so only one one equals
and clone method had to be written. Using 256 bits for each type tag is huge amount of
unneeded space as we are only encoding 1 bit of information (1 or 0). Encoding the types
within composites could have been restructured in a number of ways in order to use less
memory. For example, given a composite with length of 256 elements or smaller, all the tags
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Figure 3.6: An Array on the heap

1 {int a, int [] b} rec = {a: 9, b: [7]}

Listing 3.2: A Whiley record

Figure 3.7: Composite data structures on the heap

Figure 3.8: A 2D array on the heap

for could be compressed into one word. Each bit of the word would represent a type within
the composite (pointer type or primitive). If more types were added, this could be extended
to use two bits or more to encode each type. With this design, a composite with 256 elements
would use 256 words for each value, with one word to encode the types, and one word to
hold its length.

Whilst my design of composites is not optimal, it does facilitate the future extension of
the compiler to support union types. Union types allow multiple types to be stored in a data
type. For instance, an array that can store both integers and booleans. Keeping the structure
of my design the same, union types could work by using more tag values for the new types
that unions would allow (instead of just 0 and 1, could have tag values 2, 3, 4... for however
many types the union would support). Although inefficient, our structure provides us the
convenience of being able to extend the compiler under less difficulty.

A composite data structure can be made to hold another composite data structure. For
example, an array that stores arrays (2D arrays), or a record that stores an array or record.
Consider the Whiley code in Listing 3.2 which shows both a integer, and an array of integers
inside a record.
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Figure 3.7 shows the representation of this record in memory. The field a directly places
the value 0x09 in memory, whilst field b stores a pointer to the array. The word holding
0x01 after the memory address 0x38 indicates that this is a pointer type. Similarly, Figure
3.8 shows a 2D array where each element of the top most array points to the beginning of
the associated sub array. Note that self referential arrays are prevented in Whiley due to
value semantics so cycles cannot occur.
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Chapter 4

Implementation

In this chapter we are going to discuss the implementation of some of the features of our
compiler, such as variables, patching, short circuit evaluation, control flow and composite
data structures. I am now going to walk you through some of the details.

4.0.1 JEVM

This project utilizes a Java implementation of the Ethereum Virtual Machine called JEVM [29].
JEVM is a library that contains definitions and implementations of the various operations in
EVM. For instance, in the bytecode class in JEVM static variables are associated with each
EVM operation. Using JEVM is useful as it abstracts out the EVM operations and allows us
to refer to them by name instead of bytecode number. JEVM provides us with a nice API
that allows us to manipulate bytecodes and makes it easy to execute.

However, there are limitations to using JEVM. Firstly, it is still being developed, and not
every Ethereum operation has been implemented, and the ones that have been implemented
are not necessarily correct. We found bugs in the implementation of SUB and the comparison
operators for example, which have since been fixed. As JEVM is implemented by my super-
visor David Pearce, bugs found can be patched in-house, and any questions regarding its
implementation can be answered easily. Although convenient, there are a number of other
options we may want to consider in the future for an EVM implementation. For example,
the Java implementation EthereumJ [25]. Using other implementations may help us verify
whether the bytecode produced by JEVM is correct, and to examine what differences may
be noticed between executed bytecode from the EVM’s, if any.

4.1 In-Compiler ABI and Dispatching

Our compiler makes use of an in-compiler ABI, and doesn’t support the use of an existing
ABI such as the Solidity ABI. Because there is no external way to interact with our contracts,
Solidity contracts cannot call Whiley contracts. The in-compiler ABI works by recording
function information such as function jump locations. A primitive dispatcher is used within
the bytecode of a program, where we begin by dispatching to a specific start function de-
cided upon at compile time. This simplification means that when a contract is executed, it
will always execute in the same order from a main function. My compiler has been set to
dispatch straight to the test() function, which is the name of the main function in the test
suite, though can be set to the name of any function in the program. This means that unlike
Solidity’s ABI, which allows any function to be invoked in a deployed contract by jumping
based on a specified hash, a contract created with my compiler will always dispatch to a
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function specified at compile time. This also means that there is no currently no fallback
function.

4.2 Code Generation

An Environment class was created which facilitates the layout of memory. Environment

provides an abstraction layer that handles the setup, allocation and retrieval of memory
when storing variables. It also maintains the locations of the memory pointers (stack, frame,
heap pointers), heap start position, scratch space, and other low level details. This means
that if we wanted to make our compiler backwards compatible with Solidity, changes could
be made, e.g. in Solidity the free memory pointer is stored at the second memory index
(0x40) instead of the first index.

4.2.1 Patching

EVM jump targets are variables read from the stack. When receiving an instruction that a
block of code needs to be jumped over (skipped), the translator does not necessarily know
ahead of time where the target is. Furthermore, it needs to work out where to put the jump
destination, JUMPDEST, which acts as a target you can jump to. To solve this problem, a
temporary jump target variable is added on the stack (0x00), and no jump destinations are
added. We leave these to be later replaced with the correct values at the correct positions, as
seen in Figure 4.1. We call this patching.

Figure 4.1: Patching a jump address to point to our target variable on the EVM stack. This
target variable is added as a JUMPDEST

From Figure 4.1 we see the replacement of the incorrectly stored jump target on the stack,
and a Jump Destination is added (JUMPDESTs) for the position our target should jump to. The
temporary address is replaced with the target address and a jump destination is added at
this target, resulting in the program being able to jump to the correct target. Because EVM
reads static jump targets, adding a JUMPDEST means the target address and/or jump variable
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Figure 4.2: Branch offset for 3 byte addresses compared to 4 bytes. As we increase the size
of the address, we need to move the location of our jump destination

location may now be incorrect. Hence, the affected patches had to be updated for an added
JUMPDEST.

4.2.2 Jump Addresses

One assumption we made for this project was that all jump addresses would use a fixed
amount of three bytes. This was to simplify patching, as increasing the number of bytes
for a patch increases the distance between that patch and other patches. This will mean
every patch between the added one will have to have its variable address position and jump
destination updated to accommodate for the size of the added one. As these addresses are
not of a fixed size more calculations/shifting will have to take place, resulting in a cascading
effect where changing one patch may result in another patch to be changed which may affect
other patches and so on. A simple example of this can be seen in Figure 4.2 which shows that
using a larger address would result in the movement of the jump destination. In this figure
we can see that as we increase the address variable from 3 bytes to 4 bytes, the position
it jumps to needs to be changed from 66356 to 66357 to accommodate for this change. If
we had other patches after this variable, they would similarly need to be shifted down in
memory.

Originally we tried using one byte addresses, but found this would not be sufficient as
we attempted to run larger test cases. In the end we opted for 3 bytes which was sufficient
for the test cases and because it was a fixed size, patching was easier to implement. It was a
priority for the project to translate as many features as possible for the compiler so memory
efficiency was not a concern. This was also evident in the way we designed the layout
of memory, such as using 1 word tags per value for composites in the heap. However, a
downside of this simplification is that larger programs that require more than 3 byte jump
addresses will not work. Future work could consider how this could be improved such as
the creation of a generalised solution that varies patch size for jumps.

4.3 Language Features

This section is going to discuss the language features implemented in this project.
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