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Abstract

Many automatic graph layout algorithms can cause
shaped vertices and edge labels (which have a size
when drawn on the screen) to overlap in the result-
ing visualisation. Overlaps can hide information that
users expect to see in cases where the graph is small.
We perform two experiments on a large real-world set
of small (10-110 vertex) graphs to compare how differ-
ent combinations of forces in Eades’ force directed lay-
out algorithm affect the final graph layout. We iden-
tify an optimal combination of forces from those we
tested. In particular, we found that adding charged
walls, variable node charge and edge label charges,
minimises overlaps. We also found that using Hooke’s
Law over Eades’ logarithmic attractive force tends to
reduce edge crossings.

1 Introduction

Many different kinds of data can be represented visu-
ally by graphs. Automatic graph layout allows for the
visualisation of systems ranging from social networks
to mind maps and flow charts. In these cases and
many other real world applications the vertices and
edge labels of the graph will be shaped ; they will have
some shape and size when drawn rather than being a
single point. Shapedness comes from the context of
the graph. In cases where the user wishes to render
large numbers of vertices on the screen, all details of
individual vertices and edges is lost due to the lack
of screen resolution. In those cases it is the overall
pattern and structure of the graph that is interesting.
In contrast, when only a small number of vertices are
rendered, each can take up a reasonable amount of
space on the screen. Each vertex can contain infor-
mation which a user may wish to see. Overlaps, where
vertices or edge labels occlude each other, limit the
amount of information that can be conveyed to the
user. While a lot of research focuses on the visuali-
sation of large graphs, we believe that there are still
problems in the visualisation of small labelled graphs
as shown by the existence of small graph benchmarks
in venues such as Graph Drawing [12], and the use of
small graph layout algorithms as part of large graph
layout [24, 1].

Automatic graph layout is meant to position all
the objects creating a “good” visualisation. What it
means to be “good” is discussed in Section 2, but in
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this work we are looking particularly at preventing
overlaps between any combination of shaped vertices
and edge labels. We consider both the count of how
many overlaps there are and the proportion of pixels
that are hidden. As a sanity check, we also record
other properties of the layout and use the widely
known and used heuristic of number of edge cross-
ings [26].

Consider the example small shaped graph laid out
in two different ways shown in Figure 1. This shows
an extract from a social network where vertices con-
tain the name of the person they represent, and edges
have the type of relationship between people. In the
top layout two of the vertices are overlapping, while in
the bottom they are all drawn separately. In the top
layout, it is hard to determine the names of the two
overlapping vertices, and to determine which edge is
connected to which. In the bottom layout there is no
such confusion.
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Figure 1: A good and a bad layout of a social network.
In the above layout two of the vertices are overlapping
and it is hard to read what they say or what edges
connect to them.

While the situation of overlapping vertices can
be avoided, most of the core layout algorithms as-
sume that vertices and edge labels are not shaped
– an assumption which is not upheld in many prac-
tical applications with small graphs. Furthermore,
previous suggestions about how to resolve this is-
sue have not been evaluated on a large scale (e.g.
[14, 5, 4, 17, 9, 18]).

This paper contributes an evaluation of a range of
variants to the standard force directed layout algo-
rithm based on Eades’ Spring Embedder [8] to pre-
vent overlaps from occurring given shaped vertices
and shaped edge labels. We experimentally evaluate
a set of variants across a large real-world data set



using a suite of metrics.
We carried out a large scale experiment across

13,720 realistic graphs to evaluate how the numbers
of overlaps and edge crossings changes as you use dif-
ferent combinations of forces. We followed this ex-
periment with a second smaller experiment validat-
ing the results by ensuring that every combination
was covered. The graphs ranged in size from 10 to
110 vertices and come from a graph drawing bench-
mark containing real world data from a major US
corporation[12].

We found that:

1. Using charged walls, degree-based charge and
charged edge labels reduce overlaps by an order
of magnitude over the base algorithm.

2. Using Hooke’s Law instead of the standard loga-
rithmic attractive force tends to give layouts with
fewer edge crossings.

Overall we found that the force directed layout al-
gorithm without modifications performs significantly
worse than the best modified version with respect to
both overlaps and edge crossings. The ideas presented
here can be applied to other graph layout algorithms,
can be used in the layout of large graphs when using
multi-level layout algorithms [1], and can be used for
techniques such as multi-dimensional scaling [24].

2 Background

The task of graph layout is to assign a position to each
vertex in a graph. This set of positions is called a lay-
out, and should be good. While an exact definition of
good is largely subjective, metrics exist for approxi-
mating how good a graph layout is [25, 26]. These
metrics quantify different properties of the graph,
such as number of edge crossings, angle of separation
between edges connected to the same vertex, or en-
forcing certain rules such as keeping edges as straight
lines, or promoting symmetry. Some metrics, such
as maximising the similarity of edge lengths, involve
solving NP-Complete problems [8, 19]. As there are
many metrics, we choose two on which to focus. The
first is the number of overlaps, as that is the primary
purpose of this paper. The second is the number of
edge crossings. This metric is widely known, is used
by people performing manual graph layout [26], and
serves as a sanity check on how our changes affect
other properties of the graph.

2.1 Force Directed Layout

Our work looks at extending the force directed layout
algorithm, based on Eades’ Spring Embedder [8], with
the edges of the screen (or layout area) as an immov-
able barrier as per Fruchterman and Reingold [10].
There are other graph layout algorithms, such as:
the Kamada and Kawai method which also deals
with spring systems but solves them using Newton-
Raphson on derivatives [20]; likewise spectral layout
which works by finding eigenvectors [13]; finally even
a method where users manually layout subgraphs [30].
More algorithms can be found in [6]. We chose to use
force directed layout for this work because there are
many real world graph layout systems that implement
it (e.g. [16, 15, 2]); it is iterative, allowing users to in-
teract with it while it is running; it can be used with
large graphs [24, 1, 29]; and because it is claimed to
promote symmetry where possible [8]. However, the
ideas from this work could be extended to other lay-
out algorithms.

The force directed layout algorithm simulates the
graph as a physical system (Figure 2). The basic code
can be found in Algorithm 1. Edges, like springs, pull
vertices together. Vertices, like charged particles, re-
pel each other. The system uses friction to prevent
dynamic equilibrium so it tends towards a fixed state.
The result of the computation is then used as a visu-
alisation of the graph. The user can interact with the
graph while the algorithm runs.

The algorithm terminates either when a certain
number of iterations have finished or when the kinetic
energy is low enough. The kinetic energy is a measure
of the activity of the system. Given the mass (m) and
the velocity (v) you have that kineticEnergy = 1

2mv2.
Low values for the kinetic energy suggest that very
little movement is happening so the algorithm can
now be stopped.

++
+

++
+

Coulomb’s Law

Spring Force

Figure 2: Basic Forces

Various forces can be used to model attraction and
repulsion. Almost all the papers we surveyed used
electrostatic repulsion (Coulomb’s Law) as the repul-
sive force between vertices [8, 10, 6, 21]. In contrast,
two different forces are used for the attractive force.
Some papers, including Eades’, use a logarithmic at-
tractive force [8, 21, 23]. However, Eades originally
describes edges as springs, so Hooke’s Law (the phys-
ical law for ideal springs) is a natural alternative. It
is not clear how they compare, though Battista et al.
claim that from their experiences the logarithmic vari-
ant does not provide sufficiently better results given
the extra computation [6]. We experimentally com-
pare both attractive forces to see if there is a differ-
ence.

Algorithm 1 General force directed layout algorithm

1: generateInitialLayout()
2: for 0 .. maxIterations do
3: totalEnergy = 0
4: for all Vertex v do
5: tempForce = (0,0)
6: for all Edge {v,w} do
7: tempForce += springForce(v,w)
8: end for
9: for all Vertex w do
10: if v 6= w then
11: tempForce += coulombsLaw(v,w)
12: end if
13: end for
14: v.move(tempForce)
15: totalEnergy += v.kineticEnergy()
16: end for
17: if totalEnergy ≤ energyCutOff then
18: break
19: end if
20: end for

2.2 Existing Modifications

The original definitions used by Eades do not con-
sider vertices as having any size, or edges as being



labelled [8]. In most graph applications, vertices have
a dimension to consider, as they are represented on
the screen, and edges may be labelled. For the sake
of simplicity, we will refer to everything that is drawn
except edges as images (e.g., text, raster images, etc).
Having images leads to what we call occluded pixels,
and overlaps. An occluded pixel is a pixel of an im-
age which is covered by a pixel from a different image.
An overlap occurs when two images are drawn so that
one occludes some pixels of the other. This results in
parts of the graph not being visible, reducing clar-
ity and information retrieval from the visualisation,
and so should be minimised. Our work focuses on
minimising occlusions and overlaps.

Some previous works on reducing overlaps are
modifications to the layout algorithm. Wang and
Miyamoto implemented modifications that cancel out
attraction of occluded vertices, vary constants to
account for vertex size, and integrate a constraint
solver [28]. They did not do an experimental analy-
sis, except to time the layout of a single graph, and to
generate six figures for the paper. Harel and Koren
claim that näıve extensions to layout algorithms to
deal with shaped vertices often have negative reper-
cussions. They proposed changes to the Kamada
and Kawai method and modifications to the spring
method [14] that they claim do not have these limi-
tations, but tested their ideas on only 7 graphs. Ku-
mar et al. reduce clutter by giving certain vertices a
stronger repulsive force in directed acyclic graphs [21],
but test their algorithm on just two graphs. We ex-
tend this approach to create our degree-based charge
force (discussed in Section 3.1). Lin et al. add torque
to allow vertices to pack better [23], but this allows
vertex images to end up at arbitrary angles, poten-
tially decreasing readability. However, their analysis
only contained 6 graphs.

Other works apply a post-processing step to ‘fix’
a layout. Force Transfer [18] and Force Scan [22] are
two common algorithms to iteratively move vertices
apart until they no longer overlap. Each of their ex-
perimental evaluations involved looking at only seven
graphs. Frishman and Tal propose an algorithm to
unclutter an existing layout [9], by mapping from
the existing layout to one with a better information
density. This algorithm is designed for huge graphs,
where details on individual vertices are not visible,
but was tested on just 5 graphs. Gansner and North
use Voronoi diagrams to move vertex centres away
from other each other [11], and notably introduce
curved edges. Their experiment consisted of only nine
graphs. Dwyer et al. use constraint solving to spread
the vertices [7]. They tested their performance on
some randomly generated graphs, but only tested the
layout quality on a single graph.

None of the works above performed any large scale
testing of their algorithms, with the largest test set
containing only 12 graphs. This makes it hard to
generalise their results. For this reason, we perform a
large scale evaluation on over 13,720 realistic graphs,
many of which are anonymised graphs from AT&T.
Additionally, of all the algorithms we surveyed, only
the ePRISM [17] algorithm explicitly considers edge
labels, despite their common use in practice.

3 Algorithm Design and Variants

We use the general force directed algorithm as de-
scribed in Section 2 as the basic algorithm. We de-
scribe some of the implementation details below. The
system was implemented using Java 1.6.

Initial placement places each vertex at random.
The natural length for the attraction force is set as
the minimum distance such that the two connected
vertices do not overlap [22, 1].

Vertex - vertex repulsion is done with Coulomb’s
Law and has the form F = −ke q1q2

‖r21‖2 r̂21, where ke is

a constant, qi is the charge on the given vertex, r21
is the distance between the two vertices, and r̂21 is
the unit vector between the two vertices. All vertices
have the default charge of qvertex.

To move a vertex we convert the total force on
it to acceleration using Newton’s Law

(
a = F

m

)
. All

vertices have the same mass (m). Each time a vertex
is moved dampening reduces the velocity by a fixed
proportion, to ensure that the system eventually set-
tles to a static layout. The plane boundaries in our
system are an impenetrable barrier representing the
edges of the screen. Any vertex that hits a wall has its
component of velocity in the direction of the collision
reversed.

3.1 Variable Forces

We will now describe the different forces we experi-
mentally investigated. Recall the basic configuration
of forces from Section 2.

Hooke’s Law (H) Hooke’s Law is the physical law
for ideal springs, and so is a logical candidate for the
spring force to model the edges. Its advantage is that
it is less computationally expensive than the logarith-
mic spring force [6]. It has the form F = −kh (x−N),
where x is the vector between the two vertices, N is
the natural length, and kh is a constant describing
how stiff the spring is.

Logarithmic Spring Force (L) This is the spring
force Eades’ original paper used, and is also used in
other work [8, 6, 22]. It has the form F = kl log

(
x
N

)
where kl is a constant, x is the distance between the
two vertices, and N is the natural length. This gives
it a behaviour that is similar in shape to Coulomb’s
Law, making it a logical, if more computationally ex-
pensive, alternative to Hooke’s Law.
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Figure 3: Charged
Walls (W)

Charged Walls (W)
Davidson and Harel pro-
posed (but did not imple-
ment) this as a mechanism
for keeping vertices inside
fixed boundaries [5]. Wall
charge is just Coulomb’s
Law applied to a line the
length of the boundary
as in Figure 3. This
serves several purposes:
it prevents unconnected

components from moving infinitely far from each
other; it prevents layouts settling close to the
boundary where their ability to move is limited,
impairing their ability to move into a minimal energy
configuration; and it centers the resulting image.
Wall charge in Table 2 shows the charge of each wall
as used in our experiments.
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Figure 4: Wrap-Around
Forces (A)

Wrap-Around
Forces (A) Wrap-
around forces cause
the repulsive force to
act as if the layout
is on a torus as seen
in Figure 4. This
does not change how
walls affect the ver-
tices, but Coulomb’s
Law calculations are
performed in both

directions. Given any two vertices, this force pushes
them to be equal distances from each other both
ways around the plane, providing a similar effect to
charged walls, where the vertices take the place of the
charge on the wall. We hypothesize that combining
wrap-around forces with charged walls will center all
the graphs neatly. This is a novel force which we are
testing.

+ +

+

Figure 5: Charged Edge La-
bels (E)

Charged Edge La-
bels (E) Edge la-
bels can be occluded
by other images. To
prevent that, charged
edge labels makes la-
bels charged in the
same way that ver-
tices already are as in

Figure 5. This force is based on the obvious extension
to force directed layout where edge labels are treated
as special nodes. Each label has charge qlabel, and so
repels vertices to which it is not connected. Labels
are unable to move independently so forces applied
to a label instead affect the two vertices which it is
connected to. This avoids moving the label indepen-
dently, while allowing labels to affect the layout.

+ +

Figure 6: Collisions
(C)

Collisions (C) Colli-
sions between vertices is a
trivial extension to force
directed layout as it is a
based on physical simu-
lation. The collisions are
ideal billiard ball collisions
using the coefficient of

restitution. Collisions are only implemented for
vertices.

Our implementation computes the velocity
changes due to the collision and sets the new veloci-
ties appropriately as in Figure 6. While it is possible
to move the vertices apart until they are no longer
overlapping, we do not do this because there may
not always be a sensible layout possible where there
are no overlaps. Some graphs may have very dense
regions, or just so many vertices that allowing some
amount of overlaps is actually beneficial.

++

+ + +

Figure 7: Degree-
Based Charge (D)

Degree-Based Charge
(D) Kumar et al. pro-
posed to increase the
charge on certain ver-
tices to give them more
space [21]. Their technique
relies on the graph being a
directed acyclic graph. We
generalise their technique
to general graphs, giving
high degree vertices higher

charge. The larger the degree of a vertex the more

space it needs, therefore the more it should repel
other images as in Figure 7. Thus we multiply the
standard Coulomb repulsion between the vertices by

the max of 1 and degree(v1)∗degree(v2)
4 . We use the

product of degrees to increase the strength of the re-
pulsion quickly, as the repulsive force falls off quickly
with respect to distance. The original formula cannot
be used directly as it requires directed acyclic graphs.
The constant 4 is chosen for the denominator so that
low degree vertices are not affected (supposing an
average low degree vertex has degree 2).

4 Experiment

We ran two experiments comparing different combi-
nations of forces to see how they affect the number
overlaps, and edge crossings. To measure overlaps,
we recorded both the number of overlapping vertices
and the number of occluded pixels. We also recorded
the time taken to lay out each graph, to see how the
modifications affect performance. We use Coulomb’s
Law as the repulsive force in all the experiments as
it is used in Eades’ original work [8], and makes in-
tuitive sense as the relevant physical law. In the first
experiment we ran each of the fourteen combinations
shown in Table 1 once on each of the 13,720 graphs
in the dataset. In the second we ran all combinations
of forces on a random sample of 100 graphs, to show
that we did not miss any potentially good force com-
binations and to get a more complete picture of how
forces affect computational performance.

Each layout was run until either the kinetic energy
(a measure of the activity of the system) dropped
below a given force cut off, or the maximum num-
ber of iterations was reached. We use short names
comprised of a letter for each active force (excluding
Coulomb’s Law) in this paper for compactness.

Hypothesis We set out to investigate the following
hypotheses.

H1 Changing between H and L has no effect on lay-
out.

H2 Adding in all the additional forces except for C
(i.e. WEDA) results in the lowest number of over-
laps.

In order to test the various algorithms we used
three test data sets from GraphDrawing.org [12]. The
sets are called Rome, North, and random-dag. We use
these graphs as they mostly contain graphs from real
world applications and are small - containing 10 to
110 vertices, and 9 to 241 edges. There are a total of
13,720 graphs, of which all are used.

Choice of Constants We selected the image size
based on a personal social network context such that
they are small, but still easily recognisable. The
width and height of the plane for embedding was lim-
ited to what most modern screens support. The con-
stants were all set by trial and error, such that they
looked reasonable on several data sets. Choice of con-
stants is a difficult exercise, as small changes can have
unforeseen effects. Many papers have simply ignored
the issue entirely e.g. [6, 8, 22, 3, 11, 22, 21, 4]. A
standard practice is to use a heuristic method sim-
ilar to ours, such as optimising for a simple case
e.g. [10, 28, 20]. While such methods are not ideal,
addressing the core issue of how to choose optimal
constant values is beyond the scope of this paper.



In the second experiment, the width and height of
the screen were fixed to 1920 x 1080 to mimic a normal
screen, and the image size was changed to be square
rather than rectangular like a screen. We made these
changes to see if small changes to the setup would af-
fect the relative performance of the best combination
of modifications. The full set of constants for both
experiments is shown in Table 2.

5 Results

We used R version 2.11.1 (2010-05-31) [27] to anal-
yse the results of both experiments. We recorded the
number of pixels drawn, the total number of pixels,
the number of overlapping images, and the number of
edge crossings. The number of pixels drawn compared
to the total tells us how many pixels were occluded
and therefore how much is hidden. The number of
overlaps gives an indication of how crowded the lay-
out is. While a layout can have no overlaps and still
be crowded, we only look at crowding that results in
occluded pixels. Edge crossings were recorded to see
if other features of the layout were affected by our
changes, and as minimising them is considered to in-
crease goodness [25, 26].

As the resulting data does not seem to follow a
normal distribution, we used the Wilcoxon rank-sum
test for significance testing as opposed to the t-test.
We hold that the difference is significant at 95% sig-
nificance (p < 0.05).

5.1 Experiment One

The list of medians for each force in the first exper-
iment is shown in Table 3. The entries in bold blue
are minima. All reported values have been rounded
to 4 significant figures, with trailing 0s omitted.

The medians for the proportion of possible over-
laps in the graph (of any size) and the raw count of
overlaps can be found in Table 3. In both cases H
and L (p = 0.1176, 0.3186 resp.) are not significantly
different and the best performer is LWED. In terms
of area lost due to occlusion the best performer is
LWED. With respect to the proportion of edge cross-
ings compared to an estimated upper bound (calcu-
lation from [25]), and also as a raw count HWED is
the best performer.

5.2 Experiment Two

The list of medians for each force in the second exper-
iment is shown in Table 3. The entries in bold blue
are minima. All reported values have been rounded
to two decimal places.

LD was the best performing combinations with re-
spect to edge crossings. LWED was best in percentage
of overlaps and occluded pixels, and best equal (with
HWED) in count of overlaps. In 35 (72%) of cases
the same combinations of forces, with H rather than
L had less edge crossings.

6 Discussion

The LWED algorithm was the most effective at re-
ducing overlaps in the graph, as well as having the
lowest number of hidden pixels. While both results
tables shows that in terms of raw counts HWED and
LWED are the same, this is only because we are show-
ing medians in the table. If we considered arithmetic
means then LWEDs would be lower. This would make
it the best algorithm for our original purpose. It also
fared well with respect to edge crossings in the first

experiment, coming second equal. HWED had the
least edge crossings and came second with regards to
minimising occluded pixels. An example graph gen-
erated using HWED can be see in Figure 9.

This disproves our second hypothesis that
HWEDA or LWEDA would be the best force, but
does show that adding in extra forces improves per-
formance with respect to the metrics used.

All tests run with wrap-around forces (labelled A)
fared poorly. This was a surprising result, as with two
vertices this causes vertices to spread out. Upon run-
ning some additional simulations with larger graphs,
we found that while it did push all the vertices to-
gether, it did so too much leading to poor perfor-
mance. It seemed to perform particularly poorly on
sparse non-planar graphs.

The results from the second experiment confirm
that the LWED and HWED still perform the best.
The changes to the parameters only affected the or-
dering of force combinations that did not perform
well.

They also show that keeping everything else con-
stant, changing from using Hooke’s Law (H) to the
logarithmic spring force (L) generally increases the
number of edge crossings. While we are not sure what
causes this, we think it has to do with how the differ-
ent spring forces change over a small distance while
a vertex is trying to move over an edge to make a
crossing.

We were interested in how different forces affected
performance. We recorded the runtime of each layout
in the second experiment and used that to find an
average run time for a single iteration of the algorithm
for each.

There are three forces which visibly affect program
runtime - E, A and C. Figure 8 shows the average
time taken for a single iteration of the loop coloured
by which combination of these forces is active. The
figure shows that the charged edge labels (E) force
incurs a clearly noticeable time increase. This is due
to this modification requiring an extra inner loop run-
ning over all the edges. The presence of both C and
A increases the run time more than having both in-
dependently would suggest. We believe this happens
because the wrap-around forces (A) force promotes
collisions, creating more work for the collisions (C)
force.

Validity The most notable omission of the exper-
iments is that we do not explore how different com-
binations of constants affect the output of the pro-
gram. This is something that has not been explored
in other papers. It also has a very large search space,
and would take infeasibly long to run.

While we used a large test set of graphs, they
do not encompass all possible graphs. They span a
variety of graph densities, from 0.8608% to 85.45%,
though the majority are less than 8.602%, but all ex-
cept 3 are connected. Nevertheless, we believe that
the set of graphs tested here is representative of many
small real life graphs as it is sampled from a real data
set. We hypothesis that changes and variances in im-
age size can be accounted for by linked changes to
physical constants for each vertex. This is supported
by the second experiment where images were smaller,
but the best performing forces were the same.

Future Work One difficulty in evaluating algo-
rithms is the selection of constants, and what effect
this has on the resulting layout. Further work eval-
uating the effects of constants would be valuable for



Table 1: Sets of forces we tested in experiment one
Experiment 1 2 3 4 5 6 7 8 9 10 11 12 13 14
H (Hooke’s Law) X X X X X X X
L (Logarithmic Attraction) X X X X X X X
W (Charged Walls) X X X X X X X X X X
E (Charged Edge Labels) X X X X X X X X X X X X
C (Collisions) X X
D (Degree Based Charge) X X X X X X
A (Wrap-Around Forces) X X X X X X

Table 2: Constants used in both experiments
Constant Value Constant Value

All Experiments
ke 50,000 Coefficient of Restitution 0.9
kl -60 Kinetic Energy Cut Off 3
kh 0.2 Edge Label Length 2-4 characters
qlabel 1 Natural Spring Length Min dist to not overlap
qvertex 3 Dampening 0.9
Wall Charge 1000 Max Iterations 10,000
Vertex Mass 2

Experiment 1
w, h 400px ≤ #Vertices× 100 ≤ 8000px
Vertex Image Size 107x87 pixels

Experiment 2
w × h 1920 x 1080 Vertex Image Size 80x80 pixels

Table 3: Medians by force from experiment one
Median # Crossings Prop. Crossings # Overlaps % Overlaps % Occluded Pixels
H 40 0.02256 13 0.2043 1.213
HWE 38 0.02265 3 0.0407 0.1072
HWEC 39 0.0226 3 0.04024 0.104
HWED 34 0.01984 1 0.01463 0.02526
HWEA 80 0.05337 85 1.948 16.46
HWEDA 73 0.04748 53 1.276 12.21
HEDA 71 0.04523 49 1.144 11.34
L 41 0.02369 13 0.2016 1.195
LWE 42 0.02445 2 0.03487 0.08999
LWEC 41 0.02459 2 0.03518 0.09045
LWED 38 0.02231 1 0.01058 0.0159
LWEA 92 0.0615 103 2.266 18.4
LWEDA 91 0.06051 69 1.744 15.34
LEDA 89 0.05751 63 1.583 14.3



Figure 8: Time for a iteration vs number of vertices and edges in the graph coloured by forces which reduce
performance. Times are an average over the whole runtime of the program with all combinations of forces.
There are three well defined strata. The top one consists of combinations which contain E. Within this there
are further divisions were C or A are also present. The second strata consists solely of combinations containing
CA in the force. The final strata shows that A and C slow down the algorithm, and having none of E,C or A
is the fastest.

everyone using any graph layout algorithm. More-
over, exploratory studies suggest that size of the lay-
out plane affects the resulting layout significantly and
we hope to explore this in future.

7 Conclusion

We looked at modifications to the force directed algo-
rithm to avoid overlaps in small graph layout. We
described a range of different forces which can be
used with layout algorithms. We then performed two
experiments to find which set of forces would pro-
duce a layout that was spread out applied to the
force directed layout algorithm. We found adding in
edge label charges, charged boundaries, and increas-
ing vertex charge proportionally to its degree results
in layouts that minimise the number of overlaps and
occluded pixels; that using Hooke’s law reduces the
number of edge crossing; and that while there is a
time cost for using charged edge labels, it is not so
high as to make the modification too expensive. As
such, we conclude that adding in additional forces is
a viable way of preventing occluded pixels for graphs
with large vertices and edge labels.
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Table 4: Medians by force from experiment two. Short names are used in the column names for compactness.
C is Crossings, O is Overlaps and P is Pixels Occluded. The minimum value for each metric is highlighted in
blue.

Force # C % C # O % O % P Force # C % C # O % O % P
H 34.50 2.28 13.00 0.24 0.91 HA 276.00 18.20 375.50 7.61 80.38
HC 48.00 3.39 19.00 0.34 1.31 HCA 298.00 19.66 172.00 3.12 29.67
HD 31.00 2.09 10.00 0.22 0.82 HDA 294.50 20.57 411.50 8.61 83.47
HDC 32.00 2.25 10.00 0.22 0.83 HDCA 312.00 20.46 172.50 3.10 29.34
HE 38.00 2.72 6.00 0.13 1.16 HEA 95.00 6.94 16.00 0.32 5.72
HEC 41.00 2.87 8.00 0.18 2.02 HECA 55.00 4.18 23.00 0.46 5.76
HED 40.00 2.85 6.00 0.12 1.22 HEDA 176.50 12.02 128.00 2.55 45.02
HEDC 41.50 2.89 6.00 0.14 1.57 HEDCA 93.00 6.51 41.00 0.72 8.96
HG 39.00 2.74 8.00 0.19 1.37 HGA 98.00 7.09 21.00 0.41 6.15
HGC 42.00 3.09 11.00 0.23 2.04 HGCA 60.00 4.57 28.00 0.54 6.15
HGD 40.00 2.88 9.00 0.18 1.38 HGDA 171.00 11.94 100.00 2.00 38.88
HGDC 43.00 3.14 10.00 0.21 1.68 HGDCA 99.00 7.11 44.50 0.77 9.34
HW 55.00 3.36 35.00 0.63 2.42 HWA 284.00 19.04 388.50 7.99 82.60
HWC 123.00 8.57 65.50 1.07 8.99 HWCA 306.50 20.66 177.00 3.34 30.74
HWD 43.00 2.62 22.00 0.40 1.54 HWDA 312.00 21.02 434.50 8.83 84.34
HWDC 48.00 3.46 24.50 0.51 1.74 HWDCA 323.00 21.09 176.00 3.33 30.69
HWE 34.00 2.17 4.00 0.08 0.33 HWEA 146.00 9.80 34.00 0.59 10.54
HWEC 39.00 2.74 9.00 0.18 1.48 HWECA 83.50 6.08 44.00 0.81 10.31
HWED 34.00 2.22 2.00 0.05 0.13 HWEDA 192.00 13.20 165.00 3.37 52.25
HWEDC 38.00 2.59 5.00 0.11 0.69 HWEDCA 125.50 8.52 61.00 1.09 13.19
HWG 35.00 2.19 7.00 0.15 0.49 HWGA 143.00 9.94 40.00 0.70 10.62
HWGC 44.00 3.03 13.00 0.27 1.75 HWGCA 98.00 6.98 51.00 0.89 10.75
HWGD 35.00 2.25 6.00 0.13 0.39 HWGDA 197.00 12.89 137.00 2.71 46.65
HWGDC 40.00 2.87 9.00 0.20 0.95 HWGDCA 133.50 9.65 64.00 1.15 12.89
L 33.00 2.09 13.00 0.24 0.91 LA 266.50 18.08 369.00 7.42 79.89
LC 42.00 2.81 17.00 0.30 1.16 LCA 285.50 19.60 172.00 3.03 29.73
LD 27.00 1.87 9.00 0.20 0.78 LDA 292.50 19.94 418.50 8.40 82.26
LDC 29.00 1.98 9.00 0.20 0.75 LDCA 315.50 20.60 176.00 3.20 29.54
LE 37.00 2.65 4.00 0.10 0.86 LEA 89.00 6.60 12.00 0.26 4.89
LEC 40.00 2.80 6.00 0.12 1.20 LECA 52.00 3.91 20.00 0.41 5.21
LED 39.00 2.77 4.00 0.08 0.73 LEDA 178.00 11.47 106.00 2.06 40.06
LEDC 40.00 2.87 5.00 0.10 1.18 LEDCA 95.00 6.36 40.00 0.71 8.80
LG 36.00 2.72 7.00 0.15 0.99 LGA 95.00 6.74 17.00 0.36 5.89
LGC 42.00 3.03 9.00 0.18 1.54 LGCA 60.00 4.45 24.00 0.50 5.34
LGD 39.00 2.85 7.00 0.16 1.01 LGDA 170.50 11.31 81.00 1.64 34.29
LGDC 40.50 3.02 7.00 0.17 1.22 LGDCA 100.50 7.27 43.00 0.76 9.11
LW 50.00 3.07 36.00 0.63 2.44 LWA 288.00 19.23 401.50 8.04 82.48
LWC 110.00 7.68 65.00 1.04 8.33 LWCA 311.50 20.93 179.00 3.32 30.71
LWD 35.00 2.28 19.50 0.38 1.41 LWDA 315.50 20.97 442.50 8.73 84.21
LWDC 40.00 2.85 22.00 0.45 1.57 LWDCA 322.50 21.50 179.00 3.37 30.78
LWE 32.00 2.10 3.00 0.06 0.25 LWEA 141.50 9.74 32.00 0.53 9.92
LWEC 36.00 2.53 6.00 0.13 0.90 LWECA 84.00 6.03 43.00 0.78 10.14
LWED 34.00 2.16 2.00 0.04 0.09 LWEDA 185.00 12.72 145.00 2.96 49.16
LWEDC 36.00 2.54 3.00 0.07 0.36 LWEDCA 118.00 8.56 61.00 1.08 12.97
LWG 33.00 2.11 6.00 0.14 0.41 LWGA 145.50 9.92 38.00 0.64 10.65
LWGC 41.00 2.95 10.00 0.22 1.15 LWGCA 96.00 6.72 49.00 0.85 10.63
LWGD 35.00 2.23 5.00 0.12 0.37 LWGDA 195.00 12.47 112.00 2.35 43.16
LWGDC 37.00 2.73 7.00 0.16 0.58 LWGDCA 133.00 9.51 66.00 1.14 13.11


