
Classless Object Semantics

by

Timothy Jones

A thesis

submitted to the Victoria University of Wellington

in fulfilment of the requirements for the degree of

Doctor of Philosophy

Victoria University of Wellington

2017

Abstract

Objects have been categorised into classes that declare and implement their be-
haviour ever since the paradigm of object-orientation in programming languages
was first conceived. Classes have an integral role in the design and theory of object-
oriented languages, and often appear alongside objects as a foundational concept
of the paradigm in many theoretical models.

A number of object-oriented languages have attempted to remove classes as a
core component of the language design and rebuild their functionality purely in
terms of objects, to varying success. Much of the formal theory of objects that
eschews classes as a fundamental construct has difficulty encoding the variety of
behaviours possible in programs from class-based languages.

This dissertation investigates the foundational nature of the class in the object-
oriented paradigm from the perspective of an ‘objects-first’, classless language. Us-
ing the design of theoreticalmodels and practical implementations of these designs
as extensions of theGrace programming language, we demonstrate howobjects can
be used to emulate the functionality of classes, and the necessary trade-offs of this
approach.

We present Graceless, our theory of objects without classes, and use this lan-
guage to explore what class functionality is difficult to encode using only objects.
We consider the role of classes in the types and static analysis of object-oriented lan-
guages, and present both a practical design of brand objects and a corresponding
extension of our theory that simulates the discipline of nominal typing. We also
modify our theory to investigate the semantics of many different kinds of imple-
mentation reuse in the form of inheritance between both objects and classes, and
compare the consequences of these different approaches.

i

The history of all hitherto existing society is the history of class struggles.

— Karl Marx & Friedrich Engels, The Communist Manifesto

Acknowledgements

This thesis has been a journey and a challenge, and it would not have been possible
without the help and support of many people.

• JamesNoble, somehowboth pragmatic adviser andmystic guide through the
world of programming languages. I will always maintain that James tricked
me into writing a cohesive thesis, and I will always be grateful that he did.

• David Pearce, whose door was always open to me, even if it was actually
just ajar to let the undergraduates know that he was in. Drawing on David’s
whiteboard has solidified my knowledge on a wide range of topics, and his
help was invaluable in completing this thesis.

• Kim Bruce and Andrew Black, who have helped me truly understand the
concept of design by committee. This thesis was made possible by their fun-
damental disagreement on the nature of the class. I am also grateful for their
feedback on the papers that eventually made up the contents of this thesis,
and to Kim and his family for very kindly hosting me in their home.

• Jonathan Aldrich, Tony Hosking, and Alex Potanin, the examiners of this
thesis, who providedmewith insightful feedback and a lively and fascinating
discussion in its defence.

• Paley Li, Roma Klapaukh, Julian Mackay, and Alex da Silva, who were my
office-mates and colleagues, and remain my good friends. I hope that we
each have the opportunity to pretend to understand what the other is talking
about over coffee again in the future.

v

• My hosts and now friends at Imperial College, Cambridge, and St. Andrews,
as well as the many student volunteers that I had the pleasure to work with
along the way.

• My parents, eternally supportive, I hope that now I can finally return in the
summer and not still have work to do. I am also grateful for the support and
encouragement of my grandparents, though perhaps now I can argue that I
am overqualified to fix their computers. To my siblings, well done with your
own successes and thank you for your help with mine. May you never need
new cars again.

• Michael Homer, whose contributions to this thesis almost rival my own.
Michael has been my colleague, co-author, and friend throughout, and his
insightful observations on the consequences of many language design deci-
sions have directly influenced the content of this thesis.

• Eleanor Beeden, whose support and care has seen me through this entire
process. Elle, you have helpedme complete this thesis, butmore importantly,
my time with you has made me a better person. Thank you.

vi

Contents

1 Introduction 1
1.1 Contributions . 2
1.2 Structure . 3
1.3 Publications . 4

I Classless Languages 7

2 RelatedWork 9
2.1 Objects First . 9

2.1.1 Object Inheritance . 10
2.1.2 Self Binding . 12
2.1.3 Emulating Classes . 13

2.2 Programming Language Formalisms 14
2.2.1 Verifying Languages . 16

2.3 Type Systems . 17
2.3.1 Nominal Typing . 18
2.3.2 Structural Typing . 20

2.4 Gradual Typing . 22
2.4.1 Consistency . 23
2.4.2 Casts . 24
2.4.3 Blame . 27
2.4.4 Gradual Guarantee . 28

2.5 Hybrid Type Systems . 29
2.5.1 Brands . 32

vii

2.5.2 Tagged Objects . 34
2.6 Pluggable Typing . 37
2.7 Extensible Languages . 38

3 Grace 41
3.1 The Core Language . 41
3.2 Inheritance . 45
3.3 Types . 47

3.3.1 Patterns . 48
3.4 Annotations . 50
3.5 Dialects . 51
3.6 Implementation . 54

II Type Systems 57

4 Graceless 59
4.1 Syntax . 60

4.1.1 Terms . 62
4.1.2 Types . 68
4.1.3 Substitution . 74
4.1.4 Evaluation Contexts . 76

4.2 Types . 77
4.2.1 Well-Formedness . 78
4.2.2 Type Combinators . 78
4.2.3 Signature Subtraction . 80
4.2.4 Subtyping . 82

4.3 Dynamic Semantics . 86
4.4 Static Semantics . 89

4.4.1 Signature Selection . 89
4.4.2 Term Typing . 91
4.4.3 Properties . 96

viii

5 Casts 105
5.1 Design . 106

5.1.1 Coercing Requests . 107
5.2 Syntax . 110

5.2.1 Type Coercion . 112
5.3 Dynamic Semantics . 115
5.4 Static Semantics . 118

5.4.1 Properties . 119
5.5 Discussion . 122

5.5.1 Blame . 122
5.5.2 Gradual Typing . 124
5.5.3 Gradual Guarantee . 126

6 Brand Typing 129
6.1 Design . 130

6.1.1 Creating, Applying, and Using Brands 131
6.1.2 Brands vs. Brand Types 134
6.1.3 Extending Brands . 135

6.2 Applications . 136
6.2.1 Abstract Syntax Tree . 136
6.2.2 Dialects . 138
6.2.3 Exceptions . 139
6.2.4 Singleton Types and Variants 141

6.3 Branded Graceless . 143
6.3.1 Syntax . 144
6.3.2 Types . 151
6.3.3 Dynamic Semantics . 157
6.3.4 Static Semantics . 160
6.3.5 Properties . 163

6.4 Discussion . 169
6.4.1 Comparison to Related Work 171

6.5 Implementation . 177
6.5.1 Statically-Known Definitions 180

ix

6.5.2 Type Evaluation . 182

III Inheritance 185

7 Inheritance Semantics 187
7.1 On Inheritance . 187

8 Object Inheritance 193
8.1 Forwarding . 198

8.1.1 In Other Languages . 201
8.2 Delegation . 201

8.2.1 Receiver mutation . 205
8.3 Concatenation . 209

8.3.1 In Other Languages . 213

9 Emulating Classes 215
9.1 Object Freshness . 217
9.2 Merged Identity . 219

9.2.1 In Other Languages . 226
9.3 Uniform Identity . 228

9.3.1 In Other Languages . 234

10 Multiple Inheritance 237
10.1 Multiple Parents . 238
10.2 Method Transformations . 240
10.3 Positional . 243

11 Classless Inheritance 249
11.1 Typing . 251
11.2 Conclusion . 253

IV Conclusions 255

12 Classless Object Semantics 257

x

12.1 Graceless . 257
12.2 Brand Typing . 258
12.3 Object Inheritance . 258
12.4 Implementation . 259

13 Future Work 261
13.1 Graceless . 261
13.2 Brand Typing . 262
13.3 Object Inheritance . 263

xi

List of Figures

2.3.1 Nominal types in Java . 19
2.3.2 Structural types in Scala . 20
2.4.1 Consistency relation of 𝜆?

→ . 23
2.4.2 Run-time error in a gradually-typed language 25
2.4.3 Run-time error identified by blame 27
2.5.1 Structural types in Whiteoak . 31
2.5.2 Tagged Objects optional integer example 35

3.5.1 An example checker method that requires type annotations 53

4.1.1 Graceless grammar . 61
4.1.2 Syntax tree for the inductive List type 71
4.1.3 Syntax tree for the unfolding of List 72
4.1.4 Syntax tree for the coinductive List type 73
4.2.1 Type well-formedness . 78
4.2.2 Type intersection combinator . 79
4.2.3 Signature subtraction . 81
4.2.4 Subtyping judgment . 82
4.3.1 Graceless reduction rules . 87
4.4.1 Environment signature selection 90
4.4.2 Typing judgements . 92

5.2.1 Graceless grammar extended with casts 111
5.2.2 Coercion generation metafunctions 113
5.3.1 Reduction with casts . 116

xiii

5.4.1 Term typing with casts . 118

6.3.1 Extended grammar for Branded Graceless 144
6.3.2 Implementation of brand method in Branded Graceless 148
6.3.3 Example of a nominally-typed class and client 150
6.3.4 Well-formedness for Branded Graceless types 151
6.3.5 Extended declaration intersection for Branded Graceless 153
6.3.6 Subtyping extended with brands 154
6.3.7 Extended reduction rules for brands 158
6.3.8 Typing extended with brands . 161
6.3.9 Derivation for typing a new dog object 162
6.3.10Derivation for typing the client request 162

7.1.1 The graphic example class . 188
7.1.2 The amelia example object . 189

8.0.1 Example visualisation of object inheritance 193
8.0.2 Graceless grammar extended for object inheritance 195
8.0.3 Inheritance extended reduction 197
8.0.4 Visualisation of Graceless object inheritance 198
8.1.1 Visualisation of a forwarded request 199
8.1.2 Sequence diagram of a draw request under forwarding 199
8.1.3 Forwarding reduction . 200
8.1.4 Visualisation of Graceless forwarding inheritance 201
8.2.1 Visualisation of a delegated request 202
8.2.2 Sequence diagram of a draw request under delegation 203
8.2.3 Delegation reduction . 203
8.2.4 Visualisation of Graceless delegation inheritance 204
8.2.5 Field assignment to graphic under delegation 206
8.2.6 Field assignment to amelia under delegation 207
8.2.7 Field assignment to amelia under receiver mutation 208
8.3.1 Visualisation of objects under concatenation inheritance 210
8.3.2 Sequence diagram of a draw request under concatenation 211
8.3.3 Concatenation reduction . 211

xiv

8.3.4 Visualisation of Graceless concatenation inheritance 212

9.0.1 Sequence diagram for registration during construction 216
9.1.1 Fresh inheritance reduction . 218
9.2.1 Conceptual visualisation of merged identity initialisation 220
9.2.2 Visualisation of amelia under merged identity 220
9.2.3 Sequence diagram of registration under merged identity 222
9.2.4 Merged identity reduction . 223
9.2.5 Visualisation of merged identity part-objects 223
9.2.6 Sequence diagram of initialisation under merged identity model . 224
9.2.7 Sequence diagram of use under merged identity model 225
9.3.1 Conceptual visualisation of uniform identity initialisation 229
9.3.2 Sequence diagram of initialisation under uniform identity 230
9.3.3 Uniform identity reduction . 230
9.3.4 Sequence diagram of initialisation under uniform identity model . 231
9.3.5 Sequence diagram of initialisation down-call under uniform identity 233

10.1.1 Multiple Parents grammar . 238
10.1.2Multiple Parents reduction . 239
10.2.1 Method Transformation grammar 240
10.2.2Method Transformation reduction 242
10.3.1 Positional inheritance grammar 244
10.3.2Positional reduction . 247

xv

1 Introduction

Classes have been a fundamental component of object-oriented programming ever
since the paradigm’s inception in the Simula-67 programming language (Birtwistle
et al. 1979). A class defines a common implementation for objects, a mechanism
for creating those objects, an efficient mechanism for code reuse, and a type inhab-
ited by objects that it or its inheritors have created. The prevalence of the object-
oriented paradigm has seen to it that classes have become one of the primary con-
texts of programming: practically all code written in the most used language in the
world must appear inside class definitions (Arnold, Gosling, and Holmes 2000).

In the literature on the theory of objects, classes have had a less fundamen-
tal role. Much of the work formalising object behaviour in the 1990s interpreted
objects as record values of behaviours, mapping labels to methods (Abadi and
Cardelli 1996; K. B. Bruce 2002). Objects were standalone constructions, and did
not require a common definition of their implementation to fulfil the core object-
oriented functionality of encapsulated state and behaviour, with message sends for
interaction. Object types reflected the messages that objects were capable of ac-
cepting, rather than the class that they originated from.

As the theory has swung toward modelling existing object-oriented languages,
more formalisms have included class tables and define objects and types purely in
terms of these classes (Igarashi, Pierce, andWadler 2001). Languages have since be-
gun to pivot away from an ‘all-in’ approach to classes, with structural typing having
seen a surge of popularity, often in combination with gradual typing as the static
parallel to the duck typing of dynamically-typed languages. The rise of JavaScript
in particular has propelled to the fore the idea that classes need not be a fundamen-
tal concept in the object-oriented paradigm (ECMAScript Project 2016).

A classless object language is not a new idea — Self is almost 30 years old, after

1

introduction

all (Ungar and Smith 1991). But programming in Self is fundamentally different
to modern object-oriented development, and developers have come to expect the
featuresmade available by classes, even in JavaScript. This dissertation is an investi-
gation into whether classes are truly redundant as a core feature of a programming
language, or whether they have some fundamental importance in the implementa-
tion, creation, and typing of objects.

The context of this dissertation is theGrace programming language (Black, K. B.
Bruce, and Noble 2016). Grace is a relatively new object-oriented programming
language intended for use in education. One of its goals is to minimise the number
of built-in language concepts, and to that end the story for classes has always been
that they are built out of other features instead of being innate to the language.
A class is just a factory which builds objects with the same implementation, and
typing is structural rather than nominal (Black, K. B. Bruce, Homer, and Noble
2012).

Much of the research in this dissertation stemmed from the practical impli-
cations of attempting to take such a puritan stance towards classes when it came
to actually implementing programs. The stories around object construction, code
reuse, and typing were not consistent with the mainstream expectations of classes,
which posed a problem for Grace both as a teaching language (under the expecta-
tion that students will be able to convert their knowledge to other object-oriented
languages) and when porting existing libraries. The story around inheritance was
particularly inconsistent with standard assumptions of object behaviour.

1.1 Contributions

The contributions of our thesis are:

• A formal model of a classless object-oriented language, Graceless, a language
that encodes many of the features of Grace. Graceless intentionally models
some of themore difficult aspects of Grace, including the object initialisation
order and method requests unqualified by a receiver. Graceless forms the
context of the remaining contributions.

• Thedesign and implementation of brand objects to provide both the dynamic

2

structure

and static components of nominal typing. The dynamic implementation is
able to discriminate on the run-time identity of a brand object, and the static
type system is implemented as a Grace dialect, so that brands can be intro-
duced entirely as a library instead of extending the core language. Graceless
is extended to formally model this design.

• An investigation into inheritance between objects rather than classes. This in-
vestigation modifies Graceless to produce formal models of both traditional
object inheritance techniques and original attempts to simulate class inheri-
tance, and consider a number of different systems for implementingmultiple
inheritance as well. The trade-offs in each design are presented and com-
pared, and the solutions of other classless languages are also considered.

The result of our investigations is a family of formal languages that can help us to
better understand the role that classes have to play in object-oriented programs,
systems, languages, and applications.

Wehave also implementedmost of our formalmodels usingPLTRedex (Felleisen,
Findler, and Flatt 2009). Encoding the models into a mechanical form helps to
clarify any assumptions made in the text, permits counterexample checking, and
makes it easy and automatic to examine the exact semantics of each language.

1.2 Structure

This dissertation is structured into four parts.

• Part I introduces the backgroundof classless object-oriented languages. Chap-
ter 2 discusses the relevant concepts from related work. Chapter 3 describes
the Grace language specifically.

• Part II examines the role of types in a classless language. Alongside their
role as factories, classes provide nominal types that discriminate which class
constructed an object. We investigate alternatives to nominal typing as well
as techniques to reproduce nominal typing within Grace’s extensible type
system. Chapter 4 defines Graceless, a structurally typed classless language.

3

introduction

Chapter 5 adds the ability to express assumptions about the type of Graceless
objects using casts. Chapter 6 presents our design and implementation of
brand objects for nominal typing.

• Part III considers the meaning of inheritance without classes. By examining
a number of different formal models of inheritance we aim to provide con-
sistent definitions for existing object inheritance techniques, and an analysis
of the trade-offs inherent to each design. Chapter 7 introduces the relevant
concerns for each of the models. Chapter 8 formalises existing techniques
for reuse between objects. Chapter 9 defines models for object inheritance
that emulate the behaviour of classes. Chapter 10 extends the models with
multiple inheritance. Chapter 11 compares and contrasts the outcomes of
the models.

• Part IV summarises our thesis. Chapter 12 uses our contributions to draw
conclusions on the role of classes as a foundational concept of the object-
oriented paradigm. Chapter 13 considers potential future work.

1.3 Publications

Many of the following chapters present existing research contributions of the fol-
lowing papers, written jointly with other authors:

• Jones and Noble (2014), Tinygrace: A simple, safe, and structurally typed lan-
guage. This work ismostly superseded by the content presented in Chapter 4.

• Jones, Homer, and Noble (2015), Brand Objects for Nominal Typing. The de-
sign and implementation in this work remains mostly the same as the one
presented in Chapter 6, but the formal model has been updated.

• Jones, Homer, Noble, andK. Bruce (2016),Object InheritanceWithoutClasses.
Much of this work makes up the body of Part III, though the models have
been updated to build on the language defined in Chapter 4.

4

publications

We have alsoworked on the related publicationHomer, Jones, et al. (2014),Graceful
Dialects; this work predominately appears in the background of the dissertation,
and does not form a core contribution.

5

Part I

Classless Languages

7

2 Related Work

In this chapter we introduce the research background of our thesis, laying out the
relevant related work in programming language theory. The chapter begins by in-
troducing the concept of ‘objects-first’ classless languages, then discusses formal
models of programming languages, relevant typing disciplines, and extensible lan-
guages.

2.1 Objects First

Class-based object-oriented languages have a simple story about the relationships
between objects and the classes that create them: an object is an instance of a class
(Birtwistle et al. 1979). A specialised, ‘one-off ’ object is just an instance of a spe-
cialised, one-off, anonymous class. Inheritance is between classes, and new objects
are constructed and initialised by their classes.

This simple story comes at the expense of a more complicated story about
classes, especially so if classes are themselves objects. More than thirty years ago,
Borning (1986) identified eight separate roles that classes can play in most class-
based object-oriented languages, each of these roles adding to the complexity of
the whole language. This complexity leads inexorably to various kinds of infinite
regress in meta-object systems (Goldberg and Robson 1983; Kiczales, des Rivières,
and Bobrow 1991; Shaughnessy 2013).

To address this problem, prototype-based object-oriented languages, begin-
ning with Lieberman’s work inspired by LOGO (Lieberman 1986) and popularised
by Self (Ungar and Smith 1991), adopted a conceptually simpler model in which
objects were the primary concept, defined individually, without any classes. Shar-

9

related work

ing of state and behaviour was handled by delegation between objects, rather than
inheritance between their defining classes. Special-purpose objects could be de-
fined directly, while new objects could be created in programs by cloning existing
objects. Emerald went one step further and aimed to eschew all implicit sharing
mechanisms, supporting neither inheritance nor delegation (Black, Hutchinson, et
al. 2007), though prefixing an object with the body of another statically resolvable
definition was permitted.

2.1.1 Object Inheritance

Under delegation, if an object does not directly know how to respond to a method
request, it can hand the request off to another object to try instead. Self imple-
ments delegation using special parent* slots, which an object can set to specify
which other objects should be used to handle a message the object does not un-
derstand directly. By sharing a single implementation of methods in a prototype
object, and having many objects delegate to that object, delegation can act as a
reuse mechanism in a very similar fashion to traditional class inheritance.

JavaScript’s development as a classless language is directly influenced by Self,
using prototypes to delegate between objects (ECMAScript Project 2016). Individ-
ual objects can be constructed using the literal syntax {x : y}, or the implementation
of objects can be structured around constructor functions, with methods attached
to the function’s prototype object. Invoking a function with the new prefix con-
structs a new object that delegates to the prototype.

function Point(x, y) {⋯ }

Point.prototype.distanceFromOrigin = function () {

return Math.sqrt(Math.pow(this.x, 2) +Math.pow(this.y, 2));

};

Following the example above, the expression new Point(a, b) constructs a new ob-
ject that delegates to Point.prototype. A call to the distanceFromOriginmethod on
this new object is not understood directly by the object, since it is a fresh object
with no direct implementation, but the object can delegate to the implementation
in Point.prototype to successfully respond to the method call.

10

objects first

Constructor functions can ‘inherit’ from one another by having the child con-
structor assign the result of calling the parent to its prototype.

function GraphicPoint(x, y) {⋯ }

GraphicPoint.prototype = new Point();

GraphicPoint.prototype.draw = function () {⋯ };

A new GraphicPoint(a, b) still responds to distanceFromOrigin, because the lan-
guage will search transitively up through the chain of delegation objects.

Note that a andb are not availablewhen constructing the intermediateprototype
object, so new Point() is not given any arguments. Given that the constructor is
likely to have side-effects, it is better to construct an object that will delegate to
Point.prototype without actually calling the Point constructor. Modern JavaScript
provides the Object.create method for this purpose: the method returns a new ob-
ject that will delegate to its first argument when called, so the use of new Point()

can be replaced with Object.create(Point.prototype).
JavaScript relies heavily on its ability to mutate the structure of an object after

it has been constructed to build the implementation of objects imperatively. Be-
cause the structure of an object is often not declared before it is constructed, the
implementation of methods are typically not present in objects at the point of cre-
ation, and are added in afterwards by assigning functions to fields. This is at odds
with the declarative nature of classes in languages such as Java (Arnold, Gosling,
and Holmes 2000) or C# (C# Project 2015), where the implementation of an ob-
ject is entirely contained within a statically available class and cannot be changed
at run-time.

TheEprogramming language is also a classless object-oriented language (Miller
2006), but the entirety of an object’s implementation is described at the object’s
point of creation. Constructors are just functions that return a new object.

def point(x, y) {

def self { to distanceFromOrigin() {⋯ } }

return self

}

Defining an object in E must assign a name, and the definition is not an expression,
hence the separate return statement in the example above.

11

related work

E supports a form of delegation by defining an object with an extends clause,
which takes an object to delegate to.

def graphicPoint(x, y) {

def self extends point(x, y) { to draw() {⋯ } }

return self

}

E does not require contortions to avoid actually calling the constructor when con-
structing the parent object like JavaScript did, since the extends clause appears
inside of the constructor directly and so has access to all of the relevant arguments.
Before the child object is constructed, a parent object is created by calling the point

function; when the parent is returned the newly constructed child object will dele-
gate to it if it receives a request for distanceFromOrigin.

2.1.2 Self Binding

In an object-oriented language with classes, the value of a self or this variable in a
class is like a hidden parameter on each of the methods. Since the class describes
the implementation of many objects, the binding of the variable changes depend-
ing on which object is the receiver of any given method call. In a classless object-
oriented language the meaning of the variable can be much simpler because a con-
structor only describes one object at a time, so the value of the self variable is just
the value of the object. The E language does not even have a special variable for self
references, since every object must explicitly be given a name when it is created.

The story for the self variable in Self and JavaScript is more complicated than
just binding the surrounding object. In both languages it is possible to invoke a
method with the value of self bound to an object that is not the one holding the
method. The delegation mechanism in both languages passes the original receiver
of the method call as an implicit parameter to method it delegates to.

In the Point JavaScript example earlier the binding of this is crucial to achieving
the expected behaviour. The distanceFromOriginmethod refers to this.x and this.y,
but these fields do not exist on the object that defines the method, Point.prototype.
Only by binding this to be the original receiver of a call to distanceFromOrigin,

12

objects first

an object constructed by the Point constructor, will these fields be present in the
method.

JavaScript permits furthermanipulation of the value of this beyond the implicit
binding achieved by delegation. All functions have methods call and apply that
both invoke the functionwith this bound to their first argument. This functionality
is often used to simulate super-constructor calls from within constructors:

function GraphicPoint(x, y) { Point.call(this, x, y); }

The Point constructor assigns x and y to the relevant fields in this, so it must be
invoked with the same value of this as in the current context to ensure that the
fields appear in the object constructed by the call to GraphicPoint.

2.1.3 Emulating Classes

Programmers using object-based languages have found the need to reintroduce
classes — several times over in many of these languages. The Emerald compiler,
and later the Self IDE, added explicit support for class-style inheritance. Languages
with object inheritance such as Lua, JavaScript, and Tcl have a variety of libraries
implementing classes in terms of objects. Most recently classes have been added
explicitly to the recent JavaScript standard (ECMAScript Project 2016), to bring
some order to the profusion of libraries already offering classes.

Thenew classes in JavaScript are only syntactic sugar for constructs that already
exist in the language. Consider the following JavaScript class:

class Point {

constructor(x, y) {⋯ }

distanceFromOrigin() {

return Math.sqrt(Math.pow(this.x, 2) +Math.pow(this.y, 2));

}

}

The outcome of running this program is not much different from our earlier Point

example, accounting for some JavaScript oddities that the class form tidies up. Trans-
latingGraphicPoint into a class that extends Point and calls super in its constructor
is also just sugar, and the use of super translates exactly into a use of call on Point.

13

related work

2.2 Programming Language Formalisms

A formal model for a programming language has a number of benefits. A language
formalism subsumes the task of defining a language specification while also pro-
viding formal constructs to reason about the design of the language. This allows
the statement and proof of properties about the language. For example, the Stan-
dard ML programming language is fully formalised in Milner et al. (1997). The
formalisation subsequently guides the implementation of the language while also
providing correctness proofs for language features. The correct implementation of
a formalism for a complete type checking algorithm ensures that a language cannot
cause a type error when executing a program (K. B. Bruce 2002; Pierce 2002).

Languages that are defined first by a formal model before being implemented
tend to be small and intended primarily for research. Many formalisms instead
model specific features of a language or paradigm. Formal models of features can
then be applied to implementations, often discovering edge cases that effect the
correctness of the overall language. The formalisation of Cook and Palsberg (1989)
for object inheritancewith denotational semantics subsequently revealed a number
of flaws in the type conformance algorithm of Eiffel (Cook 1989).

The formalisation of general programming concepts are also useful for building
more specific models. The 𝜍 and Ob<∶ calculi of Abadi and Cardelli (1996), both
formal models of objects, are the basis for formalisms of a number of more specific
features.

Few widely used languages are completely formally specified because of the dif-
ficulty in encoding the detailed nuances of large programming languages, which in
many cases are specified mostly by their implementation (Owens 2008). Maintain-
ing a language in strict adherence to a formalism will often stymie extensions to
the language, as it requires first extending and proving the correctness of themodel
(Strub et al. 2012).

A number of language formalisms instead approach a more reasonable subset
of a language in order to avoid these complications (Igarashi, Pierce, and Wadler
2001; Owens 2008). Smaller formalisms are particularly useful for formally describ-
ing extensions to a language, as it means that the correctness of the extension can
be determined just for the relevant portions of the language.

14

programming language formalisms

Within the object-oriented paradigm, perhaps the most influential formalism
derived from an actual programming language has been Featherweight Java (FJ), a
formalised subset of the Java programming language (Igarashi, Pierce, and Wadler
2001). The subset removes Java features that complicate the ability to reason about
objects and their types, such as variable assignment and side-effects on the wider
machine. More complicated concepts like generics are also removed, and can then
be added on top of the core calculus in isolation. Featherweight Java programs de-
scribe a series of invocations of class constructors, and can be executed by reducing
the program to a collection of objects.

The result is a significantly simpler (though less practical) object-oriented lan-
guage that submits to formalisation more easily, and is more readily extended. The
extensibility of the formalism is immediately demonstrated by reintroducing Java’s
generic types, producing FeatherweightGeneric Java (FGJ). Featherweight Java has
since been used to formally define Java extensions such as multi-methods (Bet-
tini, Capecchi, and Venneri 2007), traits (Liquori and Spiwack 2008), and features
(Apel, Kästner, and Lengauer 2008), as well as formalise more of Java proper such
as generic wildcards (Torgersen, Ernst, andHansen 2005; Cameron, Drossopoulou,
and Ernst 2008) or mutable and immutable state (Mackay et al. 2012).

The approach of using a core calculus that abstracts away complications means
that any properties proven for the calculus do not necessarily translate into proper-
ties on the larger language. Despite the soundness result for FJ, FGJ, and its many
extensions, the Java type system itself is not sound, recently discovered in Amin
and Tate (2016). As pointed out by Summers (2009), language features often com-
bine in unexpected ways, and using a simplified calculus can hide the appearance
of unsafe behaviour in the larger language. The unsoundness of Java is the outcome
of an interaction between wildcards and null pointers: modelling null pointers is
not a particularly difficult challenge, but it was still elided from FJ and from other
calculi used to reason about wildcards such as Tame FJ (Cameron, Drossopoulou,
and Ernst 2008).

15

related work

2.2.1 Verifying Languages

Machine-checked verification is an important part of developing formal models,
as it offers the potential of being a quicker or less fallible method of ensuring a
proof of correctness than checking proofs by hand, though the overhead of trans-
lating proofs to their mechanised form can often void these benefits. Tools like
Coq (The Coq Development Team 2016) make use of dependent typing, a more
expressive form of typing that allows values to influence the type other values hold,
and totality, a guarantee that a function will terminate with a value explicitly in
its codomain, among other techniques. These properties allow for the expression
of complex assertions that can be formally verified to hold. Other languages with
these properties, such as Agda (Norell 2007), can use these strong reasoning prop-
erties to verify their programs.

F* is a dependently typed dialect of ML for distributed programming which
contains proof checking of a similar form to Coq and Agda (Swamy et al. 2011).
Strub et al. (2012) use the language as a basis to introduce the concept of self-
certification, wherein the language is able to verify its own correctness. Producing
a formal model of a language is beneficial, but it makes it difficult to continue to
extend the language as the new formalism must be translated into a mechanically
verifiable format and run through a proof checker before the new implementation
can be confirmed as correct. Self-certification attempts to mitigate this problem
by automatically verifying the new implementation. F* verified its initial theorem
proving abilities both in Coq and itself, and was thus emancipated from using Coq
as a proof checker because each new version of the language could be verified by
the previous one.

The PLT group have also developed the Racket language Redex for the seman-
tic modelling of software (Felleisen, Findler, and Flatt 2009). Redex allows for the
expression of software models, including constraints and invariants about its struc-
ture. While this does not produce a complete formal model and Redex does not
definitively prove the correctness of the defined models, it allows for comprehen-
sive testing of software semantics without the complications of dependent typing
and mechanised proofs.

16

type systems

2.3 Type Systems

Types are a particularly common form of formal methods in programming lan-
guages (Pierce 2002), and are applicable across a variety of paradigms. Different
languages use different type systems, with different definitions of how values con-
form to types and different algorithms for ensuring that a program correctly con-
forms throughout.

Modern object-oriented languages broadly adhere to two different typing dis-
ciplines: static and dynamic. Languages with a static type system require that a
program is well-typed before it will compile (though, as pointed out in §2.2, this
does not necessarily guarantee that the program behaves correctly (Amin and Tate
2016)). Languages with a dynamic type system perform no such check when com-
piling, and instead ensure type correctness at run-time (Pierce 2002).

The concept of subtyping is prevalent in object-oriented languages, and broadly
indicates that one type (the sub-type) contains only objects in another (the super-
type). That two types are in a subtyping relation is often denoted with T1 <∶ T2,
where T1 is the sub-type and T2 is the super-type (Cardelli, Martini, et al. 1994;
Abadi and Cardelli 1996).

Although there are many different typing disciplines for object-oriented lan-
guages, subtyping is almost always relevant because of the interface segregation
principle, wherein a client should not be forced to depend on the entirety of an
object’s interface in order to use the desired subset of that object’s functionality
(Martin 1996). Subtyping lets us express the simplest type necessary so that it is
inhabited by any object that fulfils the interface that we require.

The behaviour of subtyping in object-oriented languages is often accompanied
by the Liskov substitution principle, which requires that anywhere an object of type
T is expected, it is safe to provide an object whose type is any sub-type of T (Liskov
1987). The substitution principle forms the core of the object polymorphism that
makes object-oriented programming so useful — including mechanisms of reuse
such as class inheritance — because subtyping allows the client to describe any
object with the relevant interface while ensuring that its exterior behaviour is as
expected.

Programs in a language that satisfy the substitution principle can rely on ab-

17

related work

stractions of an object’s interface rather than its internal implementation. This ap-
plies equally to statically-typed and dynamically-typed languages, as although the
interfaces are often not explicitly stated in dynamically-typed languages, they are
implied by the use of an object (specifically, the method calls made on the object).

2.3.1 Nominal Typing

Themost popular statically typed object-oriented programming languages are class-
based and use nominal types (K. B. Bruce 2002). Along with their implementation,
classes simultaneously declare types that are associated with the class. Objects are
instances of a type if and only if they are instances of the associated class (either
directly, or as an instance of a subclass). The name ‘nominal’ refers to the fact that
a class can only implement a type if it is explicitly named in its inheritance chain
(K. B. Bruce 2002). Java (Arnold, Gosling, and Holmes 2000), C# (C# Project
2015), and C++ (Stroustrup 2007) are prime examples of modern languages that
use a static nominal type system.

Dynamically typed object-oriented languages adhere to the notion that static
checking is often too restrictive, and they postpone type errors to run-time. Rather
than associating types with classes, dynamic typing associates type by the structure
of an object. When an object is the receiver of amethod call, it produces a run-time
type error if it has no relevant method. Objects are not given explicit types, and
instead the language assumes that each object implements the required interface.

Deferring type checking to run-time by raising type errors is often referred to
as duck typing, under the maxim that “if it walks like a duck, swims like a duck,
and quacks like a duck, then it may as well be a duck”. More concretely, it is best
practice to not check whether an object is a duck, but only check that it has the
relevant methods to make it a duck (Martelli 2000). Languages with duck typing
are often accompanied by object reflection mechanisms that allow the program
to query whether a method appears on an object without actually invoking it; it
has been argued that reflecting on an object in this way violates the principles of
object-orientation, and that methods should only be discoverable through invoca-
tion (Abadi and Cardelli 1996).

The Python (Python Project 2016), Ruby (Ruby Project 2012), and JavaScript

18

type systems

// Library code.
class TheirClass {

public String getName() { return “John”; }
}

// Client code.
interface Named {

String getName();
}

class MyClass {
public printName(Named named) {

System.out.println(named.getName());
}

}

Figure 2.3.1: Nominal types in Java

(ECMAScript Project 2016) programming languages all use dynamic typing. All
of these languages also include some run-time nominal information as well, as it
is possible to query whether an object was constructed by a particular class (or
constructor function in the case of JavaScript).

Under nominal typing, the structure of an object is only relevant in that the
interface of a class dictates its shape. The primary issue with this approach is that
two objects can have an identical structure, and yet have no shared type (excepting
the trivial top type, usually from an ‘Object’ class) (Dubochet and Odersky 2009;
Gil and Maman 2008). In standard nominal type systems, such as those found in
Java and C#, it isn’t possible to add type relationships between classes outside of
their declarations. Client code cannot add to the types of library classes, and so are
unable to add potentially essential type relationships between otherwise unrelated
objects (Baumgartner and Russo 1997; Büchi and Weck 1998; Läufer, Baumgartner,
and Russo 2000; Malayeri and Aldrich 2008).

Consider the Java example in Figure 2.3.1, which shows a class from an exter-
nal library and the code of a developer using it. An instance of TheirClass can’t
be passed to printName, despite having the requisite method. There is no way to
specify that TheirClass also satisfies Named, because it is defined outside of the
developer’s own code. While there are other solutions to this problem within the

19

related work

// Library code.
class TheirClass {

def name ∶ String = “John”
}

// Client code.
class MyClass {

def printName(named ∶ { def name ∶ String }) {
println(named.name)

}
}

Figure 2.3.2: Structural types in Scala

realm of nominal typing, we first consider how a differentmethod of typing objects
— structural typing — can avoid this kind of problem.

2.3.2 Structural Typing

Structural typing of objects approaches the type checking of object-oriented pro-
grams in a different manner to nominal typing. A structural type definition de-
scribes an interface for an object, and any object which implements that inter-
face is implicitly an instance of the type (Cardelli, Donahue, et al. 1989; Cardelli
1988). This resembles duck typing, but values are annotated with the type they are
expected to satisfy rather than having this type inferred by usage. Consider Fig-
ure 2.3.2, which reworks the example from Figure 2.3.1 into the Scala programming
language, making use of the structural type system.

The Scala example emphasises that the name a type is given is unimportant,
as we completely remove the Named nominal interface. Instead we directly in-
sert the type definition for an object with a name method that returns a string:
{ def name ∶ String }. The Scala compiler will allow an instance of TheirClass to be
passed as the named argument in a call to printName, because the structure of the
object matches the interface given.

Note that an object may have more methods than specified by the type, as it still
satisfies the type’s interface. Cardelli (1988) explains that structural subtyping has
an advantage over nominal subtyping in that structural types have meaning inde-

20

type systems

pendent of the placement of their definition in a program, such as in the example
above. Structural subtyping is closely linked with the form of object inheritance
found in languages such as Java and Scala, as an instance of a class will always
satisfy the types of its superclasses. The crucial difference between structural and
nominal subtyping is that an explicit inheritance relationship between two objects
is not required for a structural subtyping relationship to exist.

Structural subtyping supports both width and depth subtyping (Cardelli 1988).
Width subtyping requires only that an object have at least the methods described
in the structural type, and may be ‘wider’ than what the type describes by having
more methods that are not described in the type: this corresponds to the interface
segregation principle (Martin 1996), as it permits describing the minimum meth-
ods required.

Depth subtyping requires that the type annotations on method signatures in
a structural sub-type only be as specific as the corresponding annotations in the
super-type, with covariant return types (the types in the sub-type are subtypes of
the types in the super-type) and contravariant parameter types (the types in the
sub-type are supertypes of the types in the super-type).

Structural subtyping of objects appears in Modula-3 (Nelson 1991; Cardelli,
Donahue, et al. 1989), as well as the OCaml (Leroy et al. 2016) and Go (Go Project
2016) programming languages. OCaml’s object types are defined by the methods
that appear on an object — any object with at least the methods in a type is an in-
stance of that type — and Modula-3 includes fields in this definition as well. Go
features primitive, method-less structures which are nominally typed, and allows
the definition of methods on pointers to these nominal types to create object-like
pointers. Structural subtyping in Go is achieved with ‘interface’ types: any pointer
to a nominal type which has at least the methods in an interface type is automati-
cally a subtype of the interface.

Structural subtyping is not without its own failings. The most notable issue
is ‘accidental conformance’, where an object is an instance of a type it was not in-
tended to satisfy (Läufer, Baumgartner, and Russo 2000). Consider a structural
type representing a geometric line:

type Line { x1, y1, x2, y2 ∶ Number }

21

related work

Line is a reasonable type for a representation of a line. Line is also a reasonable type
for any number of other shapes — the opposing points of a rectangle, for instance.
With purely structural subtyping, there is no way to distinguish these types from
one another. Malayeri andAldrich (2007) point out that nominal types also encode
design intent, explaining that without the ability to explicitly segregate types, it
becomes harder to enforce certain constraints.

Structural subtyping is also not the only solution to the issues with nominal typ-
ing that we have considered. Wehr, Lämmel, and Thiemann (2007) introduce the
ability to perform retroactive interface implementation in JavaGI, which allow the
relationship between the Named and TheirClass types from Figure 2.3.1 to be made
explicit. The relationship is no longer implicit and the types are all still nominal,
preserving the developer’s intent within class relationships. Retroactive implemen-
tation resembles Haskell’s type-class feature (Hall et al. 1996), though over object
interfaces rather than functional data types.

2.4 Gradual Typing

Static and dynamic type systems play to different strengths. Knowing types in ad-
vance allows the compiler to detect errors more easily before a program is run and
optimise the resulting execution, and type annotations provide a convenient form
of in-code documentation. It is pointed out by Abadi, Cardelli, et al. (1991) that
it isn’t always possible to determine the type of data at compile time, and we have
already seen an instance where a static nominal type system has prevented a struc-
turally correct program from running. Modern compiler techniques such as just-
in-time compilation are capable of producing high-performance code without the
presence of type information (Castanos et al. 2012; Jantz and Kulkarni 2013).

An alternative to either system is to instead use optional typing, which com-
bines both techniques, introducing a new ‘dynamic’ or ‘unknown’ type whose val-
ues are dynamically checked. Optional typing for objects arose both from the de-
sire to add stronger type guarantees to existing dynamic systems such as Smalltalk
(Bracha and Griswold 1993; Graver and Johnson 1990) and to add more flexibil-
ity to existing statically typed languages (Henglein 1994; Baars and Swierstra 2002;
Noort, Achten, and Plasmeijer 2010). Attempts to add dynamic typing to static

22

gradual typing

T ∼ T

T ∼ T
T11 ∼ T21 T12 ∼ T22

(T11 → T12) ∼ (T21 → T22) T ∼ ? ? ∼ T

Figure 2.4.1: Consistency relation of 𝜆?
→

systems have resulted in dynamically typed variables explicitly being marked as
dynamic (Abadi, Cardelli, et al. 1991; C# Project 2015), which is at odds with the
dynamic style of no type annotations at all (Siek and Taha 2006). There have been
a number of recent examples of optional typing on top of or as a competitor to
JavaScript, including TypeScript (Bierman, Abadi, and Torgersen 2014) and Dart
(Dart Project 2015).

Gradual typing is a form of optional typing that aims to ease the transition
of a program from an untyped prototype to a larger typed application. The name
refers to the concept of gradually introducing types into a dynamically- or partially-
typed program. Gradual typing distinguishes itself from optional typing by per-
forming run-time checks to ensure that assumptions that were unable to be tested
at compile-time are upheld throughout the execution of a program. The extensible
language Racket uses gradual typing for interoperability between standard code
and the Typed Racket extension (Felleisen, Findler, Flatt, et al. 2015; Takikawa et
al. 2012); interoperation is achieved by bridging the typed and untyped code with
run-time contracts (Findler and Felleisen 2002; Strickland, Tobin-Hochstadt, et al.
2012; Strickland and Felleisen 2010).

2.4.1 Consistency

Formal models of gradual typing work by introducing the dynamic type ? into an
existing static type system, replacing type equality with type consistency, and trans-
lating programs in the gradual calculus into a cast calculus to enforce unchecked
assumptions at run-time (Siek and Taha 2006). Type consistency, written ∼, is a
relation between two types which are equal in all of their known parts; unknown
parts are always consistent with any other part. The consistency relation of the 𝜆?

→
calculus of Siek and Taha (2006) is defined in Figure 2.4.1.

23

related work

All types are consistent with the ? type, and types with the same top-level shape
are consistent if their parts are also consistent. Type consistency is reflexive and
symmetric, but — unlike equality — it is not transitive. Transitivity would cause
consistency to degenerate into a total relation, where every type is consistent with
every other type. For instance, Int ∼ ? and ? ∼ Bool, so transitivity would give us
the nonsensical relation Int ∼ Bool.

Siek and Taha (2007) define Ob?<∶, a gradual type system for objects that com-
bines 𝜆?

→ and the object calculus Ob<∶ of Abadi and Cardelli (1996). Transitivity
is also an issue for subtyping as it is for type equality: the appearance of the dy-
namic type would allow all types to be subtypes of one another. Ob?<∶ introduces
the concept of consistent-subtyping, written ≲.

As with consistency, consistent-subtyping resembles the standard subtyping re-
lationship but is not transitive in the presence of the dynamic type. Siek and Taha
(2007) define the consistent-subtyping judgement T1 ≲ T2 as subtyping between
T1 and T2 with the unknown parts of each type ‘masked’ from one another, but
the judgement is equivalent to finding some other type T3 such that T1 <∶ T3 and
T3 ∼ T2. The dynamic type appears at every point in the consistent-subtyping lat-
tice, so it is both a top and bottom type (T ≲ ? and ? ≲ T), but the type is neutral
to regular subtyping, so only reflexivity applies (? <∶ ?).

2.4.2 Casts

As well as statically checking programs, it is important that a gradual type system
also ensure type correctness at run-time. The dynamic type allows any object to
claim to be of any type, and it is up to the run-time system to enforce the type
correctness of this claim. Run-time checking of higher-order type assertions can
be achieved with a contract (Wadler and Findler 2009; Takikawa et al. 2012), which
the gradual typing literature calls a cast.

A cast allows the expression of more specific claims about the invariants of
data and behaviours than types usually provide, but are often difficult to determine
at compile-time and are instead enforced at run-time (Meyer 1986; Findler and
Felleisen 2002). A gradual typing system needs to add casts at the boundaries of
the static and dynamic worlds, to ensure that objects cannot masquerade under a

24

gradual typing

// Will raise a type error if the argument is not a string.
method printString(string ∶ String) {

print(string)
}

// Dynamically typed.
var number≔ 5

// Raises a type error as the value crosses from dynamic to static typing.
printString(number)

Figure 2.4.2: Run-time error in a gradually-typed language

type that they are not an instance of.
Consider the gradually typed program given in Figure 2.4.2. The printString

method has a precondition that its argument be a string. When the number vari-
able is passed to the method, it crosses the boundary between dynamic typing (as
it is declared without a type) and static typing (as the parameter is of type String),
which means the run-time system must enforce the precondition. Note that this is
also a good example of how the run-time semantics of gradual typing differs from
duck typing: this programwill run without error under duck typing, whereas grad-
ual typing will cause a run-time error on the invocation of printString.

Assumptions about higher-order type properties are more difficult to maintain.
If the method in Figure 2.4.2 were expecting a function that returned a String, it
would be able to check if the given argument was a function, but not what it re-
turned without actually calling it. The same higher-order assumptions exist on
structural types, where the object can be inspected for the presence of the relevant
methods, but not what types the methods accept and return. These assumptions
must be deferred until the function or method is actually called, at which point the
deeper types apply.

When a cast needs to continue enforcing higher-order assumptions, it wraps
and replaces the value it is checking and chaperones the value to observe its be-
haviour (Strickland, Tobin-Hochstadt, et al. 2012). Whenever a relevant action is
performed on the cast, such as a method call, the action is passed to the underly-
ing value and the types are checked as it is performed. The types checked by a cast

25

related work

may also include higher-order assumptions, in which case more chaperone casts
are generated.

The consistent relations allow the typing judgement tomake assumptions about
types that include the dynamic type ?. In order to ensure that these assumptions are
upheld during the reduction of a program, formal gradual languages do not define
reduction directly on the gradual calculus, and instead convert gradual terms into
a term in a cast calculus instead. Terms in the 𝜆?

→ calculus are transformed into
terms in the 𝜆⟨𝜏⟩

→ calculus; terms in the Ob?<∶ calculus are transformed into terms
in the Ob⟨⋅⟩<∶ calculus.

An Ob⟨⋅⟩<∶ cast ⟨T2 ⇐ T1⟩ t wraps a term t, with a source type of T1 and target
type of T2. The modern literature now uses the syntax t ∶ T1 ⇒ T2 (Cimini and Siek
2017). To be well-typed, the body of the cast must satisfy the source type, and the
source and target types must be consistent. This means that a single cast by itself
is always valid: only when reduction attempts to merge two casts together can the
assumptions of a cast be found invalid.

The process of cast insertion doubles as a type system for a gradual language and
the procedure that converts from gradual to cast calculus terms. The cast insertion
procedure of Siek and Taha (2007) is expressed as Γ ⊢ t ⇝ t′ ∶ T , taking an
Ob?<∶ term t and a typing environment Γ, and producing anOb⟨⋅⟩<∶ term t′ and type
T . For typing purposes, t′ can be thrown away; for evaluation purposes, t can
be thrown away. The procedure determines where assumptions are being made
(effectively, where consistency is being used instead of equality), and inserts casts
into the resulting cast calculus term to explicitly encode these assumptions.

In further work, inference for gradual types is explored by the 𝜆?𝛼
→ calculus

of Siek and Vachharajani (2008) and the inference algorithm of Rastogi, Chaud-
huri, and Hosmer (2012), as well as the investigation of Garcia and Cimini (2015)
into the potential meaning of omitting a type annotation in a gradually typed lan-
guage, ultimately subsuming the earlier work on gradual inference. Recent devel-
opments have investigated generating gradually typed languages directly from ex-
isting statically-typed languages (Cimini and Siek 2016; Garcia, Clark, and Tanter
2016; Cimini and Siek 2017).

26

gradual typing

// Will raise a type error if the argument is not a list.
method printFirstString(strings ∶ ListJStringK) {

// Will raise a type error if the resulting element is not a string.
// Blames the call to printFirstString.
print(strings.first)

}

// Dynamically typed.
var intList≔ list(1, 2, 3)

// Does not raise a type error here, but inside the method instead.
printFirstString(intList)

Figure 2.4.3: Run-time error identified by blame

2.4.3 Blame

One of the interesting challenges of gradual typing is the production of relevant
run-time type error information (Findler and Felleisen 2002). Wadler and Findler
(2009) introduce a ‘blame’ calculus which annotates casts with blame labels, such
as t ∶ℓT1 ⇒ T2. When a cast fails, the blame label is used to produce the original
source of the error. For casts between simple types this is an irrelevant addition, as
if such a cast fails then it does so immediately and is easily blamed. Casts enforcing
higher-order types such as functions or generic types cannot always be completed
at the point where the cast is made, and so blame labels are used to ensure that if a
cast fails in the future, the blame can be tracked back to the correct cast.

In the example presented in Figure 2.4.2, a run-time type error is produced
at the same point as the typing fault. It is not always possible to enforce the typ-
ing precondition as an object crosses the typing boundary (Ina and Igarashi 2011).
We extend the previous example so that the method operates on a list of strings
rather than a single string in Figure 2.4.3, and supply it with a list of the wrong ele-
ment type. As intList is passed to the printFirstString method, the run-time system
can confirm that it is a list, but it cannot know what the elements of the list are
without retrieving them. Rather than producing a type error at the invocation of
printFirstString, it can only detect the fault at the call to strings.first.

27

related work

In order to achieve correct blame placement of the resulting type error, the cast
maintaining the higher-order assumptions of the type of strings must remember
where it originated from. When the call to first reveals that the list does not always
contains strings, the caller of printFirstString is blamed instead of the body of the
method. A cast records the point where it crosses a typing boundary, and reports
that particular cast as the assertion which has failed.

2.4.4 Gradual Guarantee

The gradual guarantee is one of four correctness criteria defined for gradually typed
languages (Siek, Vitousek, Cimini, et al. 2015). The guarantee was developed fol-
lowing the observation that a typecase form in a structurally typed language would
cause type annotations on methods to become relevant outside of enforcing typing
assumptions at run-time (Boyland 2014).

Consider two structural types named Graphic and Gunslinger. Both types con-
tain a signature named draw, but they each accept a parameter of a different type:
Graphic accepts a Widget, while Gunslinger expects a Gun. The difference in their
parameter types means that neither type is a subtype of the other: in a typecase
that examines parameter types, a Graphic is distinguishable from a Gunslinger.

In a gradually typed language, an object that is intended to be a Graphic may
omit its parameter type, indicating that it should be interpreted as the dynamic type
?. Such an object is no longer distinguishable as either a Graphic or Gunslinger: a
typecase that discriminates on both types must pick one. Later, as the program is
developed, the type may be filled in with one of the two valid parameter types, and
this may cause a typecase to now pick a different path with this new information.

The gradual guarantee effectively states that the addition or loss of any preci-
sion in types alone to a gradually typed program cannot affect its behaviour. Since
the addition of an incorrect type could cause a program to fail with a type error,
the guarantee is formally expressed for removing precision: if a gradually typed
program reduces to a value without error, then the term produced by making any
types in that program less precise reduces to the same value. The typecase described
above fails the guarantee because making the parameter type less precise could
cause it to branch differently.

28

hybrid type systems

The guarantee is intended to uphold the ‘gradual’ component of gradual typing.
For a program to be gradually developed from an untyped prototype to a larger
typed application, the gradual addition of types should not affect the behaviour of
a (correct) program.

2.5 Hybrid Type Systems

Nominal and structural typing both have advantages (Malayeri and Aldrich 2008;
Gil and Maman 2008). Structural typing decouples an object’s type — the set of
methods to which it can respond — from the object’s implementation (usually a
class). Structural types can be declared at any time, in any part of the program, and
still be relevant to any object with the appropriate interface. Any object that con-
forms to a structural type can be used wherever an instance of that structural type
is required, even though the object’s definition did not declare that it implemented
the type— among the reasons that Go adopted structural typing (Go Project 2016).

Being based solely on objects’ interfaces rather than their implementations,
structural types correspond to the conceptual model of object-oriented program-
mingwhere individual objects communicate only via their interfaces, with their im-
plementations encapsulated (Cook 2009). The clear separation between structural
types and their implementing classes, and the ease of defining types independently
from classes works well with gradual and pluggable typing (Bracha 2004; Andreae
et al. 2006), so programmers can begin by writing programs without types, and
then add types later as the need increases.

Some modern languages have adopted structural subtyping. In Go, for exam-
ple, types are declared as interfaces, and an object conforms to a type if the object
declares at least the methods required by the interface (Go Project 2016). As well
as Go’s interfaces, Emerald is structurally typed, as is OCaml’s object system and
Trellis/OWL (Black, Hutchinson, et al. 2007; Leroy et al. 2016; Schaffert et al. 1986).
Structural types have also been used to give types post-hoc to dynamically typed
languages: Strongtalk originally supported structural types for Smalltalk, and Di-
amondback Ruby uses structural types for Ruby (Bracha and Griswold 1993; Furr
et al. 2009).

On the other hand, nominal subtype relationships must be designed and de-

29

related work

clared by programmers, meaning they can capture programmers’ intentions ex-
plicitly. Nominal subtyping canmake finer distinctions between objects than struc-
tural subtyping: a structural systemcannot distinguish between twodifferent classes
that have the same external interface, whereas a nominal system can distinguish
between every implementation of every interface. Because nominal types can dis-
tinguish between different implementations (classes), compilers and virtual ma-
chines can optimise object allocation and method execution for particular imple-
mentations — for example, allocating machine integers and compiling arithmetic
without any method dispatch.

The reality is that most statically typed object-oriented languages use nominal
subtyping. From Simula (Birtwistle et al. 1979) and C++, through to Java, C# and
Dart, an instance of one type can only be considered an instance of another type if
the subtyping relationship is declared in advance, generally at the time the subtype
is declared. In many of these languages, interfaces can be used to describe the
required structure of an object in the same way as structural types, but objects do
not implicitly satisfy interfaces and must be constructed by a class that explicitly
declares that it implements the interface.

Asmost languages are nominally typed, most of themajor platforms for object-
oriented languages (the Java Virtual Machine and the Common Language Run-
time) are themselves nominally typed, so interoperability with VMs and languages
is assisted by nominal typing. Pedagogically, nominal subtyping ensures every type
has a name, so compilers and IDEs (especially their error messages) can refer to
types by name, making teaching and debugging easier. Every nominal type has an
explicit, unique, declaration in the program, a declaration that describes its rela-
tionships with all its supertypes, so class and type hierarchies can be understood in
a straightforwardmanner. These advantages are among the reasons that Strongtalk,
for example, moved from structural to nominal typing (Bracha andGriswold 1993).

Given that nominal and structural typing both have advantages, there have
been attempts to combine them both in a single language. The Whiteoak language
(Gil and Maman 2008) begins with Java’s nominal type system and adds in support
for structural types. Around the same time, Scala 2.6 (Odersky 2014) added struc-
tural types, again on top of a language with a nominal type system. The Unity lan-
guage design similarly adds structural types onto a nominal class hierarchy (Malay-

30

hybrid type systems

struct Amount {
int amount;
int add(Amount other) {

return this.amount + other.amount;
}

}

Figure 2.5.1: Structural types in Whiteoak

eri and Aldrich 2008). All of these additions begin with a nominal-typed language,
where interface and class are already conflated, and attempt to add structural types
as refinements onto nominal types.

The dichotomy between structural and nominal subtyping has been studied
from the earliest applications of types to object-oriented languages (Black and Pals-
berg 1994). Simula, the first object-oriented language, is nominally typed: a sub-
class must be explicitly declared as inheriting (being prefixed) by its super-class
(Birtwistle et al. 1979). Most object-oriented languages (C++, Java, C#, etc) fol-
lowed Simula’s lead, though OCaml supports structural subtyping for objects, as
does Go (Leroy et al. 2016; Go Project 2016).

Whiteoak introduces a number of structural typing features on top of the stan-
dard Java type system, allowing the definition of structural types for both methods
and fields, and nominal types conform to structural types when they implement
their interface. The new structural types can also provide default methods for ob-
jects explicitly declared to be of that type. In the Whiteoak example given in Fig-
ure 2.5.1, any object with an integer field amount is an instance of the Amount type,
and any variable declared with the type Amount has a method add, regardless of
whether the underlying object actually has one or not.

Dubochet and Odersky (2009) added structural subtyping to Scala on top of
its existing nominal type system with a similar feature set. The Java platform has
no support for structural subtyping, so both implementations have to translate the
structural types into nominal types in order to generate valid Java bytecode. The
easiest solution is to use whole-program-analysis and produce a new Java type for
every intersection between a nominal and structural type.

Gil and Maman (2008) describe generating unique Java types for nominal and

31

related work

structural types as ‘executable blowup’ and consider it an unacceptable solution.
Whiteoak achieves compatibilitywith the Java 5 platformbybuildingwrapper classes
for each instance of upcasting from a nominal type to a structural one, whereas
Scala makes use of the more recent ‘invokedynamic’ feature of the Java Virtual Ma-
chine (Lindholm et al. 2013) to avoid producing additional classes on each use.

Thepath-dependent types inDOTandSystemD(Rompf andAmin 2016; Amin
2016) achieve a level of pseudo-nominality, in that without equal bounds on a type
member the type system cannot reason about the type exactly, and can only equate
it to itself, just as with nominal types. In particular, the bounds⊥..T behave exactly
as a nominal type whose structural information is T , and two distinct members
with these same bounds are not considered the same type, even if the members
themselves are declared to be the same. The type members of DOT permit a sim-
ulation of nominality through abstraction, but if the language were extended with
a run-time matching construct (i.e. instanceof) this feature could only match on
structural types, since there are no true nominal types.

2.5.1 Brands

Most early theoretical analysis of type systems for object-oriented languages used
structural types (Cook, Hill, and Canning 1990; Cardelli and Wegner 1985; K. B.
Bruce 1994; Pierce andTurner 1994). Later references such as Palsberg and Schwartzbach
(1994), K. B. Bruce (2002), andPierce (2002) discuss structural andnominal (sub)typing,
but they do not address the question of how both kinds of types can best be inte-
grated into a single, practical, language design.

Malayeri and Aldrich (2008) introduce ‘brands’ in the Unity programming lan-
guage, which combines nominal and structural subtyping. Brands are essentially
nominal classes, but the type system is extended so that structural constraints can
be added. For instance, a standard hierarchy for a windowing system may describe
a Window brand as its top:

abstract brand Window (⋯)

As in a nominal class hierarchy, therewill be a number of brands extendingWindow,
such as ResizableWindow orMovableWindow. In a nominal setting, in order to get
awindowwith a scroll bar amethodmust request an argument of type ScrollBarWindow,

32

hybrid type systems

and every class that has a scroll bar must implement this interface. With brands, a
method can instead request any subtype of Window that has a scrollBar method:

method scroll(win ∶Window({scrollBar ∶ ScrollBar})) ∶ unit

The notion of nominal brands on structural types originated in Modula-3 (Nel-
son 1991). Record types in Modula-3 generally use structural equivalence, but can
be annotated with a brand to give nominal equivalence. Modula-3 brands can
also be given explicitly, e.g. for type safety between programs or across networks.
Evenwith structural equivalence, Modula-3 record types do not support subtyping:
there is no type relationship between a record type with a particular set of fields,
and a second record type with a subset (or superset) of those fields— only between
two record types whose field types are identical. Modula-3’s object types are “es-
sentially SIMULA classes” (Cardelli, Donahue, et al. 1989) and, like SIMULA, use
nominal subtyping. Neither the Cardelli, Donahue, et al. (1989) formalisation of
the Modula-3 type rules, nor the Baby Modula-3 of Abadi (1994), nor the Theory of
Objects (Abadi and Cardelli 1996) model Modula-3’s branded types.

The Tagging Language of Glew (1999) introduces ‘tags’ in the context of type
dispatch. Tags can be used to implement class- and exception-casing in much the
same way as brands. The underlying type system is not structural, and is popu-
lated by primitive sequence and function types instead. The language formalism
goes into depth on the existence of tags at run-time, including populating the heap
and run-timematching. Strongtalk (Bracha andGriswold 1993) is an optional (and
arguably pluggable) type system for Smalltalk: in the original version of Strongtalk,
the types were structural with optional brands, again very similar to our design, al-
though a later version of Strongtalk abandoned brands and adopted declared sub-
typing and matching relationships (Bracha 1996).

A design for trademarks were proposed for ECMAScript 6 (Horwat and Miller
2011) that provides a very similar model of branding for the language. Trademarks
are split between a branding object and a guard object, the former for tagging an
object as branded, and the latter for identifying which objects are branded. The
design shows howaprogramcanhide the branding objectwhile exposing the guard
to prevent fraudulent branding: the branding object acts as a capability for the
guard’s precondition (Miller 2006). As a dynamically-typed language, combining

33

related work

static reasoning about trademarks with a static structural type system in JavaScript
would be useful.

2.5.2 Tagged Objects

Recent work includes the Tagged Objects theory of Lee et al. (2015), and the result-
ing practical extension to the Wyvern language (Nistor et al. 2013). Tagged Objects
adds nominal ‘tags’ on top of an existing structural type system (along with other
common functional constructs). This approach focuses on the type theory of tags,
and provides new primitive type and matching constructs as an extension to the
language, with new static typing rules. Unlike DOT, this mechanism does support
true nominality with run-time matching, and the construction of a tag includes
the relevant structural information, so any object that is declared with a tag must
satisfy the structural requirement of that tag. In this sense, a tag encodes the same
concept as interfaces in Java or C#.

Tags are constructed using a newtag[𝜏] function, with the type 𝜏 representing
the type that any values tagged with the new tag object are required to satisfy. The
result of applying newtag is a new tag value c of type 𝜏 tag. A value c is effectively
a reference, and appears in a store S during reduction, but the actual objects in
the language are not allocated on the store, so S exists purely for the purposes of
recording the identity of a tag object (and its corresponding type 𝜏).

Any tag at a name x can be applied to a term e with an application of new(x, e)
so long as e can be typed with the corresponding 𝜏 of x. An application of new

is a value once its argument e has been reduced to a value as well, with the type
tagged x. This hides the value and type of e, up to the corresponding 𝜏 of x, since
e must have at least the type 𝜏. The extract function extracts the value from a tag
application and discards the tag: extract(new(x, v)) reduces to v. The value must
be extracted before it can be used as an object of type 𝜏.

Existing tags can be extended with the subtag[𝜏](x) function, the result is also
a fresh reference c, where c is associated with 𝜏 in the store, but this value has
the type 𝜏 tag extends x. Values tagged with a sub-tag are acceptable where val-
ues with the super-tag are expected, so tagged x1 <∶ tagged x2 if x1 has the type
𝜏1 tag extends x2 and x2 is also a tag. In order to ensure that extracting the values

34

hybrid type systems

let intOption ∶ ⊤ tag = newtag[⊤] in
let none ∶ ⊤ tag extends intOption = subtag[⊤](intOption) in
let some ∶ int tag extends intOption = subtag[int](intOption) in
let x ∶ tagged intOption = new(some; 5) in
match(x; some; y. extract(y) + 1; −1)

Figure 2.5.2: Optional integer type example modified from Lee et al. (2015)

is safe in the presence of this subtyping, the sub-tag’s required type 𝜏 must also be
a subtype of the super-tag’s required type. Anything extracted from the sub-tag
must be compatible with the type of things extracted from the super-tag.

Tags can be detected during execution with amatch construct that branches on
the presence of a given tag object; matching against a tag x, then in the body of the
branch that is entered if the tag is present the object is bound to a variable with the
type tagged x. Thematch constructmakes it possible to encode both nominal class
discrimination such as instanceof in Java, as well as pattern matching on algebraic
data types. The authors present an example of encoding the latter to describe the
type of an ‘optional’ int using tags none and some. This adds a null-like form to
the type, but the cases must be discriminated before access to the underlying value
(if present) is permitted.

A modified form of the example from Lee et al. (2015) is presented in Fig-
ure 2.5.2. First, a common super-tag of the two cases must be declared, then the
none and some tags are constructed as sub-tags. The value 5 is tagged with some,
which is well-typed because 5 is an int. Finally, the match construct discriminates
on the brand some, binding the value of x to y in the body if x is tagged some (or
potentially a sub-tag of some). The result of running this program is 6, since the
match succeeds and so the value 5 is extracted and incremented.

The purpose of the Tagged Objects theory is to act as a foundation for object-
oriented languages in the same vein as Featherweight Java, but without the (often
implicit) class table that appears in FJ (Lee et al. 2015; Igarashi, Pierce, and Wadler
2001). To this end, classes can be represented as a dependent sum of a tag value
and a constructor: the sum must be dependent because the type of the construc-
tor depends on the value of the tag. The type of a class whose objects satisfy the

35

related work

interface 𝜏 and whose constructor takes input 𝜏′ is the sum:

x∶𝜏 tag

(𝜏′ → tagged x)

Any such class that constructs its objects with a function f can be represented by
the term:

let x = newtag[𝜏] in ⟨x, 𝜆y. new(x; f y)⟩

Any use of the underlying object is an extract away.
Nominal subtyping relationships between these classes can be declared as extends

relationships between their tags, so a class that extends another class x has the type:

y∶𝜏 tag extends fst(x)

(𝜏′ → tagged y)

Such a class can be represented as before, but using the subtag function:

let y = subtag[𝜏](fst(x)) in ⟨y, 𝜆z. new(y; f z)⟩

The result is that classes can be passed around as first-class values, and the types of
these class objects express the declared nominal subtyping relationships between
them. Accessing the fst of any class provides the tag to match on objects con-
structed by that class, encoding Java’s instanceof and a safe form of type casting.

The one caveat is that, in order to use a tag as a type with the tagged form, the
tag itself must be in scope. This means that that tag is also available to be used in
an application of new. The Tagged Objects language provides no mechanism for
exposing the type of tagged objects without also exposing the mechanism for tag-
ging other values. As such, while the behaviour of Java-like classes can be encoded
in the theory of Tagged Objects, the language cannot actually enforce that a tagged
object was constructed by a particular class. This is mitigated by the 𝜏 type asso-
ciated with a tag, such that any tagged value is required to at least implement the
interface associated with the class, which is effectively the same as inheriting from
the class and then overriding all of the methods. This equivocation breaks down
in the presence of more complicated features such as side effects in a constructor,
though.

36

pluggable typing

2.6 Pluggable Typing

Static type checking can catch a variety of potential errors at compile-time, but
there are a number of common errors which can be addressed statically that many
standard type systems do not address (Flanagan et al. 2002; Chalin et al. 2005;
James and Chalin 2009). For instance, the most common object-oriented lan-
guages feature a null pointer that is not checked by their type system, which can
often result in the infamous null pointer exception. Extended static checking (ESC)
is a technique for addressing more specific forms of errors at compile time (Chalin
et al. 2005; Xu 2006). Flanagan et al. (2002) introduce ESC/Java as an extension to
the Java programming language. The extension allows for statically verified asser-
tions in a program, including non-null variables and basic reasoning about number
values.

A number of other, more specific extensions to Java’s static checking system
exist. Clarke, Potter, and Noble (1998) add ownership types to constrain the ex-
posure of an object’s representation, and Pearce (2011) adds purity checking on
object methods to constrain method side-effects. The issue with these myriad ex-
tensions is that they are inherently incompatible. As they directly extend the lan-
guage by modifying the compiler, a developer wishing to use combinations of the
static checkers must manually compose them.

Bracha (2004) argues that the choice of a programming language should be
independent from the choice of a type system in an introduction to pluggable type
systems. He claims thatmandatory typing canhinder the development and stability
of software, whereas optional typing allows for the separation of the type checker
from the language itself. The reintroduction of type checking to such a language
can be thought of the application of a plugin to the compilation process, and there
is no reason that multiple such plugins might not be introduced.

This concept is explored further by Andreae et al. (2006) with JavaCOP, an
extension to the Java language that allows for the development of annotations and
assertions about their application in a declarative format. These assertions are then
checked on top of Java’s standard type checking. They produce a static solution to
the null pointer error with a NonNull annotation and an associated checker that
guarantees annotated variables cannot hold the null value.

37

related work

The restriction of JavaCOP’s assertion language to a simple declarative format
ensures that the framework cannot cause the type checking stage of the compiler
to execute forever (Markstrum et al. 2010). Papi et al. (2008) do not adhere to this
restriction and allow for either a declarative and procedural approach to confirm-
ing assertions. Java’s own Annotation Processing Tool, though primarily intended
for performing compile-time processing of Java source files, also allows warnings
and errors to be communicated to the Java compiler.

Ultimately, the Java language was not designed with an extensible type system
in mind. Attempts to add extended static checkers require extensions to the under-
lying compiler. A language which is inherently extensible would be amore suitable
candidate for pluggable types.

2.7 Extensible Languages

An extensible language contains constructs that allow a developer to modify its
syntax or semantics (Standish 1975). Extensibility is often associated with metapro-
gramming, as it allows programs to operate on themselves (Kiczales, des Rivières,
and Bobrow 1991), but meta-level operations are not necessary for a language to be
considered extensible. For instance, while many languages feature built-in control
structures such as if-then-else and while-do, other languages define the structures
in terms of other constructs, and allow for the modification or invention of them.

Lisp macros are a canonical example of extensibility. There is no special syntax
for control structures in Lisp, as control flow is specified with the use of macros.
Macros rewrite their call sites in such a way that their arguments are lazily eval-
uated: they are not evaluated unless they are needed. For instance, conditional
branching can be achieved by defining a macro that ensures that a branch value
will not be evaluated unless the condition is true, but when called the result is in-
distinguishable from an ordinary function call:

(if list

(print “Non-empty list”)

(print “Empty list”))

The Smalltalk programming language achieves a similar effect without the use of

38

extensible languages

metaprogramming (Ingalls 1978; Goldberg andRobson 1983). The language achieves
the same functionality using methods and blocks. Blocks provide a way of defin-
ing code that can be run later, acting as an explicit form of lazy evaluation. The
if-then-else structure becomes an operation performed on a boolean object, tak-
ing two block arguments:

list isEmpty

ifTrue: [Transcript show: “Empty list”]

ifFalse: [Transcript show: “Non-empty list”]

This allows objects other than boolean to be used in an if-then-else construct, be-
cause they just have to implement an ifTrue:ifFalse: method. Different iterable ob-
jects can each implement forEach:, and so on.

TheRacket programming language is a Lisp dialect and a descendant of Scheme
developed by the PLT group with a focus on extensibility (Felleisen, Findler, Flatt,
et al. 2015). The syntax and semantics of Racket can bemodifiedwithin the confines
of a single module, to the extent that a module can be implemented in an entirely
different language. Each module declares itself as being written in a particular lan-
guage with the #lang directive. This separation of languages can be used to form a
‘syntactic tower’, where one language can be used to define the implementation of
another, which in turn can be used to produce further languages.

The base language of Racket closely resembles its ancestors, including its use
of dynamic typing. The extensible features of the language subsume the basic fea-
tures of pluggable typing, and have been used to create Typed Racket, a language
with static typing (Felleisen, Findler, Flatt, et al. 2015). Typed Racket is still able
to interact with other modules not in the typed language, introducing a form of
gradual typing to Racket as well (Takikawa et al. 2012). The boundary of static and
dynamic typing now exists at the boundary of these interactingmodules, requiring
run-time checks and chaperones (Strickland, Tobin-Hochstadt, et al. 2012). The de-
velopment of tools like PLT Redex (Felleisen, Findler, and Flatt 2009) demonstrate
that Racket is capable of addressing at least semantic modeling.

39

3 Grace

This chapter introduces the relevant features of the Grace programming language
(Black, K. B. Bruce, Homer, and Noble 2012; Black, K. B. Bruce, and Noble 2016),
which will be the context for the remainder of the thesis. We discuss the core of the
language, including the nature of objects and the type system governing their use,
as well as explaining the language’s annotation and dialect features.

3.1 TheCore Language

The Grace programming language is an object-oriented language intended for ed-
ucation (Black, K. B. Bruce, Homer, and Noble 2012; Black, K. B. Bruce, Homer,
Noble, et al. 2013). Grace aims to supplant the use of enterprise languages in this
field, such as Java, by reducing the boilerplate necessary to produce a working pro-
gram while also introducing modern, demonstrably useful software engineering
concepts. Grace features a number of techniques for gradually building programs
so that the simplest programs are small while also allowing for the construction of
reasonably large and complex applications around object-oriented principles.

The core primitive of Grace is the object. An object in Grace is essentially a
set of methods which can be requested to invoke the contained code. Requesting a
method is the same as sending a message in Smalltalk or calling a method in most
object-oriented languages. We use the term ‘requested’ to make it clear that, in
good object-oriented form, only the receiver of a method request is responsible for
determining which method is actually invoked.

The language uses an expression to create objects with the object keyword, and
methods are defined inside this literal with the method keyword. An object with a

41

grace

single method, square, can be created with the following code:

object {

method square(x) {

return x ∗ x
}

}

Methods are identified by their name and arity (number of parameters), and no
object may have more than one method with the same identifier. The variable self

always refers to the closest surrounding object, and outer can be used to refer to
surrounding objects whose self value is shadowed by a nearer object.

Objects can be stored in local variables that are either constant, with the def

keyword, or variable, with var. Assignment to these variables uses= and≔ respec-
tively, to distinguish between binding a constant value to a name and assigning a
value in a mutable variable. Object fields are created by defining a method which
gets or sets a locally defined variable, and it is possible to automatically generate
these methods (see §3.4). Note that the return keyword is unnecessary in the ex-
ample: Grace methods always return the expression on their final line.

Arbitrary code can appear inside of an object expression, and will be run im-
peratively when the object is constructed. Fields declared inside of an object are
accessible immediately following the construction of an object, but they are unini-
tialised until they are assigned a value by the imperative sequence of the object
body.

The language takes a pragmatic approach to object initialisation: access to unini-
tialised variables raises a run-time error. A safe initialisation scheme, such as De-
layed Types, Masked Types, Hard Hats, Freedom Before Committment, or the Bil-
lion Dollar Fix should be able to avoid the pitfalls of uninitialised references (Fäh-
ndrich and Xia 2007; Qi and Myers 2009; Gil and Shragai 2009; Zibin et al. 2012;
Summers and Müller 2011; Servetto et al. 2013), we discuss how the language per-
mits such extension in §3.5.

Methods are requested with the dot operator, and parameters are passed as
comma separated values in parentheses, as inmostmainstreamOO languages. The
receiver of the request can be omitted, in which case the method will be resolved

42

the core language

in the surrounding scope. There are three major differences to mainstream syntax:

1. If there are no arguments, then the parentheses can be left off. The expres-
sions a.apply() and a.apply are equivalent.

2. Method names can be made up of multiple words, each with their own pa-
rameters, as in the Smalltalk language (and the languages it influenced, in-
cluding Self and Objective-C). Such a method is considered ‘mixfix’, and is
useful both for making the purpose of argument values more clear (such as
in substringFrom(0) to(5)) and for the definition of control structures that
appear no different from the built-in ones. All of Grace’s control structures
such as if() then() else() and for() do() are used as requests to mixfix methods.

3. Operators are also standard object methods — another feature derived from
Smalltalk — but are syntactically the same as infix operators in most lan-
guages. Operators can either be infix or prefix. There is also a special ‘field
assignment’ operator, which is defined with a standard method name fol-
lowed by the assignment operator, ≔. This method is requested as though
assigning a field with the given name: obj.field≔ 5.

The combination of these features is intended to allow the full customisation of
what are traditionally built-in features without much difference in syntax.

Grace also has syntax for class declarations. The syntax is mostly the same
as in a standard class-based language such as Java, but the constructor and the
definition are combined to encourage the notion of classes as factory objects (Black,
K. B. Bruce, Homer, Noble, et al. 2013). For instance, a class named dog would be
defined as follows:

class dog(name) {

method bark {

print(“The dog named {name} barked”)
}

}

Classes are not a primitive construct of the language, but are instead syntactic
sugar for a combination of objects andmethods, enforcing theGrace ideal of having

43

grace

a single underlying primitive: the object. Grace objects are not defined in terms
of classes, and object inheritance does not establish relationships between classes.
The definition above introduces a method named dog, and when this method is
requested, a new object with the method bark is returned.

The use of name in the string above is another feature of Grace. Expressions
can be interpolated directly into a string literal by surrounding them with braces.
The contained expression will be evaluated, converted into a string, and then con-
catenated onto the strings either side of it. The expression dog(“Charlie”).bark will
print “The dog named Charlie barked”.

A ‘block’ in Grace is akin to anonymous functions and lambdas from other
languages. A block—denoted by braces – is like a first-classmethod, a valuewhose
contained code can be invoked by requesting its apply method. If an argument list
contains just a single block, then the parentheses can be left off and the braces take
their place in delimiting the arguments. The omission of the parentheses allows
method requests to resemble the control structures of C and Java.

Using blocks to delay the evaluation of a block of codewhen requesting amethod
is similar to the custom control structures of Smalltalk, but Grace allows the defi-
nition of these methods in the local scope, providing for syntax closer to the C-like
structures such as if-else:

if (isTrue) then {

doTrue

} else {

doFalse

}

The method if() then() else() invoked above is a regular method that applies one
of the given blocks depending on the value of the first argument. Developers can
define their own control structures that are no different from the standard ones.
The following code defines a control structure that runs a block if its first argument
is empty:

method ifEmpty(list) then(block) {

if (list.isEmpty) then { block.apply }

}

44

inheritance

Blocks can also take parameters, introduced by the → symbol. This allows
control structures that introduce variables to name and assign those values. This
is useful for the standard ‘for each’ control structure, represented in Grace by the
for() do() method. The method takes an iterable object and passes each element to
the apply method of the given block. The block receives the arguments passed to
apply by defining parameters:

for(list) do { element→
process(element)

}

Use of the return keyword in a block signals a return to the enclosing method,
not the block. This is important because it allows situations like a conditional re-
turn, as in the following:

method sum(list) {

if (list.isEmpty) then { return 0 }

⋯
}

As with all values in Grace, blocks are just objects. It’s possible to define an object
that behaves exactly like a block without the use of the literal syntax.

Each file of Grace code constitutes a module. Modules are imported by des-
ignating a path to the containing file, and a name to give the module. Modules
are also objects, and all top-level public definitions in a file are exposed on the re-
sulting object when the module is imported (Homer, K. B. Bruce, et al. 2013). A
module runs when it is first imported, and subsequent imports receive a pointer to
the existing object.

3.2 Inheritance

An object in Grace can inherit the implementation of another object when it is
created. The inherit clause is a statement that may appear at the top of an object
expression, and the clause contains an expression which is evaluated to build the
parent object. Consider an object albie that inherits from the dog class defined
above.

45

grace

def albie = object {

inherit dog(“Albie”)

method fetch {⋯ }

}

This object understands both the fetch and bark methods, the latter of which was
inherited from the definition of dog.

Unlike the delegation of Self or JavaScript discussed in §2.1.1, Grace objects
cannot inherit from an arbitrary object. The expression in an inherit clause must
be a request to a manifest method, which means that the actual method that will be
called can be statically resolved. The manifest method must construct and return a
new object when it is called, and the definition of that object must also be manifest.

These strict requirements on which expressions can be inherited from ensure
that the structure of the object that will be inherited is always statically-known, in-
cluding non-public definitions. This is important in determining which definitions
in the inheriting object are new, and which are overriding existing definitions in
the parent.

It is also important to know the exact structure of any inherited objects because
inherited definitions can shadow local definitions. The albie object above can call
its own bark method without qualifying the request with self. If there were some
other bark definition surrounding the definition of albie, then the inherited defi-
nition takes precedence. In order to correctly resolve references in the presence of
inheritance, either for typing or compilation, all of the inherited definitions must
be statically-known.

The request in an inherit clause does not actually construct the object that the
method would return if requested outside of the clause, but rather the identity of
the inheriting object is implicitly passed to the invoked method and the inheriting
and inherited objects’ definitions aremerged together before any initialisation code
is run. The inheritance of dog in albie does not create a separate dog object and
then inherit from it; instead the bark method is inserted directly into albie. Any
initialisation code that might have run inside of dog is run inside of albie instead.

Grace’s inheritance semantics are very different frommost classless object-oriented
languages, which typically permit delegation between arbitrary objects. We explain

46

types

and discuss the specific semantics of inheritance in Grace in much more detail in
§9.3 and §10.2.

3.3 Types

Types in Grace are both gradual and structural (Black, K. B. Bruce, Homer, and
Noble 2012). Unlike most object oriented languages, classes in Grace do not intro-
duce types, with the intention of clearly separating the concepts of factories and
types that are intertwined in many class-based languages. Type names are intro-
duced with the type keyword and assigned a structural type value, which lists the
signatures of the methods for an object of that type. Parameter types are delimited
with the ∶ operator followed by the type. Method return types are delimited with
the → symbol.

A Vehicle type might be expected to have a number of wheels, and be able
to drive a certain distance. A type that represented such a vehicle would have a
method wheels that returns a Number and a method drive which takes a number
as a parameter, like so:

type Vehicle = {

wheels→ Number

drive(kilometers ∶ Number)→ Done

}

The return type of the drive method is Done, a type that indicates no useful return
value. This type is like void in Java, except that methods must return a value, so
any method that only performs side-effects and does not need to return a value
can instead return the sentinel value done.

As types are gradual, it is also acceptable for the return type of drive to be left
off entirely. This may be marked explicitly using the Unknown type, equivalent to
the gradual dynamic type ?. Every object satisfies the Unknown type, so it is always
permitted to omit a type.

Because Grace is structurally typed, any object that implements methods with
the signature specified in the Vehicle type satisfies that type. Unlike nominal type
systems, objects may be instances of a type without any knowledge of the type at

47

grace

their point of creation.
Grace also supports generic types (Black, K. B. Bruce, Homer, Noble, et al. 2013).

Generic type parameters can be introduced on a type declaration using Oxford
brackets JK. The following example defines an Iterable type over values of a generic
type E:

type IterableJEK = {

iterator→ IteratorJEK
}

Generics can also be applied to methods. The next example illustrates an identity
function which uses generics to avoid losing type information about its argument:

method identityJTK(value ∶ T)→ T { value }

Types can also be combined with the ∩ and ∪ operators. The form A∩ B is a
structural type that contains everymethod that appeared in either A or B. The form
A∪ B is a non-structural type whose inhabitants are the union of the inhabitants of
A with the inhabitants of B. This allows a greater degree of flexibility than interface
extension from Java, and encourages the separation of concepts into types, as they
can easily be composed together to produce the required interfaces. For example:

type NumberOrString = Number∪ String

type Sized = { size→ Number }

type CollectionJEK = Sized∩ IterableJEK
Types are reified as objects at run-time, including bothnamed types and generic

types. The body of the identity method above can refer to T as an object and call
methods on it, or even return it (though this would not satisfy the type of the sig-
nature).

3.3.1 Patterns

Type casting is an important component of the Java type system, so much so that
Featherweight Java — a bare-bones core calculus — includes it in its type system.
It is particularly important for down-casting a general type to a more specific in-
stance. Branching on a more specific type of an object is a common Java idiom.

48

types

For instance:

if (animal instanceof Dog) {

Dog dog = (Dog) animal;

dog.bark();

} else if (animal instanceof Cat) {

Cat cat = (Cat) animal;

cat.meow();

}

Grace does not have a special mechanism for casting between types, and in-
stead encodes the idiom above by using pattern matching, which subsumes both
the check and the casting assignment.

match(animal)

case { dog ∶ Dog→ dog.bark }

case { cat ∶ Cat→ cat.meow }

Pattern matching isn’t restricted to types, and any object that is an instance of the
Pattern type can be used. For instance, literals such as numbers and strings can
also be matched against, branching if the matcher and the matchee are equal.

The interface of Pattern defines a match method that accepts an object and
determines if the pattern matches it. Homer, Noble, et al. (2012) show how this
allows pattern matching against any value, allowing the match−case form to sub-
sume Java’s switch statements and idioms such as the one above.

When types are reified as objects at run-time, they are given an interface that
conforms to the Pattern type. Thematchmethod on types subsumes the behaviour
of Java’s instanceof operator: the Java expression pet instanceof Dog can bewritten
as Dog.match(pet) in Grace.

if (Number.match(amount)) then {

print(“{amount} is a number”)

}

Both∩ and∪ are present as operators on the Pattern type, which is the interface
used for patternmatching. Literals are another example of a pattern, and thematch
only against values equal to them. It is valid to combine different patterns through

49

grace

the combination operators: for instance the expression String∪ 5 will produce a
pattern that matches against any object that is either a string or the number five.
The introduction of non-type values to a pattern means that the resulting value
cannot be used as a static type.

Grace does not have a specialmechanism for casting between types, but gradual
typing allows the language to simulate this as any object can be stored into a variable
with the dynamic type and then be retrieved as any other type. This behaviour can
be codified into a method using Grace’s generic types:

method castJTK(value ∶ Unknown)→ T { value }

The type to cast the value into is specified as the generic type. This allows a call to
the cast method to specify what the resulting type is expected to be. For instance,
we can attempt to cast a spoon to a fork as follows:

def spork ∶ Fork = castJForkK(spoon)
Note that the cast will be checked at run-time and raise a run-time type error if the
spoon is not also a fork. In contrast, pattern matching ensures that the types match
before performing a type cast, and so is safe.

3.4 Annotations

Java has two differentmechanisms for specifying properties ofmethods and classes.
Built-in concepts like visibility (publicity) and concurrency synchronisation are all
denoted by keywords. Properties that are not assigned a keyword, such as dep-
recated code or explicit method overriding, are instead defined with annotations.
As in the Ceylon programming language (King 2016), Grace denotes all of these
properties with user-definable annotations. Annotations can be attached with the
is keyword:

object { method square(x ∶ Number) is public { x ∗ x } }

While the use of the name public has (effectively) the same meaning as the
keyword in Java, the use of an access modifier in Grace is closer to the use of an
annotation in Java, where it would be labelled with an @ symbol, such as @Public.
The following Java method illustrates the differences:

50

dialects

@Override public synchronized void doSomething() { ... }

In the equivalent Grace code, all of these properties are annotations, as none of
them are a special component of the language. Any of them could be replaced by
different annotations that have the same effects:

method doSomething is override, public, synchronized { ... }

Annotations can be applied tomore than justmethods. Variables definedwithin
an object expression become fields with corresponding accessor methods, but the
generatedmethods are always hiddenbydefault. Constant definitions can bemarked
public, and variables can be marked either readable, writable, or public, and these
annotations change the visibility of the relevant accessor methods. The following
declaration translates into an object with publicly accessible name and age≔meth-
ods:

object {

def name ∶ String is public = “Bert”

var age ∶ Number is writable≔ 34

}

Different implementations of Grace (see §3.6) interpret annotations differently.
One implementation builds custom annotations into the platform directly and ig-
nores any annotation that is not already defined beforehand. Others require that
an annotation expression return an object of the right type, and the type is used
to determine what the annotation should do. Our practical implementations were
implemented assuming the latter; this is discussed further in §6.5.

3.5 Dialects

As Grace is a general-purpose educational language, it is intended to be capable of
teaching a variety of different programming skills. While some courses may ben-
efit from the introduction of types after the more fundamental skills are taught,
others may require that every value be statically typed. A course on functional pro-
gramming might enforce that all data be immutable and introduce more standard
functions for transforming over structures.

51

grace

Grace solves this issue using dialects. Dialects are similar to Racket’s languages
(Felleisen, Findler, Flatt, et al. 2015) in that they modify the context of a module
without changing the entire program, but aren’t capable of changing the basics of
the language as fundamentally as Racket languages. The major difference is that a
dialect can’t change the syntax of the language, so uses of object or type are still
the same. Dialects can restrict usage of language constructs: a program that only
uses dynamic types can disable the use of the type declaration and assignment of
types, while another programmight require type annotations on everymethod and
variable. Dialects also define the methods that are in the surrounding scope of a
module, which allows a dialect to specify the available control structures.

Dialects are built as amodule. Dialects affect only thosemodules that use them,
andmodules of different dialects can freely import each other. They are declared at
the top of a module with the dialect keyword (in the same way as Racket’s #lang).
All publicly available methods on the object used in the declaration become locally
available in the module:

dialect “functional”

// Introduced by the dialect

map { x→ x + 1 } over(list(1, 2, 3))

Dialects also enable pluggable typing by defining ‘checker’ methods over a mod-
ule. A checker method receives the Abstract Syntax Tree (AST) of the module it
is checking, which is the data structure resulting from parsing. With the AST a
checker method can programatically descend through components of the module
and ensure that no restricted features are in use. Checker methods are defined by
naming a method check, and multiple checker dialects can be combined by pass-
ing the AST to each checker method in the desired order. This is an advantage of
encoding dialects as standard Grace objects.

An example of a checker method is defined in Figure 3.5.1; the check ensures
that every declaration in the source code is explicitly given a type. It descends over
every descendant of the top AST node and for any node that is a declaration it
evaluates whether that the node has an implicit type annotation. If any node does
not have an explicit type, the method reports an error on the node, and continues
to descend over the tree. If any node has a report, the check has failed and the

52

dialects

method check(root) {
ast.accept(object {

inherit visitor
method visitDeclaration(node) {

if (Declaration.match(node)∧
node.typeAnnotation.isImplicit) then {

node.report(“Unannotated Error”,
“{node} has no type annotation”)

}
super.visitDeclaration(node)

}
})

}

Figure 3.5.1: An example checker method that requires type annotations

module will refuse to execute.
In Homer, Jones, et al. (2014), we have also built a dialect for writing dialects,

where rules can be expressed directly onnode types instead of having to use a visitor
object to traverse the AST. The example in Figure 3.5.1 would instead be:

rule { node ∶ Declaration→
if (Declaration.match(node)∧

node.typeAnnotation.isImplicit) then {

node.report(“Unannotated Error”,

“{node} has no type annotation”)

}

}

The rule form maps more closely to the conceptual goal of a checker dialect of
writing rules for specific kinds of nodes.

Note that although dialects are built with Grace code, they themselves need
to be compiled and executed before the compilation of the module using that di-
alect can finish compiling. This fits in with the notion of Grace as an interpreted
language, where the code is the executable program, rather than having the code
precompiled into an executable. The notion of compile-time and run-time is par-
ticularly blurred in this case, as any amount of code might need to be run before

53

grace

compilation of the entire program can be completed.
Dialects cannot change the meaning of the code they are applied to. If the

dialect could attach annotations to the given code, then it could solve a number
of arguments about default settings. The default accessibility of methods is one
such argument brought up in regard to language design: non-public by default is
argued as a safer option in a software engineering perspective, but public by default
is argued as simpler and requiring less boilerplate. If a dialect was able to change
the default accessibility of methods then developers could choose which one to use
within the same language.

There are also potential applications for dialects capable of transforming mod-
ules in typing. Currently, leaving off a type annotation from a declaration causes
its type to become Unknown. A dialect capable of altering type information could
instead modify def declarations to infer the type of their assignment (similar to
auto in C++11 (Stroustrup 2007), var in C# (C# Project 2015), and let in Rust (Rust
Project 2016)), and default the return type of methods to Done (Grace’s nearest
equivalent to void). There is also potential for performing flow-based inference on
var declarations (Pearce 2013).

The danger in allowing dialects to have this much power is that they could
change the meaning of the code too radically, making it difficult to understand
code written in an unfamiliar dialect. One of the driving design concerns of Grace
is that it should be easy to read and comprehend, and providing this ability would
likely impact general comprehension.

3.6 Implementation

Grace has a number of implementations: Minigrace, a compiler written in Grace
itself; Kernan, an interpreter written in C#, and our own prototype implementa-
tion Hopper, an interpreter written in JavaScript. Kernan and Minigrace attempt
to follow the Grace specification, whereas Hopper is more focused on allowing the
implementation of research concepts on top of Grace. All three implementations
are available as free software.

Minigrace compiles Grace code to other languages, which it can then compile
or interpret using other compilers. The compiler is self-hosting, which allows it

54

implementation

to compile itself to either backend. As such, the compiler is available as either a
native application or a browser script. Unlike Minigrace, Kernan interprets Grace
by walking a similar AST to the one passed to a checker method in a dialect.

Hopper is a continuation-passing interpreter, intended to run in a web browser
(Jones 2016). Hopper can yield to the event loop of a browser at any time, and does
so at regular intervals. This prevents long-running and non-terminating execu-
tions from locking up a browser’s interface, because the execution pauses regularly
to allow the browser to respond to events. The constant yielding also means that
Hopper can simulate lightweight threading easily by queuing different evaluations
for execution at the same time.

The Hopper interpreter is the basis of our practical implementation work for
this thesis. We have implemented both the structural type checking described in
Chapter 4 (Homer, Jones, et al. 2014) and branded type checking described inChap-
ter 6 (Jones, Homer, and Noble 2015) as dialects in Hopper. We have also imple-
mented the most comprehensive run-time type checking framework of the three
implementations, attempting to preserve the properties demonstrated in Chapter 5.
The history of Hopper also contains implementations for many of the inheritance
semantics described in Part III, as the specification for Grace’s inheritance evolved
over time.

55

Part II

Type Systems

57

4 Graceless

In order to investigate the semantics of classless object-oriented languages, and
analyse the simulation of class features within them, we begin by defining a core
model of the Grace programming language. Grace is a useful language to model
object features in, as it is not class-based, and it does not permit mutation of an ex-
isting object’s structure, so we can consider object-oriented concerns and a reason-
able environment for typing without being overcome by objects open for extension
with trivially mutable structure, as found in languages such as JavaScript. Future
chapters extend this model in different ways to construct the different semantic
models; within this chapter we consider the features of classes that the model is
already capable of simulating.

Our core model is a combination of our existing models of Grace: Tinygrace
(Jones and Noble 2014), a much smaller language with structural types, whose pri-
mary purpose was to compare the evaluation of simple Grace programs to Feath-
erweight Java; and Graceless, which was really a family of languages used to investi-
gate object inheritance (Jones, Homer, Noble, and K. Bruce 2016, which we return
to in Part III, recast in the updated language defined in this chapter) with more of
the features of the full Grace language, including references, mutable objects, and
unqualified method lookup, but no types. In this chapter, we present an updated
model of the Graceless language extended with structural and union types as well
as some extra dynamic features, showing that the resulting type system enforces
safe execution of programs.

Graceless is a purely object-oriented language, as there are no primitive forms
other than objects. As in Grace, objects are defined using object constructor forms
with methods and initialisation code contained inside. Graceless is intended as an
encoding of parts of the Grace language, rather than a direct model of Grace itself,

59

graceless

and it is not a strict subset of the language as it contains forms and behaviour that
are not directly available inGrace. We introduce these forms in §4.1, andwe discuss
the features of Grace they are intended to encode.

As a tool for our investigation into the semantics of classless languages, the
design ofGraceless is intended to be both expressive enough to encode the practical
features that appear in many classless languages, and extensible enough to permit
the modifications that we will investigate both in this chapter and those that follow.
That said, Graceless is not intended to be a foundational calculus for classless object-
oriented languages, and it intentionally includes complications from the full Grace
language that might otherwise be compiled away in an intermediate language. The
purpose of these complications is to examine how the complexities of practical
object-oriented languages interact with the lack of classes and attempts to simulate
class-like behaviour.

4.1 Syntax

The grammar for Graceless is defined in Figure 4.1.1. Graceless is a classless object-
oriented language: objects are constructed using object constructors that directly
describe the structure and implementation of the object to be created, and the lan-
guage includes the implementation for each individual object directly in the store
in lieu of a class table. Execution predominantly proceeds throughmethod requests
to an object. A method request to an object can be provided explicitly, or the re-
ceiver can be omitted and implicitly determined from the nearest surrounding ob-
ject constructor, somethods appear alongside variables in the local scope, and their
identifiers share a namespace. Other features include method updates, raising and
rescuing objects to signal exceptional outcomes, and branching based on a reflec-
tive examination of an object. Graceless code can also be imperatively sequenced
between semicolons.

Weproceed by considering each class of syntax separately, beginningwith terms.
For all forms, an overbar such as t indicates a (possibly empty) sequence of the form
under the bar, usually separated with commas when it is not immediately unam-
biguous.

60

syntax

Grammar

w, x,y, z ∈ Var, T ∈ Type, S ∈ Struct, D ∈ Decl,

d ∈ Def, t ∈ Term, v ∈ Value, m ∈ Name, n ∈ ℕ, s ∈ Subst,

a ∈ Ident, ∈ Env, 𝜎 ∈ Var ⇀ Seq(Def)

T ⩴ ⋃S (Type)

S ⩴ type { D } (Structural type)

D ⩴ m(z ∶ T)→ T (Signature)

a ⩴ ⟨m,n⟩ (Signature identifier)

d ⩴ method m(z ∶ T)→ T { t } (Definition)

t ⩴ object { d t } | rm(t) | w← d | ⇑ t | t —⇑ b | t ∋ a b b | t; t | w (Term)

r ⩴ 𝜖 | t. (Receiver)

w ⩴ self | y (Internal reference)

b ⩴ { z→ t } (Block)

v ⩴ y (Value)

m ⩴ z | z≔ (Method name)

s ⩴ v/z | w./a (Substitution)

Environments

 ⩴ ⋅ | , z ∶ T (Typing environment)

Evaluation contexts

E ⩴ F | F[E —⇑ b] (Term context)

F ⩴ □ | G (Rescue-free context)

G ⩴ F.m(t) | v.m(vi, F, t) | m(v, F, t) | ⇑ F | F ∋ a b1 b2 | F; t (Sub-context)

Figure 4.1.1: Graceless grammar

61

graceless

4.1.1 Terms

The metavariables w, x, y, and z refer to different sets of variables: like the DOT
calculus (Rompf and Amin 2016), we encode store references as variables, and dis-
tinguish between these concrete store variables and normal abstract variables with
the y and z metavariables. The metavariable x includes both concrete and abstract
variables, so encompasses the set of all variables. The variable self is an abstract
variable, and so may be bound by z, but self is bound implicitly in the body of each
object constructor and may not be used in any binding location explicitly.

We assume Barendregt’s variable convention when binding self (Barendregt
1981; Urban, Berghofer, and Norrish 2007): each binding is (implicitly) distinct,
and we can always (implicitly) distinguish between two different bindings of self
in the same scope. The convention means that two bindings of self do not shadow
one another, which corresponds to Grace’s (explicit) outer keyword for distinguish-
ing local references. Consider this Grace term:

object { object { outer; self } }

In the inner object, access to both surrounding objects is still available thanks to the
outer keyword. In Graceless outer is replaced by self referring to a class of variables
that happen to share the same name on paper. Effectively this is like tagging each
use of self with De-Bruijn indices to indicate which surrounding object the self

refers to (and this is what we use to encode this form in our Redex implementation),
such as:

object { object { self1; self0 } }

These distinctions are omitted from the formal language.
The metavariable w is an internal reference to some surrounding object con-

structor or object in the store, using self or a store reference y. Internal references
are used to qualify operations that are only permitted from inside of the object they
are operating on.

Terms are bound by the metavariable t. The terms that also appear in Grace
are object constructors object { d t }, method requests rm(t), and an imperative
sequence t1; t2 (where the semicolon is more often a newline in Grace). Object
constructors contain a set of definitions d, which are methods methodm(z ∶ Ti)→

62

syntax

T { t }. A method name m is either an abstract variable name z or the special
case ‘setter’ name z≔ from Grace. Graceless does not provide a mechanism for
multi-partmethod names, thoughwewill occasionallywrite themwhen discussing
encodings of Grace programs and assume that this is encoded by some translation
from many parts to one. The syntax of types T are discussed in §4.1.2. The method
body t is to be evaluated in the context of the parameters z in the event that the
method is called.

The body of an object constructor also contains an arbitrary term t, which is
initialisation code to be run in the context of the constructed object after it has
been constructed. The term is not returned by evaluating the constructor (which
always returns a reference to the newly allocated object): the term exists purely
for the purposes of mutating the surrounding object during its initialisation. Un-
like Grace, the term is compulsory in Graceless, but can effectively be ignored by
writing self, since this must be in scope and referencing it does nothing; we imply
this convention in some of the following examples by hiding the term. Object con-
structors can be nested inside one another, both in the bodies of methods and in
the initialisation code.

A method request has an optional receiver indicated by the metavariable r,
which is either empty (𝜖) or a term t followed by a period. When a request has
a receiver, we say it is qualified by the receiver, otherwise it is unqualified. Un-
qualified requests implicitly refer to a receiver through the closest method in the
surrounding objects, as in the following program:

object { method id(a ∶ T)→ T { a } id(self) }

The request is equivalent to writing:

object { method id(a ∶ T)→ T { a } self.id(self) }

A request always refers to method name m and zero or more arguments in
parentheses. As in Grace, the parentheses may be omitted if there are no argu-
ments, so zero-argumentmethod callsmay look like the field access of other object-
oriented languages like Java: m and m() are equivalent terms. We include this in
Graceless because it has an important consequence on the language when the re-
quest has no receiver, namely that such a method request is indistinguishable from
a regular variable reference. As a result, Graceless does not include a reference

63

graceless

to an abstract variable z in its definition of a term because this is subsumed by a
unqualified zero-argument request where the method name is z.

As in Grace, Graceless method definitions may be overloaded on the value of
their arity, so that a single object can have many definitions of methods with the
same name so long as they all accept a different number of parameters. As a result,
method names contain insufficient information to completely identify a particular
method in an object, and signatures contain more information than is necessary,
since the type annotations on a method are not part of its identifying information.
In order to provide a syntactic form that describes precisely enough information to
identify a method, the metavariable a binds any pair of method name m and arity
count n.

Concrete variables y are also valid as terms, and are the only form of values
v. Evaluation occurs in the context of an object store 𝜎, which is a partial function
from concrete variables y to a set of definitions d that make up the implementation
of the object. Similarly, the store type environment Σ maps concrete variables to
the signatures D of the corresponding definitions d.

The remaining term forms simulate some Grace functionality that does not
appear directly in its syntax, or simplifies the way that it appears in the syntax. We
discuss the corresponding Grace form that each feature encodes as we introduce
them.

Raise and rescue The syntax⇑ t is used to raise the value of t, exiting normal con-
trol flow and immediately producing the raised value as the result of the program.
A raise can be rescued by the form t —⇑ b, which can handle a raise in the execution
of t by diverting execution into the block b. A block is a simple single-parameter
binding form { z→ t }, like the block syntax of Grace, but the parameter cannot be
given a type annotation. If a block { z → t } is tasked with handling the raise of a
value v, then the body of the block t is evaluated with z bound to v. There is no type
annotation because any value can be raised, and the rescue does not discriminate
on the type of the raised value when it captures a raise.

The raise and rescue Graceless forms are similar to the raise method on ex-
ception objects and the variety of try/catch methods in the standard dialect. The
intention is that these Grace constructs can be encoded using the Graceless raise

64

syntax

and rescue. The raise method in an exception can be implemented as:

method raise→ None { ⇑ self }

A try() catch() method can then be implemented as:

method try(t ∶ Block) catch(c ∶ Block)→ Object {

t.apply —⇑ { z→ c.apply(z) }
}

These twomethods encode the basic behaviour of Grace exceptions, though it does
not account for a catch block discriminating on the kind of exception that was
raised: we consider mechanisms to solve this problem in §6.2.3.

Method updates The method update syntax w← d replaces a method with the
same identifier as d in the object referenced by w. An update will only modify an
existing method, and the signature of the method that it replaces must be exactly
the same as the signature of d. The use of w as the receiver of the update ensures
that this operation is internal to the object constructor that it is updating, since
the only valid abstract variable that can appear there is some self reference. The
following is not a syntactically valid use of a method update:

method modify(a ∶ T)→ T { a← (method m→ T ′ { t }) }

Featuring only internal method updates differs from many classless encodings
of object-oriented languages that featuremethod updates (Abadi andCardelli 1996;
Siek and Taha 2007; Siek, Vitousek, and Bharadwaj 2012), where any object can be
externally updated from outside of that object’s methods. In Graceless, an object
is responsible for its own behaviour and so only it has the permission to do so,
with the exception that objects constructed by nested constructors implicitly have
permission to modify any surrounding objects as well, since the outer self is in
scope.

object {

method m→ T { t }
object { outer← (method m→ T { t′ }) }

}

65

graceless

Since this update still occurs within the definition of the updated object, it is still
considered to be an internal operation.

Method updates simulate field updates in the body of a generated setter or at
the point of a field’s initialisation in Grace. The updates can simulate much more
than this, because they can update any method instead of only field getters, but
since they are always internal to an object this is equivalent to an object changing
its own behaviour in reaction to some event. An object cannot manually change
the behaviour of another object without its consent, except when the former is
syntactically nested in the latter.

Method updates are necessary to encode both var and def field definitions in
Grace. First we consider the var form; consider the following Grace object con-
structor:

object { var a ∶ T }

This is trivially encoded in Graceless with:

object {

method a→ T { ⇑ uninitialised }

method a≔(v ∶ T)→ Done { self← (method a→ T { v }); done }

}

Theencoding assumes that there is some surroundingmethoddefinitionuninitialised

that returns a representation of an UninitialisedFieldError packet, along with done

and some accompanying Done type. Requesting the method a on this object be-
fore it is assigned produces an error, whereas requesting the method a≔ modifies
the body of a to return the given value instead.

If a var should be assigned to at its definition site, this can be encoded in Grace-
less as a request to a≔ at the corresponding point in the initialisation code:

t1; var a≔ t2; t3

The assignment is encoded in Graceless as:

t1; self.a≔(t2); t3

The term t2 will be reduced to a value before requesting a≔, ensuring that the getter
method does not evaluate the term every time it is called.

66

syntax

A def field is more difficult to encode, because it does not have a corresponding
setter method to request at its point in the initialisation code.

t1; def b = t2; t3
Updating the method directly does not first reduce the term to a value, so the fol-
lowing encoding does not evaluate t2 during initialisation:

t1; self← (method b→ T { t2 }); t3
Graceless does not have a let construct to bind a term’s value to a name, but, as in the
DOT calculus, we can simulate this feature with a request on an object constructor
(Rompf and Amin 2016).

t1; object {
method apply(v ∶ T)→⊤ { self← (method b→ T { v }) }

}.apply(t2); t3
By forcing the term t2 through a method request first, the updated method can
refer to the value of the term as a reference to the parameter v.

Reflective matching Finally, a match t ∋ a b1 b2 checks to see if the value of
the term t contains a method with the identifier a, and branches down b1 if it
does, or b2 if it does not. The block parameter is bound to the value of t in either
case. Because a match only looks for a matching method identifier and not a full
signature, it does not tell you anything about the type annotations on the method
in the case that it does exist, only that such a method is present. The behaviour of a
match distinguishes the Graceless match form from Tinygrace, which matched on
a full type, but allows it to express the actual behaviour of Grace implementations.
We explain the reason for this difference in §4.2.

The match construct allows for the encoding of pattern matching against a
structural type as described in Homer, Noble, et al. (2012), present in all implemen-
tations of Grace. The match method in the reified object of the type type { m1 →
T1,m2 → T2 } can be encoded in Graceless as:

method match(a ∶ Object)→ Boolean {

a ∋ ⟨m1, 0⟩ { b→ b ∋ ⟨m2, 0⟩ { c→ true } { c→ false } } { b→ false }

}

67

graceless

The matching only works on a shallow level, identifying if a method with the ap-
propriate name and arity is present, so matching against a structural type only per-
forms a shallow test. When typing the body of the match/case construct in Grace,
the type checker can only assume that the shallow description of the pattern applies
to the object.

Despite the fact that several implementations of Grace also perform only a shal-
low match to test if an object satisfies a type, we cannot fully encode the match

method of a block object. The method only executes the body of its block if the in-
put satisfies the shallow structure of its parameter type, and assumes that the input
satisfies the rest of the parameter type during the execution with a contract that en-
forces the non-shallow aspects of the type. For instance, this is a request to match

on a block in Grace:

{ x ∶ type { go→ T }→ x.go }.match(t)

The block will test if the value of t has a go method and, if successful, will execute
x.go under the assumption that this results in an object of type T ; that is, it should
check that the result matches the shallow description of T , and continue to assume
that it is of type T if it does (though implementations of Grace vary on whether
this the contract behaviour is actually implemented, as observed by Boyland (2014)
in Minigrace). In the form we have presented so far, Graceless has no syntax for
expressing assumptions about the type of an object, but we address this is Chapter 5.

4.1.2 Types

Graceless features a similar type syntax to Grace, but it encodes some of the type
operators of Grace differently to more easily reason about the resulting types. The
structural type syntax of Grace groups together signatures like a normal structural
type, and these types can be combined with either the union ∪ or intersection
∩ operators. In Graceless, these operators translate their inputs into a normal
form, which is a set of structural types combined together in a union relationship,
and unions, structural types and signature declarations occupy different syntactic
classes (T , S, andD, respectively). The existing class of structural types is sufficient
to express intersection, but unions need their own syntax in the normal form.

Splitting the type syntax into a hierarchy like this makes it simpler to define

68

syntax

relations over types, because we can define a single operator as an overloaded set
of mutually dependent relations over each part of the hierarchy, and do not need to
worry about relations between different parts of the hierarchy: we do not need to
consider how to compare a union type with a structural type, for instance. There
are additional complications with completeness of subtyping that this hierarchy
side-steps as well, which we discuss in §4.2.4.

As such, the syntax of types is split into a mutually coinductive hierarchy, be-
ginning at the metavariable T for a set of structural types ⋃S in a union relation.
We often treat S like a set since both ordering and duplicates are irrelevant. Not all
types in Grace are the result of a union, but we interpret them all as in the union
syntax for the normal form of Graceless. A union type can be between an arbitrary
number of structural types, including zero or one, so a structural type in Grace is
a single structural type in the union syntax by itself.

An empty union corresponds to the empty type (None in Grace), and a union
with a single structural type corresponds directly to that structural type as though
it was not in a union. In the text we often omit the⋃ symbol on a single structural
type and still consider it a full type T (so type {⋯} in T is actually ⋃type {⋯}).
In both the text and the following rules, we use the symbol ⊥ to mean the bottom
type (⋃) that is uninhabited, and the symbol⊤ to mean the top type⋃type {} that
is inhabited by every value.

Where T encompasses a union of a set of structural types S, a structural type
type { D } effectively represents an intersection of a set of signature types D. A
signature D is the header of the methods d that were discussed in §4.1.1, of the
form m(z ∶ Ti) → T . An object inhabits a structural type type { D } if it provides
methods with at least the signatures D. Parameter names are not significant, and
any equivalence we draw between the parameter names of two different signatures
is only up to alpha-equivalence.

Coinductive types In a signature m(z ∶ Ti) → T , the type annotations Ti and T
loop back around to our definition of types as unions. Graceless does not have
an explicit syntax for recursive types through mu-binders (Pierce 2002), but as
described above the mutual dependence between T , S, and D is coinductive, so the
syntactic objects themselves can be infinite in size. We can immediately encode

69

graceless

recursive types without any explicit 𝜇-bindings.

As a translation from Grace code, Graceless represents an encoding where any
recursive types, which must have been expressed in Grace’s finite syntax, have al-
ready been unfolded into a syntax tree of infinite depth. The infinite form is trivially
represented inmanymodern programming languages by constructing the tree rep-
resentation up to its point of repetition, and then mutating the child reference at
this point to refer back to the top of the tree, or defining the tree in a directly coin-
ductive way such as with Haskell’s lazy let binding.

As an example of this coinductive type syntax, we will define a Graceless type
List that represents a linked list containing values of some type T . Such a list is
either an empty object to represent the end of the list (represented by the type with
no signatures type {}), or a pair of head (the value of type T) and tail (the remaining
list). The type is not particularly useful, since it contains every object thanks to the
appearance of type {} in the union, but it will suffice to investigate the structure of
the syntax.

If Graceless had explicit 𝜇-binders, we could define List with a finite represen-
tation:

List = 𝜇X.type {}, type { head→ T , tail→ X }

Unfolding this type by one step moves the 𝜇-binder into the return type of tail,
repeating the whole type again therein:

unfold(List) = type {}, type { head→ T , tail→ List }

The reference List in this definition is not its own syntactic object, but indicates
that List appears at that point in this unfolding. The total type looks like this:

type {}, type { head→ T , tail→𝜇X.type {}, type { head→ T , tail→ X } }

These two types are semantically equivalent because under an infinite series
of unfolding they would produce the same type, but they are syntactically distinct
and require extra reasoning in any syntax-directed rules for type relations in order
to produce an equirecursive realisation of type equality. If we consider the syntax
trees of these two types, we can immediately see the syntactic distinction between

70

syntax

𝜇

X ⋃

type type

head tail

T X

Figure 4.1.2: Syntax tree for the inductive List type

them and that their representation as syntactic objects is finite. The syntax tree for
List is visualised in Figure 4.1.2, with the point of recursion expressed by the use of
the variable X inside the tail node.

The outcome of unfold(List) is visualised in Figure 4.1.3. As in the textual repre-
sentation, the unfolded tree contains the entire original tree where the reference to
X was. While these two trees are different, they represent the same type, and must
be manually unfolded when reasoning about their relationships with other types.

A coinductive syntax lets us avoid the syntactic encumbrance of 𝜇-binders by
defining the infinite unfolding of the type directly. Coinduction avoids the problem
of semantically equivalent but syntactically distinct types, and maps more closely
to the meaning of the type. In Graceless, the List type would be defined as:

List = type {}, type { head→ T , tail→ List }

As before, the reference to List in this type is not a syntactic object in its own right,
but an indication that we should include the value of List at that point in the type.
The definition is different from when we did this in the unfolding of the finite rep-

71

graceless

⋃

type type

head tail

T 𝜇

X ⋃

type type

head tail

T X

Figure 4.1.3: Syntax tree for the unfolding of List

72

syntax

⋃

type type

head tail

T

Figure 4.1.4: Syntax tree for the coinductive List type

resentation because we are referencing the value of the type in the definition of the
type itself, so the resulting syntactic object has an infinite depth. Figure 4.1.4 illus-
trates this definition as a syntax graph. Interpreted as a tree, it has its own root
node as a child of the tail node.

The primary trade-off for expressing the type syntax coinductively is that, al-
though we know that the types are regular, we cannot detect the actual points of
repetition in a type of infinite depth without explicit 𝜇-binders to mark them. As a
result, any relations over types must also be coinductive, and cannot be decidable,
because that would require descending over an infinitely deep structure in finite
time. We do not view this as particularly significant because the points of repeti-
tion will be detectable in a practical implementation (probably through reference
identities), so although our relations over types are not algorithmic, they can be
translated into an algorithm for a practical implementation in a straightforward
way.

The structure of this syntax includes two implicit well-formedness criteria. The
first criteria is regularity, which implies that any infinitely recursive type must be
the result of an infinite unfolding of some finite representation (such as with 𝜇-
bindings). Because Grace’s syntax is finite, any Graceless type translated from
Grace is the result of such an unfolding and so automatically satisfies this crite-
ria. Type regularity ensures that any infinite representation of a type is made up of

73

graceless

well-defined points of repetition, even if these points are not represented explicitly
in the syntax as they are with 𝜇-binders.

The second well-formedness criteria is contractivity, which ensures that while a
type may have infinite depth, it cannot have infinite breadth: the number of direct
children of any syntax node must still be finite. The set of types in a union must
be finite, as well as the set of signatures in a structural type and the sequence of
parameters in a signature. This criteria is not automatically satisfied by types with
𝜇-bindings or the type syntax in Grace because it is possible to express infinite
breadth in their syntax, such as the type:

BadType = 𝜇X.type {},X

Unfolding this type increases its breadth, not its depth, so an infinite unfolding
produces a type with infinite breadth. Contractivity subsumes a ban on obvious
nonsense type syntax such as 𝜇X.X as well, since these forms cannot be infinitely
unfolded into any sensible coinductive type.

Contractivity is enforced by the definition we have provided in the mutual de-
pendence of the type syntax. The hierarchy only repeats at the appearance of T in
a signature: any part of the type syntax that represents breadth is represented with
the multiplicity syntax (S, D, and T), which does not permit the set or sequence
that it binds to have an infinite cardinality, regardless of the size of its individual
elements. If we had 𝜇-binders in the language then the BadType syntax would not
be valid syntax, because a recursive type reference X would only be bound by the
metavariable T , but in BadType it appears in an S position.

The type syntax also has explicit well-formedness rules, mostly related to ensur-
ing sensible signatures in a structural type. We return to discussing types, including
the well-formedness judgment, in §4.2.

4.1.3 Substitution

Unlike most formal languages, Graceless has more than one form of substitution,
so we explicitly elucidate this syntax in the grammar behind the metavariable s.
An application of substitution still follows the syntax [s]t, performing the substi-
tution described by s in the term t. We provide an informal description of these

74

syntax

substitutions here. The syntax v/z is a standard value substitution of a value v at
any unshadowed reference of an abstract variable z.

The non-standard syntax denotes a qualifying substitution w./a, which corre-
sponds to resolving the receiver of an unqualified request in local scope. Consider
the following program:

object {

method run {⋯ }

run

}

When this object is constructed, the object is allocated behind a concrete reference
y, and the initialisation code of the object constructor is sequenced with a return
of this reference:

run; y

The problem with this sequence is that we no longer have enough information to
determine which object was intended to receive the unqualified request to run, be-
cause the object that formed the surrounding scope has been removed by the re-
duction step.

A qualifying substitution solves the problem of resolving the receiver of an un-
qualified request by adding a receiver to every unqualified request of the specified
identifier a. The object constructor above actually reduces to a substitution:

[y./⟨run, 0⟩]run; y

The substitution qualifies the request to run with the receiver y.

y.run; y

As a result, we don’t need to provide any other dynamic semantics for an unquali-
fied request, because any unqualified request that correctly refers to a method def-
inition in scope is guaranteed to be qualified by the time it comes to evaluate it.
Attempting to evaluate an unqualified request is an error in the same way as evalu-
ating a free variable.

The fact that variable references and unqualified zero-argument requests are
indistinguishable means that both parameters and method definitions can shadow

75

graceless

each other, so either kind of substitution can be stopped by either kind of definition.
A substitution v/z would normally proceed into an object:

[v/x]object { x } ≡ object { v }

If the object defines a method with identifier ⟨z, 0⟩, then this is no longer the case,
as the method shadows the variable.

[v/x]object { method x {⋯ } x } ≡ object { method x {⋯ } x }

The same is true for qualifying substitutions into a method. A qualifying sub-
stitution normally proceeds into the body of a method:

[w./⟨x, 0⟩]method m(y ∶ T1)→ T2 { x } ≡method m(y ∶ T1)→ T2 {w.x }

If the method has a parameter with the same name as a zero-argument qualifying
substitution, then it stops the substitution from entering the body of the method.

[w./⟨x, 0⟩]method m(x ∶ T1)→ T2 { x } ≡method m(x ∶ T1)→ T2 { x }

Shadowing is otherwise consistent with what is expected: parameters stop value
substitutions to variables of the same name, and method definitions in an object
stop qualifying substitutions to requests of the same method identifier.

Future chapters further complicate this story by adding additional forms of sub-
stitution, as well as making it possible for the substitution syntax to appear directly
in a term, to the extent that a substitution operation may need to perform a substi-
tution inside of another substitution s. We explain these complications when they
become relevant.

4.1.4 Evaluation Contexts

Thedefinitions of the evaluation contextsE, F, andG also deserve some explanation.
The contexts are split into these three definitions in order to avoid raising a value
through a rescue without handling it, while still having a context for performing a
congruence reduction on any sub-term. G allows a raise to terminate a program
without also accepting an already terminated program; F extends G with a direct
hole to handle rescuing a raised value without skipping over an intervening rescue;
and E extends F to permit congruence evaluation inside the body of a rescue.

76

types

As is standard, we abuse the evaluation context syntax to treat an application
E[t] as a term, rather than manually describing a relation between such an appli-
cation and its corresponding term t1 ⋉ E[t2] and proving that the relation is well-
moded in both directions (Harper 2012). The application E[t] descends through
any appearance of a recursive context as defined by E, inserting t for a hole□.

The context F is defined in a standard way, with either a direct hole □ or a
recursive definition such as F.m(t), indicating the sub-term to evaluate appears in
the receiver of the request. F does not include the rescue syntax, so a rescue cannot
appear in the context either as the directly matched term or some surrounding
context of the matched term.

In order to defineE as an extension of Fwith the body of a rescue form included,
it is not sufficient to add the definition E—⇑b alongside F, because F only recurses on
F: such a definition would only allow E to find a sub-term in a rescue if it appeared
as the other-most form of the term. As soon as E delegated to F, it would not be
able to consider a rescue. E would include □ —⇑ b, but not m(□ —⇑ b), because F
only permits the context F in the arguments of a request. The context E extends F
with F[E —⇑ b], which provides the expected behaviour: a rescue can be matched in
any hole which is valid for F, at which point the actual hole for the application of
E can recurse on E again. Our example m(□ —⇑ b) can appear in E, because it can
match the rescue in an F hole, and the body of the rescue then recurses on Ewhich
permits a direct hole to appear there.

We use these evaluation contexts in the definition of reduction, defined and
discussed in §4.3.

4.2 Types

In §4.1.2 we discussed the syntax of types, including the infinite nature of the syn-
tax. In this section, we define semantic well-formedness criteria for types, the type
combinators for union and intersection, signature subtraction from types, and the
subtyping relation.

77

graceless

⊢ T (W-Uni)
⊢ S

⊢ S

⊢ S (W-Str)
identify(D) unique ⊢ D

⊢ type { D }

⊢ D (W-Sig)
⊢ Ti ⊢ T

⊢ m(xi ∶ Ti)→ T

identify ∶ (Decl ∪ Def) → Ident
identify(m(x ∶ Ti)→ T) = ⟨m, |x|⟩
identify(method D { t }) = identify(D)

Figure 4.2.1: Type well-formedness

4.2.1 Well-Formedness

The well-formedness relations for types are defined in Figure 4.2.1. These rules
ensure that types are sensible on top of the implicit well-formedness criteria spec-
ified in §4.1.2. Well-formedness is defined for union types ⊢ T , structural types
⊢ S, and signatures ⊢ D, and simply ensures that the identifiers of the signatures
of any structural type are unique. Like the syntax itself, this judgment is defined
coinductively, allowing it to express well-formedness for infinitely deep types.

The auxiliary function identify is also defined, which computes the method
identifier of either a signature or method. We use the function here to describe
the well-formedness property, but it appears in the rules that follow to both ensure
this well-formedness is upheld by the types assigned by the typing judgment and
to compare methods and signatures in other ways.

4.2.2 Type Combinators

Grace features several type combinators as binary operators. We define the two
primary combinators intersection∩ and union∪, and use them in the typing rules
that follow in this chapter.

Since we already have a syntax for type unions, the union combinator ∪ is sim-
ple to define, as it takes the structural types in either type and puts them together.

S1 ∪S2 = S1, S2

78

types

∩ ∶ Type × Type → Type
⋃Si

i≤n
∩ ⋃Sj

j≤m
= ⋃Si ∩ Sj

(i,j)≤(n,m)

∩ ∶ Struct × Struct → Struct
type { Di } ∩ type { Dj } = type { (Di ∩Dj) }

∩ ∶ Seq(Decl) × Seq(Decl) → Seq(Decl)
(D1,Di) ∩ (Dj,D2,Dk) = (D1 ∩D2), (Di ∩ (Dj,Dk))

where identify(D1) = identify(D2)
(D1,Di) ∩ Dj = D1, (Di ∩Dj)

⋅ ∩ Dj = Dj

∩ ∶ Decl × Decl ⇀ Decl
m(zi ∶ Ti1)→ T1 ∩ m(zi ∶ Ti2)→ T2 = m(zi ∶ (Ti1 ∪ Ti2))→ (T1 ∩ T2)

Figure 4.2.2: Type intersection combinator

Any duplicate structural types are removed from the result under our treatment of
the structural types in a union as a set, but this isn’t strictly important. The result is
a type that is inhabited by all of the values inhabited by either of the two combined
types.

Defining the intersection combinator ∩ is more complicated. Although the
structural type syntax type { D } acts like an intersection of the signatures D, we
need to consider intersection between union types, and including all of the signa-
tures in both arguments may violate the well-formedness relation defined above
since the signatures may share identifiers. The intersection combinator performs a
‘structural union’ by including all of the signatures in either type, but also intersects
those signatures that have equivalent identifiers to ensure that method identifiers
remain unique in the resulting type. The intersection combinator is defined in Fig-
ure 4.2.2. The combinator is defined as a series of overloaded operators, some of
which are partial.

Applying the operator between two union types distributes the intersection be-
tween the structural types in the two unions to produce a union of the intersection

79

graceless

of every possible pairing under intersection. As with the union combinator, be-
cause we treat the types in a union as a set, any duplicates that result from this
operation are removed. Taking the intersection of two structural types combines
with intersection the sequence of signatures together into a new structural type.

Intersecting a sequence of signatures intersects those signatures that have the
same identifier, and includes all of the other signatures unchanged that cannot.
The form ⋅ is an empty sequence. Two signatures can be intersected if they have
the same identifier (the same name and arity). The result of intersecting two sig-
natures is a signature with the same name, parameter types that are the pairwise
combination of the parameter types of the inputs under the union combinator ∪,
and return type that is the intersection of the return types of the two signatures.

We can demonstrate that union and intersection are identities with the bottom
and top types, respectively.

Lemma 1 (Union identity with ⊥).

T ∪ ⊥ = T

Proof. Immediate from the definition of ∪, since⊥ contains no structural types in
its union.

Lemma 2 (Intersection identity with ⊤).

T ∩ ⊤ = T

Proof. Results in distributing S ∩ type {} where S are the structural types in the
union of T . S ∩ type {} = S is immediate from the definition of ∩, since type {}

contains no signatures.

These lemmas will come in handy for proving more in-depth properties of Grace-
less and its extensions.

4.2.3 Signature Subtraction

The signature subtraction operator T − a removes any structural type from the
union type T that directly contains a signature identified by a. The operator is de-

80

types

− ∶ Type × Ident → Type
⋃Si − a = ⋃Si − a

− ∶ Struct × Ident ⇀ Type

type { D } − a =

⎧⎪⎪⎨
⎪⎪⎩
a ∈ identify(D) undefined

a ∉ identify(D) type { D }

Figure 4.2.3: Signature subtraction

fined in Figure 4.2.3 as an overloaded operation on both union types T and struc-
tural types S. On structural types, the operation fails if a appears in the identifiers
of the contained signatures, and is otherwise the identity function. On union types,
the operation uses signature subtraction on its component structural types to effec-
tively filter out those that contain a: the subtractions on structural types that are
undefined are removed from the union, and the remaining types are unchanged. If
none of the structural types contain a signature identified by a, then the operation
is the identity, and if all of them contain such a signature then the result is the ⊥
type.

Signature subtraction is used to type the ‘else’ branch of a match construct: this
branch only executes if a signature corresponding to the matching identifier is not
in the matched object, so we can remove any variants from a union type that do
contain such a signature. Because structural types only describe what does appear
in an object, and not what does not, signature subtraction can often be a more pow-
erful tool than intersection: when we discover that a signature is in a term, then
the presence of that signature is the only information that we gain, and none of the
existing in the type variants are invalidated; but when we discover that a signature
is not in a term, then we can gain a lot more information about the type of that
term by eliminating whole variants of its type.

As with the type combinators, we show an identity lemma for subtraction.

Lemma 3 (Subtraction identity if a is absent).

T = type { D } a ∉ identify(D)

T − a = T

81

graceless

T <∶ T (S-Uni)
∀Si. ∃Sj. Si <∶ Sj
Si <∶ Sj

S <∶ S (S-Str)
∀Dj. ∃Di.Di <∶ Dj

type { Di } <∶ type { Dj }

D <∶ D (S-Sig)
Ti2 <∶ Ti1 T1 <∶ T2

m(xi ∶ Ti1)→ T1 <∶ m(xi ∶ Ti2)→ T2

Figure 4.2.4: Subtyping judgment

Proof. Immediate from the definition of subtraction.

4.2.4 Subtyping

The subtyping relation T1 <∶ T2 holds if the sub-type T1 requires at least the struc-
ture described by the super-type T2, so anywhere a value of type T2 is expected, a
value of type T1 will suffice. The relation is defined in Figure 4.2.4, also as a series
of overloaded judgements on each part of the type syntax hierarchy.

Rule S-Uni requires that, for every structural type Si in the union of the sub-
type, there is a structural type Sj in the union of the super-type such that Si <∶ Sj. A
single structural type in the super-type may satisfy any number of structural types
in the sub-type. The rule gives us the desired behaviour for our definition that
⊥ = (⋃) because ⊥ <∶ T for any type T , since there are no structural types in the
sub-type and the rule becomes immediate.

Rule S-Str enforces the role of a structural type as an intersection of signatures,
as this rule is effectively the dual of Rule S-Uni: for every signatureDj in the super-
type, there is a signatureDi in the sub-type such thatDi <∶ Dj. Again, this justifies
the definition that ⊤ = ⋃type {} because T <∶ ⊤ for any T , since either T is ⊥, or
for every structural type S in T then S <∶ type {} as there are no signatures in type {}

that must be satisfied.
The simplicity of these two rules makes a good justification for the rigidity of

our type syntax hierarchy, where we might otherwise have included the combina-
tors ∪ and ∩ directly in the syntax, and provided subtyping rules to reason about

82

types

them. Rather than have three rules each for these combinators, as well as separate
rules for reasoning about structural types, we have offloaded any complication into
the definition of the ∩ function and have only a single rule each for unions and
structural types to consider when reasoning about subtyping.

Rule S-Sig defines the subtyping relation between signatures, which determines
if two signatures are compatible: D1 <∶ D2 holds if the signature D1 subsumes the
information in D2. For signatures, this means that their identifiers are the same
(equivalent name and arity), with standard contravariant subtyping of the parame-
ter type annotations (the parameter types in the super-signature are each a subtype
of the corresponding parameter type in the sub-signature) and covariant subtyping
of the return type annotations (the return type in the sub-signature is a subtype of
the return type in the super-signature).

As with well-formedness, the recursive use of subtyping in Rule S-Sig is de-
fined coinductively, to match the coinductive definition of the type syntax. A
derivation of the subtyping relation can be infinite in the same way as the type
syntax is permitted to be infinite, repeating with a regular form at an application
of Rule S-Sig. As a result, we do not require an assumption set to reason about
infinitely-sized recursive types, and in fact we cannot do this because we cannot
detect the points of repetition in a coinductively-defined recursive type in finite
time. As discussed in §4.1.2, the downside is that the subtyping we present here is
technically not decidable, but this is easily recoverable in a practical implementa-
tion that uses assumptions between trivially equatable objects to simulate finding
each point of repetition in the derivation.

We now present a few simple lemmas about the properties of the subtyping
judgment.

Lemma 4 (Subtyping is reflexive).

⊢ T
T <∶ T

Proof. Trivial coinduction over the proof that ⊢ T .

Lemma 5 (Subtyping is transitive).

83

graceless

⊢ T1, T2, T3 T1 <∶ T2 T2 <∶ T3
T1 <∶ T3

Proof. Simple mutual coinduction over the proofs that T1 <∶ T2 and T2 <∶ T3.

We can also formally prove the properties of ⊤ and ⊥ discussed above.

Lemma 6 (⊥ is the bottom of the subtyping lattice).

⊥ <∶ T

Proof. Si is empty, so Rule S-Uni is immediate.

Lemma 7 (type {} is the top of the structural subtyping lattice).

S <∶ type {}

Proof. Sj is empty, so Rule S-Str is immediate.

Lemma 8 (⊤ is the top of the subtyping lattice).

T <∶ ⊤

Proof. For every S in the union of T , S <∶ type {} by Lemma 7, so Rule S-Uni ap-
plies.

The bottom type ⊥ is also uniquely situated at the bottom of the lattice.

Lemma 9 (⊥ is the unique bottom type).

T <∶ ⊥
T = ⊥

Proof. ByRule S-Uni, for every structural type in T , theremust be a corresponding
structural type in ⊥. Since ⊥ contains no structural types, the rule can only hold
if T also contains no structural types, and so is also ⊥.

A similar lemma that the type⊤ is the unique top type does not hold, since type {}

in a union with any other structural types is also a super-type of every other super-
type, including ⊤.

84

types

We also have a lemma that states that if a structural type has a single signature,
then any other structural type that is a sub-type of the first must have a compatible
signature.

Lemma 10 (Structural subtype implies declaration subtype).

type { Di } <∶ type { D }

∃Di.Di <∶ D

Proof. Simple case analysis of the proof that type { Di } <∶ type { D }.

Moreover, such a proof guarantees that the identifiers of the two methods are the
same.

Lemma 11 (Declaration subtype implies identifier equality).

D1 <∶ D2

identify(D1) = identify(D2)

Proof. Immediate from Rule S-Sig.

It is also important that union and intersection behave correctly with respect
to subtyping: union always produces a super-type of both of its inputs, and inter-
section always produces a sub-type.

Lemma 12 (Union produces super-type).

T1 ∪ T2 = T3
T1 <∶ T3 T2 <∶ T3

Proof. Every structural type in the unions of T1 and T2 appears in the union of
T3, so Rule S-Uni can satisfy both goals through Lemma 4 (modified to apply to
structural types, which is part of the proof for that lemma).

Lemma 13 (Intersection produces sub-type).

T1 ∩ T2 = T3
T3 <∶ T1 T3 <∶ T2

85

graceless

Proof. Intersection produces a unionwith every possible pairing of structural types
across T1 and T2, and Rule S-Uni requires that we demonstrate that every one of
these pairings has a corresponding structural super-type in both T1 and T2 in order
to satisfy both of the goals: for any structural intersection S1 ∩ S2, we can show
that both S1 and S2 are structural super-types. By Rule S-Str, for every signature
in both S1 and S2, there is some corresponding signature in the intersection of their
sequences of signatures. In the case that the identifier of a signature in one sequence
does not appear in the other sequence, this requirement is satisfied by Lemma 4
(modified to apply to signatures, which is part of the proof for that lemma). If
two signatures in either sequence have the same identifier, then we need to show
that the intersection of those signatures is a sub-type of each signature: if D1 ∩D2
is defined, then both D1 and D2 are signature super-types. This requirement is
satisfied by Rule S-Sig, coinductively applying Lemma 12 for the parameter types
and this lemma for the return type.

Subtraction also always produces a sub-type of the minuend.

Lemma 14 (Subtraction produces sub-type).

T1 − a = T2
T2 <∶ T1

Proof. Any structural types the appear in the union of T2 are unmodified from T1;
the subtraction only removes structural types. Rule S-Uni applies with Lemma 4
(again applied to structural types).

4.3 Dynamic Semantics

We now turn to the evaluation of Graceless programs, which are pairs of an object
store 𝜎 and a term t. The dynamic semantics of Graceless programs is presented in
Figure 4.3.1. Reduction is split into two relations,⟶ and⟼: the former handles
computation, and the latter uses the evaluation contexts E and F to perform con-
gruence reductions by either applying⟶ in the hole of a context with Rule E-Cng
or terminating the program on an unrescued raise with Rule E-Rse.

86

dynamic semantics

𝜎 ∣ t ⟶ 𝜎 ∣ t

(E-Seq)

𝜎 ∣ v; t ⟶ 𝜎 ∣ t

(E-Obj)
y fresh a = identify(d) a unique

𝜎 ∣ object { d t } ⟶ 𝜎(y ↦ { [self./a]d }) ∣ [y/self][y./a]t;y

(E-Sfe)

𝜎 ∣ v —⇑ b ⟶ 𝜎 ∣ v

(E-Upd)
𝜎(y) = { d,method D { t } }

𝜎 ∣ y←method D { t′ } ⟶ 𝜎(y ↦ { d,method D { t′ } }) ∣ y

(E-Req)
method m(xi ∶ Ti)→ T { t } ∈ 𝜎(y)
𝜎 ∣ y.m(vi) ⟶ 𝜎 ∣ [y/self][vi/xi]t

(E-Rsc)

𝜎 ∣ F[⇑ v] —⇑ { z→ t } ⟶ 𝜎 ∣ [v/z]t

(E-Fst)
d = 𝜎(v) a ∈ identify(d)

𝜎 ∣ v ∋ a { z→ t } b ⟶ 𝜎 ∣ [v/z]t

(E-Snd)
d = 𝜎(v) a ∉ identify(d)

𝜎 ∣ v ∋ a b { z→ t } ⟶ 𝜎 ∣ [v/z]t

𝜎 ∣ t ⟼ 𝜎 ∣ t

(E-Cng)
𝜎 ∣ t ⟶ 𝜎′ ∣ t′

𝜎 ∣ E[t] ⟼ 𝜎′ ∣ E[t′]

(E-Rse)

𝜎 ∣ G[⇑ v] ⟼ 𝜎 ∣ ⇑ v

Figure 4.3.1: Graceless reduction rules

87

graceless

In the computation relation, Rule E-Req processes qualified requests by look-
ing up the correspondingmethod in the receiver referencey, resolving to themethod
body t with both self and the parameters xi bound to the receiver y and the argu-
ments vi respectively. As discussed in §4.1.3, there is only a computation rule for
qualified requests, and unqualified requests are transformed into qualified ones
through substitution. Attempting to reduce an unqualified request fails because it
indicates that there was no surrounding object that defined such a method.

Rule E-Obj reduces an object in the way described in §4.1.3, replacing the con-
structor with its own initialisation code (the term t in its body) sequenced to ulti-
mately return the newly constructed reference of the object y, substituting self for
y and qualifying all local methods in that body. The syntax 𝜎(y ↦ { d })maps y to
the set of definitions d in the store 𝜎, whether or not the key y already appeared in
the store. In this reduction it is guaranteed to be a new key, because of the require-
ment of y fresh. Object constructors can only be reduced if they do not include
duplicate method identifiers, otherwise the resulting object in the store would not
have a sensible form.

Rule E-Seq throws away the head of a sequencewhen it is a value, so that the tail
can begin evaluating. Rule E-Upd updates a method definition in an object 𝜎(y):
the method must already exist in the object, and have exactly the same signature,
so this effectively replaces the method body t with the updated t′. The result of an
update is the reference y whose object was updated, for lack of a better value to
return.

Rules E-Sfe and E-Rsc process rescue forms, the former by removing the res-
cue if its body did not raise anything, and the latter by handling a raise in the body
with the accompanying block by binding the block parameter z to value that was
raised v in the block body t. A rescue uses the context F to match any term whose
next non-value sub-term to compute is a raise, so we do not need to manually raise
the value directly into the body of the rescue before handling it. Because there is
no computation rule for a raise, we have a guarantee that the body of the rescue
cannot be reduced by any other rule.

Rules E-Fst and E-Snd handle branching on the outcome of a match, on the
success or failure of the condition to the left or right block respectively. In either
case, the corresponding block parameter z is bound to the matched value y in the

88

static semantics

corresponding block body t. The choice is based on whether the definition identi-
fier a appears in the object at y in the store: one or the other always applies.

A reducible Graceless program ⟨𝜎, t⟩ is reduced a single step to some program
⟨𝜎′, t′⟩ with 𝜎 ∣ t ⟼ 𝜎′ ∣ t′. We write 𝜎 ∣ t ⟼∗ 𝜎′ ∣ t′ as the reflexive and
transitive closure of reduction for any Graceless program 𝜎 and t, and 𝜎 ∣ t ⟼∗

𝜎′ ∣ v for a complete execution. Not all programs are guaranteed to reduce to a
value, even in the absence of a stuck state, since Graceless evaluation is not total.

4.4 Static Semantics

We now define a term typing judgment for Graceless programs, and prove that the
judgment soundly prevents programs from getting stuck when executed by ⟼∗

(though it does not prevent the production of an uncaught raise). Typing takes
place in a type environment Γ, which is a standard sequence of variable bindings
x ∶ T (where x includes both self references and store references y). The type en-
vironment syntax captures all of the information about the local scope, and it is
trivial to look up the type of a variable in any Γ, but we need to define a mechanism
for also discovering what methods also appear in a type environment.

4.4.1 Signature Selection

The typing environment contains variable bindings x ∶ T , not signatures, but sig-
natures can appear in a local scope, referenced by unqualified requests. Selecting
a signature from the environment is fairly simple, since signatures defined in any
surrounding object are in local scope, and we have self as a unique identifier for
each surrounding object. To select a signature from the surrounding scope, we
need only search in the type of each self in the scope Γ, and select the first one that
we find. Selecting either a variable binding or a signature from the typing environ-
ment is complicated by the fact that they can shadow one another.

The environment signature selection judgements Γ ∋ D, selecting the signature
D from the scope Γ, and Γ ∋ x ∶ T , selecting a variable binding x ∶ T from the scope
Γ, are defined in Figure 4.4.1. For the former, rather than define the selection as an
auxiliary function from a scope Γ and a method identifier a to a selected signature

89

graceless

Γ ∋ D (D-Hre)
D ∈ Di

, self ∶ type { Di } ∋ D

(D-Thr)
x ∶ T ∌ identify(D) ∋ D

, x ∶ T ∋ D

Γ ∋ x ∶ T (B-Hre)

, x ∶ T ∋ x ∶ T

(B-Thr)
x2 ∶ T2 ∌ ⟨x1, 0⟩ ∋ x1 ∶ T1

, x2 ∶ T2 ∋ x1 ∶ T1

x ∶ T ∌ a (N-Slf)
m ≠ self ⟨m,n⟩ ∉ identify(Di)

self ∶ type { Di } ∌ ⟨m,n⟩

(N-Var)
x ≠ self a ≠ ⟨x, 0⟩

x ∶ T ∌ a

Figure 4.4.1: Environment signature selection

D, we simplify to a judgment that picks the signatureD directly, andwill never pick
a signature if one with the same identifier appears ‘closer’ in Γ, using an auxiliary
judgment x ∶ T ∌ a that indicates no signature with the identifier a could be
selected from the binding x ∶ T . The variable binding selection works in a similar
way.

Rule D-Hre selects the signature from the type of a self reference (which we
can assume is a single structural type). RuleD-Thr skips over a binding in the envi-
ronment if no signature with the same identifier appears in the binding. Similarly,
Rule B-Hre immediately selects an equivalent binding, and Rule B-Thr skips over
a binding if it does notmatch the selected variable name. Theuse of x2 ∶ T2 ∌ ⟨x1, 0⟩
is not syntactically correct if x1 is a concrete variable y: in this case we treat it as
the simpler case of x1 ≠ x2. Rule N-Slf confirms that no such identifier appears
in the binding if the variable name is self, and Rule N-Var succeeds if the variable
name is not self — so we do not care about its signatures — and that the variable
binding itself does not satisfy the identifier.

Note that for an unqualified zero-argument request z, the type of the name z
can only be selected as a signature or a variable binding, not both, since if both
appear in the typing environment then the closer of the two will shadow the other
one. For instance, in the environment self ∶ type { z→ T1 }, z ∶ T2, the Rule N-Var

90

static semantics

does not permit Rule D-Thr to proceed, so selecting the signature z→ T1 cannot
succeed, only the selection of the binding z ∶ T2 is allowed. Only one rule will be
relevant in the typing judgment for typing unqualified zero-argument requests —
either as a variable or as a real request — when the syntax of the term is otherwise
ambiguous.

4.4.2 Term Typing

The term typing judgment takes the form Γ ⊢ t ∶ T , meaning that in the type envi-
ronment Γ the term t has type T , and is defined in Figure 4.4.2. An accompanying
judgment for definitions Γ ⊢ d ∶ D assigns d the signature D. A program ⟨𝜎, t⟩ is
typed by first determining an initial type environment with the judgment ⊢ 𝜎 ∶ Γ
—which ensures that the store 𝜎 is well-typed and binds each reference to the exact
type of its corresponding object in the resulting environment Γ— and then typing
the term in that environment.

Rule T-Var types a variable (either concrete or abstract) with the type that it
is assigned in the environment Γ. Rule T-Sub applies subsumption to the typing
judgment, so we can choose to assign a super-type to a term instead of the exact
type assigned by the relevant rule for the term’s syntax, so long as the super-type
is well-formed. Rule T-Rse assigns the ⊥ type to a raise of any term t so long as
t itself is well-typed. Combined with the subsumption rule this allows a raise to
have any type, since it will never reduce to a value.

Rule T-Seq ensures that both sides of a sequence are well-typed, and assigns
the type of the second half of the sequence to the whole sequence, since the first
half is thrown away once it is reduced to a value. Rule T-Obj types an object by
adding the type of the object as self into the typing environment and typing both
the definitions and the term in the object in this extended context. The rule also
ensures that the identifiers of the definitions are unique, to ensure that the resulting
type is well-formed under the rules given in Figure 4.2.1. Note that the signatures
D appear to be both inputs (to the type environment) and outputs (as the result
of typing the definitions d and in the type of the overall object), but the signatures
can be trivially calculated from the syntax of the definitions d before attempting to
apply any judgment.

91

graceless

Γ ⊢ t ∶ T

(T-Var)
 ∋ x ∶ T
 ⊢ x ∶ T

(T-Rse)
 ⊢ t ∶ T
 ⊢ ⇑ t ∶ ⊥

(T-Sub)
 ⊢ t ∶ T1 T1 <∶ T2 ⊢ T2

 ⊢ t ∶ T2

(T-Seq)
 ⊢ t1 ∶ T1, t2 ∶ T2
 ⊢ t1; t2 ∶ T2

(T-Obj)
, self ∶ type { D } ⊢ d ∶ D, t ∶ T identify(D) unique

 ⊢ object { d t } ∶ type { D }

(T-R/U)
 ∋ m(xi ∶ Ti)→ T ⊢ ti ∶ Ti

 ⊢ m(ti) ∶ T

(T-R/Q)
 ⊢ t ∶ type { m(xi ∶ Ti)→ T } ⊢ ti ∶ Ti

 ⊢ t.m(ti) ∶ T

(T-Rsc)
 ⊢ t1 ∶ T1 , z ∶ ⊤ ⊢ t2 ∶ T2
 ⊢ t1

—⇑ { z→ t2 } ∶ T1 ∪ T2

(T-Upd)
w ∶ type { Di } ∈ ⊢ d ∶ D D ∈ Di

 ⊢ w← d ∶ type { Di }

(T-Mch)
 ⊢ t1 ∶ T1 , z1 ∶ T1 ∩ ground(a) ⊢ t2 ∶ T2 , z2 ∶ T1 − a ⊢ t3 ∶ T3

 ⊢ t1 ∋ a { z1 → t2 } { z2 → t3 } ∶ T2 ∪ T3

Γ ⊢ d ∶ D

(T-Sig)
⊢ Ti, T , xi → Ti ⊢ t ∶ T

 ⊢ method m(xi ∶ Ti)→ T { t } ∶ m(xi ∶ Ti)→ T

⊢ 𝜎 ∶ Γ

(T-Sto)

yi ∶ type { Dij }, self ∶ type { Dij } ⊢ dij ∶ Dij identify(Dij) unique

⊢ { yi ↦ { dij } } ∶ (yi ∶ type { Dij })

ground ∶ Ident → Type
ground(⟨m,n⟩) = type { m(xi ∶ ⊥

i≤n
)→⊤ }

Figure 4.4.2: Typing judgements

92

static semantics

Rule T-R/U types an unqualified request, selecting the relevant signature from
the environment and ensuring that the arguments satisfy the parameter types. RuleT-
R/Q types a qualified request by typing the receiver as a structural type containing
the necessary signature. If the value of the receiver contains more than this signa-
ture, then the necessary type assignment for the receiver can be achieved using the
subsumption rule; this also means that the parameter types Ti and return type T
may be less specific than the annotations on the actual signature of the value of the
receiver. If the arguments to the qualified request can be typed with the parameter
types of the signature in the receiver, then the request is assigned the type of the
return type of the signature.

Rule T-Rsc types a rescue by ensuring that the body of the rescue is well-typed,
and that the body of the block is well-typed with the parameter in the type environ-
ment. Since any value can be raised, the type of the parameter in the environment
is ⊤. Evaluating a rescue produces either the value of the body or the value of ap-
plying the block to a raised value, and the resulting type of a raise reflects these two
possibilities by taking the union of each type.

Rule T-Upd types a method update, looking up the type of the receiver w in
the environment Γ to ensure that the signature of the method that is the subject of
the update matches exactly the one that is replacing it. The property is enforced
by typing d with the signature D (there is no subsumption rule for the judgment
Γ ⊢ d ∶ D, so D is guaranteed to be the exact signature of d), and then requiring
that D appears directly in the structural type of w. The type of the update itself is
the type of w, since w is the result of evaluating an update.

Rule T-Mch types thematch construct, first by typing thematched object, and
then typing the bodies of the two branches with the block parameters bound to
to a slight variation of the type of the matched object for each of the branches. In
the ‘then’ branch, we know that the matched object contains a definition identified
by a, but we don’t know the type annotations on the corresponding signature, so
we intersect the type of the matched object with the ground-type of a. For any
identifier ⟨m,n⟩, the ground-type has a corresponding signature (i.e. the name m
and arity n) where the parameter types are the⊥ type and the return type is the⊤
type. These type annotations reflect the contravariant and covariant nature nature
of parameter and return types, respectively: we do not know what the method

93

graceless

expects, and nor do knowwhat themethodwill return. Combined with an existing
type under intersection, these type annotations may become more detailed.

Asmentioned in §4.2.3, the addition of information to a structural type through
intersection as in the ‘then’ branch of a match construct is less useful than it may
first appear, because we gain only the information that was added, and no more.
Consider the List type from §4.1.2 again:

List = type {}, type { head→ T , tail→ List }

It seems reasonable that we might use the match construct to determine whether
an object y of type List is a node or the end of the list by testing if it has a head

method.
y ∋ ⟨head, 0⟩ { z→ t } b

The type of z in the environment when typing t is not that of a node, since the result
of applying the intersection specified by Rule T-Mch is:

List ∩ type { head→⊤ } = type { head→⊤ }, type { head→ T , tail→ List }

It is now well-typed to request head with z as the receiver, but the resulting return
type is not T : type {}must appear in the return type’s union. It is still not well-typed
to request tail on z since it does not appear in all of the variants of the union.

The ‘else’ branch of a match gives the block parameter a type in the block’s body
by subtracting the identifier a from the type of the matched object using the signa-
ture subtraction defined in §4.2.3: since we know that a signature identified by a
does not appear in the value of the matched term, we can remove all possibilities
from the union type of the term that claim it would appear.

For the example above, the signature subtraction also does not win us much:

y ∋ ⟨head, 0⟩ b { z→ t }

The type of z in the environment when typing t is type {}, since we have removed
the possibility of it being a node and are left with the remaining structural type in
the union. Of course, we cannot do much with z as a result. If a structural type

94

static semantics

S1 in a union is a super-type of another structural type S2 in the same union, then
S2 is effectively useless: in this example S1 was empty, but even if it had signatures
that also appeared in S2 then neither intersecting the total type with a ground-type
nor subtracting S2 from the union gains any new information about the type of the
matched object.

The matching construct is not useless under typing: given a type with variants
in a union that do not subsume each other, we gain useful type information in the
‘else’ branch of a match. Assume the following judgment holds for some y in a
typing environment Γ:

Γ ⊢ y ∶ type { m1 → T1 }, type { m2 → T2 }

Neither of the requests y.m1 or y.m2 are well-typed: the only common structural
super-type of both types in the union is type {}, so we cannot provide the necessary
typing required by Rule T-R/Q. Consider a test to see if a methodm1 appears in y:

y ∋ ⟨m1, 0⟩ { z→ t1 } { z→ t2 }

We gain information about y in both branches. As with the List type, in t1 we know
that m1 is present in z, but the type of a request for it will be effectively equivalent
to ⊤ because a method m1 might appear in the variant that already contains m2,
and so we have no information about what the actual method returns.

For typing t2, though, z has the type type { m2 → T2 }, since we can entirely
eliminate the first variant in the union. The knowledge that m1 is not present in
the object guarantees that the first structural type in the union cannot apply to the
object, which leaves only the remaining structural type.

The result is that, in order to fully discriminate on the variants in the union
type of an object like y in the example above, we must account for the possibil-
ity that the object might contain any combination of the methods specified across
the structural types, so long as it contains at least all of the methods in one of the
variants. This can be achieved by nesting match constructs:

y ∋ ⟨m1, 0⟩ { z→ z ∋ ⟨m2, 0⟩ { z→ t1 } { z→ t2 } } { z→ t3 }

95

graceless

When typing t2 and t3 we know the type of z is type {m1→T1 } and type {m2→T2 },
respectively. The branch of t1 corresponds to the case where y contains both m1
and m2, where z has the type:

type { m1 → T1,m2 →⊤ }, type { m1 →⊤,m2 → T2 }

As far as requesting a method on z is concerned, this type is equivalent to:

type { m1 →⊤,m2 →⊤ }

Both m1 and m2 can be requested on z, but the result of either must be typed as
⊤. Since y might contain both of these methods, this case must be accounted for,
though it can be trivially implemented by raising an error.

The judgment Γ ⊢ d ∶ D types a definition with a signature, and by Rule T-Sig
a method is always typed with exactly its own signature. The body of the method
must satisfy the return type of the signature with the typing environment extended
with the parameters and their type annotations.

Rule T-Sto generates an initial typing environment for typing a program. As
with Rule T-Obj, the signatures of the resulting types are immediately generated
from the signatures on the definitions in the store, and are used as the typing envi-
ronment to check that each of the methods are well-typed, with self bound to the
total type of each object. The resulting typing environment is the same one used
to type the definitions, without the self binding.

4.4.3 Properties

We now prove that the type system of Graceless is sound with a standard proof of
progress and preservation. When a Graceless program can no longer be reduced,
the term is either a value or an unrescued raise. The proof proceeds through a
number of lemmas, and proof summaries are presented below. First, we show that
the bottom type is empty.

Lemma 15 (Emptiness of ⊥). If ⊢ 𝜎 ∶ Γ, then Γ ⊢ v ∶ ⊥ cannot hold.

Proof. Assume that Γ ⊢ v ∶ ⊥ does hold, case analysis on the proof.

96

static semantics

(T-Var) This rule cannot apply, because the judgement ⊢ 𝜎 ∶ Γ cannot assign ⊥
to a variable.

(T-Sub) This rule must select a type T1 such that T1 <∶ ⊥. By Lemma 9, T1 = ⊥,
so the rule also contains a proof that Γ ⊢ v ∶ ⊥.

The remaining rules do not apply to ⊥. Since Rule T-Sub is defined inductively
and is the only applicable rule, the fact that it must repeat infinitely forms a contra-
diction with the assumption that such a proof could exist.

We also require a number of lemmas about the type of a store. Typing a store
𝜎 produces a type environment Γ. The variables bound in Γ should be exactly the
domain of 𝜎, which means each variable must be a concrete reference y.

Lemma 16 (Store typing domain equality).

⊢ 𝜎 ∶ (x ∶ T)
x = dom(𝜎)

Proof. Immediate from the judgment ⊢ 𝜎 ∶ Γ by Rule T-Sto.

The type of a store always contains structural types as well.

Lemma 17 (Store typing is structural).

⊢ 𝜎 ∶ Γ Γ ∋ y ∶ T
T = type { D }

Proof. Immediate from the judgment ⊢ 𝜎 ∶ Γ by Rule T-Sto.

Furthermore, the type of a store includes the exact information about the signatures
of the objects therein.

Lemma 18 (Environment lookup corresponds to store).

⊢ 𝜎 ∶ Γ Γ ∋ y ∶ type { D }

d = 𝜎(y) signature(d) = D

Proof. By Rule T-Sto, the signatures assigned to the store are computed by Rule T-
Sig, which assigns the exact signature of the definition, so any signature stored in
the type of a reference y corresponds exactly to the definition found at y in 𝜎.

97

graceless

The subsumption rule in term typing is used to ‘select’ a signature from the
type of a term, by using a structural type containing only the relevant signature.
The following lemma demonstrates that if in a store 𝜎, a reference y has such a
type type { D }, then there is guaranteed to be a corresponding definition at 𝜎(y)
with a signature that is compatible with D.

Lemma 19 (Canonicity of forms).

⊢ 𝜎 ∶ Γ Γ ⊢ y ∶ type { D }

d ∈ 𝜎(y) signature(d) <∶ D

Proof. By analysis of the proof that Γ ⊢ y ∶ type { D }, proceeding through an ar-
bitrary number of applications of Rule T-Sub, terminating in Rule T-Var where
Γ ⊢ y ∶ type { Di }. By Lemma 18, Di correspond exactly to the signatures of the
definitions at𝜎(y). The intervening subtyping premises of Rule T-Sub combine un-
der Lemma 5 to formaproof that type { Di } <∶ type { D }, so it follows byLemma 10
that one of the signatures Di is compatible with D.

Now we can prove the Progress lemma.

Lemma20 (Typing implies progress). For any program ⟨𝜎, t⟩, if⊢ 𝜎 ∶ Γ andΓ ⊢ t ∶ T
then either:

• ∃v. t = v

• ∃v. t = ⇑ v

• ∃𝜎′ t′. 𝜎 ∣ t ⟼ 𝜎′ ∣ t′

Proof. By induction on the derivation of the proof that Γ ⊢ t ∶ T , with a case anal-
ysis on the last step.

(T-Var) By Lemma 16, t = y, so immediate.

(T-Rse) t = ⇑ t′, so immediate. Induction applies Rule E-Rse when this appears
in the hole of a context F.

(T-Sub) Induction on the premise that Γ ⊢ t ∶ T ′ for some T ′.

98

static semantics

(T-Seq) Induction on the premise that the head of the sequence is typedΓ ⊢ t1 ∶ T1.
If t1 is a value, then Rule E-Seq.

(T-Obj) Rule E-Obj, the requirement of uniqueness of method identifiers is im-
mediate from the premise of the assumption.

(T-R/U) self ∉ dom(𝜎), so by Lemma 16 the premise Γ ∋ D forms a contradiction.

(T-R/Q) Induction on the typing of the subterms. If all subterms are values, then
Rule E-Req, with the premise satisfied by Lemma 19 and Lemma 11.

(T-Rsc) Induction on the typing of the body. If the body is a value, then Rule E-
Sfe. If the body contains a raise in the hole of a context F (the only
location where this is not handled immediately by Rule E-Rse), then
Rule E-Rsc.

(T-Upd) By Lemma 16, w = y. By Lemma 18, the signature of the definition d
appears exactly in the store at y, so Rule E-Upd.

(T-Mch) By induction on the typing of the body. If the body is a referencey, theny
appears in the domain of Γ by Lemma 16, so either Rule E-Fst or E-Snd
apply.

This covers all cases.

To begin proving the preservation lemma, we first need to show that substitu-
tion preserves typing, for both forms of substitution.

Lemma 21 (Value substitution preserves typing).

Γ ⊢ v ∶ T1 Γ1, z ∶ T1, Γ2 ⊢ t ∶ T2 Γ2 ∌ ⟨z, 0⟩
Γ1, Γ2 ⊢ [v/z]t ∶ T2

Proof. By induction on the derivation of the proof that Γ1, z ∶ T1, Γ2 ⊢ t ∶ T2, with
a case analysis on the last step.

(T-Var) If t = v then T1 = T2, so immediate from the proof that Γ ⊢ v ∶ T1. Oth-
erwise the variable has not been substituted and the proof remains un-
changed.

99

graceless

The remaining rules all follow immediately from induction and applications of
weakening; any binding that shadows z terminates the substitution.

Lemma 22 (Qualifying substitution preserves typing).

Γ ⊢ t ∶ T Γ ∋ self ∶ type { D } a ∈ identify(D)
Γ ⊢ [self./a]t ∶ T

Proof. By mutual induction with Lemma 23 on the derivation of the proof that
Γ ⊢ t ∶ T , with a case analysis on the last step.

(T-R/U) If t = m(ti) where a = ⟨m, |v|⟩, then the corresponding D such that
a = identify(D) is a signature m(x ∶ Ti) → T ; the result of the substitu-
tion is self.m(ti), which can be typed by Rule T-R/Q since self is still in
the typing environment and contains the same signature that was the re-
sult of the lookup before, along with the existing proofs that ti are typed
Ti. Otherwise the request has not been qualified and the proof remains
unchanged.

The remaining rules all follow immediately from induction and applications of
weakening.

Lemma 23 (Qualifying substitution preserves signatures).

Γ ⊢ d ∶ D Γ ∋ self ∶ type { D } a ∈ identify(D)
Γ ⊢ [self./a]d ∶ D

Proof. By mutual induction with Lemma 22 on the derivation of the proof that
Γ ⊢ d ∶ D, with a case analysis on the last step.

(T-Sig) Rebuild the proof under Rule T-Sig using Lemma 22 and weakening on
the typing of the body.

This covers all cases.

In order to show that the result of a successful match preserves the type of the
overall match, we need to first show that a well-typed store reference can have the
ground-type of amethod identifier added to its type if amethodwith that identifier
actually appears in the store at the location of the reference.

100

static semantics

Lemma 24 (Adding ground preserves typing).

⊢ 𝜎 ∶ Γ Γ ⊢ y ∶ T d = 𝜎(y) a ∈ identify(d)
Γ ⊢ y ∶ T ∩ ground(a)

Proof. By induction on the derivation of the proof that Γ ⊢ y ∶ T , with a case anal-
ysis on the last step.

(T-Var) T is a structural type type { Di } by Lemma 17. Since a ∈ identify(d),
by Lemma 18 there is a Di such that identify(Di) = a. Intersecting the
ground type of a signature with a structural type that contains that sig-
nature is an identity on the structural type, by Lemmas 2 and 1.

(T-Sub) By Lemma 13 the result of the intersection is a subtype of the original
type, so one more application of Rule T-Sub.

The remaining cases do not apply to y.

For the failure of amatch, we will need to show the opposite; that a well-typed store
reference can have a method identifier subtracted from its type if no such method
with that identifier appears in the store at the location of the reference.

Lemma 25 (Subtraction preserves typing).

⊢ 𝜎 ∶ Γ Γ ⊢ y ∶ T d = 𝜎(y) a ∉ identify(d)
Γ ⊢ y ∶ T − a

Proof. By induction on the derivation of the proof that Γ ⊢ y ∶ T , with a case anal-
ysis on the last step.

(T-Var) T is a structural type type { Di } by Lemma 17. Since a ∉ identify(d),
by Lemma 18 there is no Di such that identify(Di) = a. By Lemma 3,
T − a = T .

(T-Sub) By Lemma 14 the result of the subtraction is a subtype of the original
type, so one more application of Rule T-Sub.

The remaining cases do not apply to y.

101

graceless

With these in hand, we can prove the preservation lemma.

Lemma 26 (Reduction preserves typing).

⊢ 𝜎 ∶ Γ Γ ⊢ t ∶ T 𝜎 ∣ t ⟼ 𝜎′ ∣ t′

⊢ 𝜎′ ∶ Γ ′ Γ ′ ⊢ t′ ∶ T

Proof. Induction on the derivation of the proof that 𝜎 ∣ t ⟼ 𝜎′ ∣ t′, with a case
analysis on the last step.

(E-Seq) Rule T-Seq.

(E-Obj) It follows from the inversion of Rule T-Obj (and Rule T-Sub) that the
definitions d in the object constructor are typed Γ, self ∶ T ⊢ d ∶ D, and
the object body t is typed Γ, self ∶ T ⊢ t ∶ T ′. By Lemma 23, the defini-

tions [self./a]d in the store at the newly allocated referencey can be typed
with the same signatures D, so the reference can be typed Γ ⊢ y ∶ T by
Rule T-Var. By Lemmas 21 and 22, the resulting head of the sequence
[y/self][self./a]t can be typed Γ ⊢ [y/self][self./a]t ∶ T ′, so the total re-
sulting sequence has the type T by Rule T-Seq.

(E-Req) In the result [y/self][v/z]t, the term t has come from the body of a defini-
tion with signatureD in the store at the reference y, so Lemma 19 applied
to the proof that y has the type type { D } means that, through inversion
of Rule T-Var (where y has the type T1) on the typing of y and Rule T-
Sto on the proof that ⊢ 𝜎 ∶ Γ (plus the guarantee that the identifiers of
the definitions in an object in the store are unique), it must be the case
that Γ, self ∶ T1, z ∶ T ′i ⊢ t ∶ T ′ where Ti <∶ T ′i and T ′ <∶ T . Inversion of
Rule T-R/Q (and Rule T-Sub) proves that Γ ⊢ v ∶ Ti. Lemma 21 moves
from the typing environment to substitution to prove thatΓ ⊢ [y/self][v/z]t ∶ T ′,
and Rule T-Sub applies to the proof that T ′ <∶ T to prove that the result
is typed T .

(E-Rse) Rule T-Sub applied to Rule T-Rse. The necessary subtyping is immedi-
ately satisfied by Lemma 6.

102

static semantics

(E-Sfe) It follows from the inversion of Rule T-Rsc (and Rule T-Sub) that the
resulting value v is typed Γ ⊢ v ∶ T1, where the type of the rescue was
T1 ∪ T2. Rule T-Sub and T1 <∶ T1 ∪ T2 (by Lemma 12) combine to prove
that Γ ⊢ v ∶ T1 ∪ T2.

(E-Rsc) It follows from the inversion of Rule T-Rsc (and Rule T-Sub) that the re-
sulting term [v/z]t is typed Γ, z ∶ ⊤ ⊢ t ∶ T2, where the type of the rescue
was T1 ∪ T2. Lemma 21 moves from the typing environment to substitu-
tion to prove thatΓ ⊢ [v/z]t ∶ T2 by applyingRuleT-Sub to the proof that
Γ ⊢ v ∶ T1 and the trivial subtyping T1 <∶ ⊤. RuleT-Sub and T2 <∶ T1 ∪ T2
(by Lemma 12) combine to prove that Γ ⊢ [v/z]t ∶ T1 ∪ T2.

(E-Upd) Immediate from the inversion of Rule T-Upd (and Rule T-Sub) that
Γ ⊢ w ∶ T .

(E-Fst) It follows from the inversion of Rule T-Mch (and Rule T-Sub) that the
resulting term [v/z]t is typed Γ, z ∶ ground(a) ⊢ t ∶ T2, where the type of
the match was T2 ∪ T3. Lemma 21 moves from the typing environment
to substitution to prove that Γ ⊢ [v/z]t ∶ T2 by applying Lemma 24 to
the proof that Γ ⊢ v ∶ T1. Rule T-Sub and T2 <∶ T2 ∪ T3 (by Lemma 12)
combine to prove that Γ ⊢ [v/z]t ∶ T2 ∪ T3.

(E-Snd) It follows from the inversion of Rule T-Mch (and Rule T-Sub) that the
resulting term [v/z]t is typed Γ, z ∶ T1 − a ⊢ t ∶ T3, where the type of the
matchwas T2∪T3. Lemma 21moves from the typing environment to sub-
stitution to prove that Γ ⊢ [v/z]t ∶ T3 by applying Lemma 25 to the proof
that Γ ⊢ v ∶ T1. Rule T-Sub and T3 <∶ T2 ∪ T3 (by Lemma 12) combine
to prove that Γ ⊢ [v/z]t ∶ T2 ∪ T3.

This covers all cases.

The progress and preservation lemmas combine to give us type soundness.

Theorem 27 (Well-typed programs don’t get stuck). For any Graceless program
⟨𝜎, t⟩, if ⊢ 𝜎 ∶ Γ and Γ ⊢ t ∶ T , then either:

• ∃v. t = v, so Γ ⊢ v ∶ T

103

graceless

• ∃v. t = ⇑ v, so Γ ⊢ ⇑ v ∶ T

• ∃𝜎′ Γ ′ t′. 𝜎 ∣ t ⟼ 𝜎′ ∣ t′, with ⊢ 𝜎′ ∶ Γ ′ and Γ ′ ⊢ t′ ∶ T

Proof. Immediate from Lemmas 20 and 26.

104

5 Casts

The Graceless language we have presented so far is sufficient for expressing much
of the semantics of Grace programs, but its static type system does not take into
account the fact that Grace is not inherently typed, and that it is legitimate to run
parts of a Grace programwithout type-checking enabled. Graceless cannot express
the safe interaction of typed and untyped components, as a typed program can only
minimally interact with objects it has no type information about: the type checker
will not permit the interaction without being sure that it is safe.

We now extend Graceless with structural casts, expressed through the existing
language of types and method reflection to describe assumptions about the type of
an object behind a cast. The type system can then permit access to methods that
are assumed to exist using a coercion, which ensures that a failed assumption safely
results in a raise instead of the evaluation getting stuck. Higher-order casts then
chaperone objects to maintain the remaining unchecked assumptions about the
methods, expanding to a coercion when it becomes possible to check an assump-
tion.

The necessity of interaction between typed and untyped components of the
language is already apparent in the typing of the match construct. Because a match
can only determine if an object contains amethodwith the right identifier, and does
not consider the annotations on any such method, the type of any signature added
by the ground function (from Figure 4.4.2) is difficult to use in the ‘then’ branch of a
match. If the method requires any parameters then it cannot be requested, because
all of its arguments must accept values from the uninhabited type ⊥. Even if the
method does not accept arguments, the return type of the method is ⊤, making it
difficult to use the outcome except through the use of more matches.

Casts allow the ‘then’ branch of a match to check for the presence of a method,

105

casts

then make assumptions about the inputs and outputs of that method. The match

form in Grace proper behaves in the same way, and this is also the behaviour ob-
served by Boyland (2014) in their analysis of Minigrace. Minigrace has never per-
formed higher-order assumptions in a type-safe way.

5.1 Design

The semantics of the existing Graceless language already contains reflection mech-
anisms for examining the structure of an object; these can be used to implement
most of the casting framework required to make assumptions about the type of an
object. The language’s match form allows the type of an object to be inspected, so
the ability to discover whether a method is present is already available. Invalidated
assumptions can be encoded using the existing raise form.

We use the term ‘coercion’ to describe an examination of an object’s structure
with match expressions in an attempt to give it a more specific type that it already
has. Coercing a term t to a type that assumes it has a method ⟨m, 1⟩ can already
be encoded as the following match expression:

t ∋ ⟨m, 1⟩ { z→ z } { z→⇑ z }

If the value of t has the relevant method, then the match will reduce directly to
the value unchanged, otherwise the value is raised to indicate that the coercion has
failed. Since the type of a raise is⊥ and the type of a match is the union of the types
of the two branches, Lemma 1 tells us that the type system will assign a type to the
coercion that contains a method identified by ⟨m, 1⟩.

A match only examines the name and arity of the methods in the object, not
the types annotating the parameters and return of the methods. Although the type
assigned to the above coercion contains a signature with the identifier ⟨m, 1⟩, the
match only guarantees that the method is present. The type checker must assign
the signature m(z ∶ ⊥) →⊤ to the method (unless there was already information
about this method in the type of t, in which case the coercion is useless because we
already knew that the method was present).

Our design extends Graceless with a syntax for casts t ∶ S, indicating the term

106

design

t is assumed to have the type expressed by the structural type S. A cast encodes the
higher-order assumptions about an object’s type, chaperoning a reference to the
object and applying the relevant coercions when a method is requested that has
assumptions that must be upheld.

Assuming that amethodm in a term t accepts aNumber and returns a Boolean

is written:
t ∶ type { m(x ∶ Number)→ Boolean }

The cast only makes assumptions about the type annotations on the methods, and
does not assume the existence of the method m. The term t must be known to
contain a method ⟨m, 1⟩ for the cast to be well-typed.

By combining the coercion of the existing match form and the new casts, any
structural assumption can be applied to a term. The combination of the coercion
and cast above is:

t ∋ ⟨m, 1⟩ { z→ z ∶ type { m(x ∶ Number)→ Boolean } } { z→⇑ z }

After evaluating t, the match inspects the resulting value to see if it contains a
method ⟨m, 1⟩, and attaches the higher-order assumptions about the inputs and
outputs if the method is present. The cast only chaperones the reference of the ob-
ject that is the body of the cast: other references to the object may exist that are not
constrained by the assumptions in the cast.

5.1.1 Coercing Requests

Coercions are generated whenever a method is requested on a cast that makes as-
sumptions about that method. A coercion generated by a request checks that the
arguments satisfy the type annotations of the parameters on the method, and the
result of the request is coerced to the return type in the cast. Consider a request
on a cast that assumes that a method accepts anything and returns an object with
a unary method named a:

(y ∶ type { m(z ∶ ⊤)→ type { a→⊤ } }).m(t)

107

casts

The object at y contains a method m that requires its input to contain a method b:

𝜎(y) = {method m(z ∶ type { b(x ∶ ⊥)→⊤ })→⊤ { ⋯ } }

Requesting m on the cast removes the cast, but wraps the input in a coercion that
tests for the presence of b, and wraps the remaining request in a coercion that tests
for the presence of a. The request unfolds the cast to become:

coerce(y.m(coerce(t, type { b(x ∶ ⊥)→⊤ })), type { a→⊤ })

Each of the coercions becomes a match expression around their inputs.

y.m(t ∋ ⟨b, 0⟩ { z→ z } { z→⇑ z }) ∋ ⟨a, 0⟩ { z→ z } { z→⇑ z }

If the input does notmatch the type expected by themethod, or themethod returns
a value that does not satisfy the assumption of the cast, then an error is raised.

There appears to be an interesting asymmetry in the cast expansion: while the
result of the request is checked against the return type in the cast, the arguments
of the request are checked against the parameter types of the method that actually
appears in the object that is the receiver of the request, and the parameter types in
the cast are ignored. An assumption about the return type of a method adds infor-
mation to the expected type of the request, but an assumption on parameter types
forgets information about the expected type of an input to the method. Without
also including a source type with the target type in the cast, the information about
what was originally expected as the type of an input is lost when a cast is applied.

Using the parameter types in the method rather than in the cast is part of a
broader philosophy of treating the object that is the body of the cast as the ultimate
truth about that object’s type. The higher-order coercions of Henglein (1994) and
casts of Siek and Taha (2006) and Wadler and Findler (2009) only ever consider
the consistency of the source and target of a cast, never the actual type of the un-
derlying body. The advantage of their approach is that type annotations outside of
a cast are irrelevant to the execution of a program and can be erased before run-
time, whereas all parameter type annotations must be preserved at run-time in our
implementation (though this is already true of Grace programs, because they are

108

design

translated into contracts at run-time). The disadvantage of not examining the body
of the cast when attempting to determine if the assumptions of a cast are upheld is
that a cast that makes valid assumptions may still fail: we discuss this problem in
§5.5.2.

The apparent asymmetry is resolved by considering that the parameter types in
the cast are not wholly useless: they are still used by the type system to type check
the inputs before run-time. The parameter types in the cast correspond to the re-
turn type on the method that is ultimately called, not the return type in the cast: in
both cases we trust the type system to check the relevant terms under the assump-
tion that the surrounding context is sensible. The reverse of this correspondence
is that the return type in the cast corresponds to the parameters on the method, in
that they both must be checked at run-time.

Retaining both the source and target of a cast— and reversing these types when
distributing a cast over an input — instead of investigating the parameters on the
actual method being called would also prevent casts from fulfilling their most use-
ful function in Graceless: calling methods discovered by a match. Any method
discovered by a match has inputs of type ⊥ within the ‘then’ branch of the match,
but the parameter types on the actual method may be less restrictive. If the input
types are checked by reversing the direction of a cast, then casting the input from⊥
to some type T would require checking that the input (of type T) satisfies⊥, which
would mean the methods are still unable to be called (since ⊥ is empty).

Consider the following use of a match, checking if a method m appears in the
value of a term t, and requesting it with some input x if it does.

t ∋ ⟨m, 1⟩ { z→ z.m(x) } ⋯

Either this match is not well-typed, or the input x has type⊥. In the latter case the
request to m can never be evaluated because the input has no value: the argument
will never reduce to a value, either diverging or resulting in a raise.

The application of a cast to the receiver z can be used to make the request well-
typed, by assuming that the m method will actually accept x (of some type T):

t ∋ ⟨m, 1⟩ { z→ (z ∶ type { m(x ∶ T)→⊤ }).m(x) } ⋯

109

casts

So long as x has type T , this is now well-typed, but if the cast is required to ensure
that it is correct by reversing the assumption it made about the input, the request
on the cast would be transformed into the following term (where the reference y is
the value of t):

y.m(⇑ x)

The input becomes a raise because it is a degenerate case of a coercion: there is noth-
ing to check, because the coercion is guaranteed to immediately fail. By checking
the parameter types on the actual method being called, the immediate failure of
any inputs with assumptions on their types only happens if the method truly does
not accept any object by including a ⊥ parameter.

5.2 Syntax

The syntax of casts on top of the existing Graceless definitions is presented in Fig-
ure 5.2.1. Although we have motivated the concept for the interaction of typed and
untyped code in the vein of gradual typing (Siek and Taha 2006), the type syntax
is not extended to include the unknown or dynamic type ? directly, and there is no
mechanism to ‘forget’ the type of the term in the cast.

Unlike the modern literature for cast calculi in the context of gradual typing
(Herman, Tomb, and Flanagan 2010), our coercions do not describe their assump-
tions on top of the entire type of the term in the cast, only a delta from the existing
type. The resulting coercion language only describes down-casts, never up-casts.
A term can be cast to any other type through a combination of casts and subsump-
tion.

As discussed in the design, terms can now be wrapped in a cast with the syntax
t ∶S. The syntax of values v now includes any cast whose body is a reference, as casts
must be retained to continue tracking the assumptions on the type annotations of
the signatures in the cast. The body of a cast value is only ever a reference, not
other cast values, so adjacent casts are not considered a value and must be merged
together.

New evaluation contexts have also been added for the purpose of evaluating the
body of casts from outside-in, rather than inside-out. The context I has a hole that

110

syntax

Grammar

t ⩴ ⋯ | t ∶ S (Term)

v ⩴ ⋯ | y ∶ S (Value)

Evaluation contexts

G ⩴ ⋯ |□ ∶ S | I[F] ∶ S (Sub-context)

H ⩴ □ | E[I] | E[□ —⇑ b] (Direct cast-free context)

I ⩴ □.m(t) | v.m(vi,□, t) | m(v,□, t) | ⇑□ |□ ∋ a b1 b2 |□; t (Sub-context)

Figure 5.2.1: Graceless grammar extended with casts

is immediately surrounded by any other term that is not a rescue or a cast. There is
no recursion in the context I, as a hole appears directly at each relevant sub-term,
so the metavariable only matches exactly the surrounding term, and there is no
further nesting beyond this term.

The context G has been extended to include any cast, without descending fur-
ther if the body is a raise or another cast. The structure of G matches either a cast
whose body is directly a hole, orwhose body is a recursive application of the context
F through the direct rescue- and cast-free context I. The context term (□ ∶ S1) ∶ S2
is not bound byG, because the body of the outer cast is not bound by I; the context
term (⇑ (□ ∶S1)) ∶S2 is bound byG, because the intervening raise is bound by I and
the inner cast is bound by recursion on F in place of the hole of I.

The evaluation contextH is the direct cast-free context, whichmeans that it has
a hole in any term, like the context E, so long as the hole does not appear directly
inside of a cast. A hole in H may appear inside of a cast, so long as it is separated
from the cast by at least one other term: for instance, in the context term□; t∶S, the
hole appears inside of a cast but is separated from it by the surrounding sequence.
Any context H is either just a hole or an application of the context E whose hole is
filled by some other binding of either the context I or a rescue.

The use of evaluation contexts to avoid evaluating the body of a cast that is im-
mediately nested inside another cast is similar to the implementation of coercions
(Henglein 1994; Herman, Tomb, and Flanagan 2010; Siek, Vitousek, and Bharad-

111

casts

waj 2012) or threesomes (Siek and Wadler 2010; Garcia 2013), though the inclusion
of raise and rescue forms causes the complexity of the added contexts to increase.

5.2.1 Type Coercion

A cast must describe the actual type of the object that it is casting at a shallow
level: the declarations that appear directly inside of a cast’s type must describe real
definitions in the object, though the type annotations on the signatures need not be
correct. We have codified the generation of the analysis of an object’s structure in
the coerce metafunction, defined as a series of overloaded functions in Figure 5.2.2.

The form coerce(t, T) checks if t satisfies the shallow description of T , and casts
it to the appropriate type: that is, given any term t coerce can generate a term of type
T with the underlying value of t, or that raises the value of t if it does not satisfy
the shallow description of T . The simple cases are when the input type T is ⊥, in
which the result is a raise of the term (note that the term itself will still be evaluated
before the cast is ‘checked’ even in this case), and when T is ⊤, in which case no
cast is applied because no assumptions have been made.

Checking single structural types is also fairly straightforward by sequencing
matches inside of one another to test for the presence of all of the necessary defini-
tions. The only complication is that any of the matches could fail along the way, so
each one has a unique ‘else’ branch with the same contents. Consider the following
coercion:

coerce(t, type { m1 → T1,m2 → T2 })

The application of coerce generates a match:

t ∋ ⟨m1, 0⟩ { z→ z ∋ ⟨m2, 0⟩ b { z→⇑ z } } { z→⇑ z }

Note the two distinct uses of raise, that both represent the same failure of a shallow
structural type check. The block b represents the success of the shallow check, and
so should cast the object to the full input type; coerce gives us b as:

{ z→ z ∶ type { m1 → T1,m2 → T2 } }

112

syntax

coerce ∶ Term × Type → Term
coerce(t, T) = coerce(t, ⊥, T)

coerce ∶ Term × Type × Type → Term
coerce(t, T , ⊥) = cast(t, T)
coerce(t, T , (⋃S, Si)) = coerce(t, T , S,⋃Si, S)

coerce ∶ Term × Type × Struct × Type × Struct → Term
coerce(t, T1, S, T2, type {}) = coerce(t, T1 ∪⋃S, T2)
coerce(t, T1, S, T2, type { D,Di }) = coerce(t, T1, S, T2, type { Di },D)

coerce ∶ Term × Type × Struct × Type × Struct × Decl → Term
coerce(t, T1, S1, T2, S2,D) =

t ∋ identify(D) { z→ coerce(z, T1, S1, T2, S2) } { z→ coerce(z, T1, T2) }

cast ∶ Term × Type → Term
cast(t, ⊥) = ⇑ t
cast(t, ⊤) = t
cast(t,⋃S) = t ∶ shallow(S)

shallow ∶ Seq(Struct) ⇀ Struct
shallow(S) = S
shallow((type { Di }, Sj)) = type { shallow((Di), shallow(Sj)) }

shallow ∶ Seq(Decl) × Seq(Decl) → Seq(Decl)
shallow((D1,Di), (Dj,D2,Dk)) = shallow(D1,D2), shallow((Di), (Dj,Dk))

where identify(D1) = identify(D2)
shallow((D,Di), Dj) = D, shallow(Di,Dj)
shallow(⋅, Dj) = Dj

shallow ∶ Decl × Decl ⇀ Decl
shallow(m(z ∶ Ti1)→ T1,m(z ∶ Ti2)→ T2) = m(z ∶ Ti1 ∩ Ti2)→ T1 ∪ T2

Figure 5.2.2: Coercion generation metafunctions

113

casts

The entire term either raises the value of t or returns its value cast to the given type.
Thanks to the presence of union types, the coerce function must consider every

possible combination of shallow matching between structural types. Consider an
application of coerce and the resulting match term:

coerce(t, (type { m1 → T1,m2 → T2 } ∪ type { m1 → T3,m3 → T4 }))

t ∋ ⟨m1, 0⟩ { z→ z ∋ ⟨m2, 0⟩ b1 b2 } b2

The block b1 corresponds to the success of a shallow check for the first structural
type in the union, and b2 to its failure. Since the type is a union, the failure of
the check for the first structural type should not result in a raise, but a test for the
second structural type matches instead. The block b2 is therefore:

{ z→ z ∋ ⟨m1, 0⟩ { z→ z ∋ ⟨m3, 0⟩ b3 { z→⇑ z } } { z→⇑ z } }

The ‘else’ blocks in this nestedmatch correspond to the failure of the shallow checks
of both types, and so raise the input.

The block b3 represents the success of a shallow check on the second structural
type in the context of the failure of a check on the first, so it casts the object to just
part of the type that succeeded.

{ z→ z ∶ type { m1 → T3,m3 → T4 } }

The cast in the body of the match has actually refined the input type to a sub-type,
since if the program evaluation enters b3 then we have discovered more informa-
tion about the underlying object.

The value of b1 is more complicated than b2, because the success of the check
for the first structural type has not invalidated the presence of the second. The block
b1 must still check the second structural type. The coerce function will generate the
following b1:

{ z→ z ∋ ⟨m1, 0⟩ { z→ z ∋ ⟨m3, 0⟩ b4 b5 } b5 }

This time the failure of the shallow check happens in the context of the success of

114

dynamic semantics

the first structural type, so b5 corresponds to a cast of z to that type:

{ z→ z ∶ type { m1 → T1,m2 → T2 } }

As with the success of the second structural type in the context of the failure of
checking the first, this cast refines the type of the input to a sub-type.

The block b4 is only entered if both structural types satisfied a shallow check, in
which case the object should be cast to the original input type, so coerce generates
b4 as:

{ z→ z ∶ type { m1 → (T1 ∪ T3),m2 → T2,m3 → T4 } }

The cast is generated by the metafunction cast, which generates a cast on a term
given a union type where every type in the union has succeeded in a check against
the term. If the union is empty, none of the checked types succeeded, and a raise
is generated. If the union only contains an empty structural type then there are no
added assumptions, so no cast is generated and the term is returned unchanged.

The metafunction shallow takes a list of structural types and collapses them in
a similar fashion to the intersection operation, except that the use of union and
intersection on the parameter and return types of the declarations are reversed.
Casts must appear only after the relevant type has been determined, not after each
method identifier is matched, to avoid otherwise invalidated casts from appearing
in the ‘else’ branches of nested shallow coercions.

5.3 Dynamic Semantics

An extension to the dynamic semantics of Graceless to evaluate casts is presented
in Figure 5.3.1. Since evaluation in a cast is already handled by Rule E-Cng with
the extension of the evaluation context F, the only remaining forms that need to be
reduced are those that rely on existing elimination ruleswhere casts cannowappear.
These are the rules for reduction of requests, Rule E-Req, and for processingmatch
constructs, Rules E-Fst and E-Snd. For the latter two, we simply define store
lookup to be ‘cast transparent’, so that 𝜎(y ∶ S) = 𝜎(y); this allows the rules to
eliminate thematch as before. The cast value is still substituted into the body of the
match, ensuring that any existing assumptions are upheld.

115

casts

𝜎 ∣ t ⟶ 𝜎 ∣ t

(E-Cst)
S ∋ m(z ∶ Ti1)→ T1 method m(z ∶ Ti2j)→ T2 { t } ∈ 𝜎(y)
𝜎 ∣ (y ∶ S).m(vi) ⟶ 𝜎 ∣ coerce(y.m(param(vi, Ti2, Ti1)), T1)

𝜎 ∣ t ⟼ 𝜎 ∣ t

(E-Mrg)

𝜎 ∣ H[(t ∶ S1) ∶ S2] ⟼ 𝜎 ∣ H[t ∶ S1 ∩ S2]

S ∋ D

(F-Mem)
D ∈ Di

type { Di } ∋ D

(F-Nin)
⟨m, |z|⟩ ∉ identify(Di)

type { Di } ∋ m(z ∶ ⊥)→⊤

param ∶ Term × Type × Type → Term
param(t, T1, ⊥) = t
param(t, T1, T2) = coerce(t, T1)

Figure 5.3.1: Reduction with casts

116

dynamic semantics

Rule E-Mrg reduces a cast directly containing another cast by merging the
two casts together. The resulting structural type is the intersection of the two cast
types, as the new cast must enforce the assumptions of both casts at once. The
cast reduction occurs in an evaluation context H, so the rule applies to any two
adjacent casts except if the outer cast appears directly in a cast as well. Casts are
merged from outside-in, and the body of a cast is not evaluated until all of the
directly surrounding casts are collapsed into a single cast.

Rule E-Cst handles reducing qualified requests where the receiver is a cast
instead of just an object reference; this is necessary in the case that the cast makes
assumptions about the type of the method being requested. In order to precisely
retrieve these assumptions, a signature selection judgement for types T ∋ D is
defined in the same figure, in a similar vein to the typing environment signature
selection judgement Γ ∋ D.

Signature selection from a type ensures that the most precise information is
gathered about the possible return type of the selected method. The selection will
still succeed if a signature with the relevant identifier is not present anywhere in the
type, but the resulting signaturewill be in its ground form: this saves us fromhaving
to define a separate rule in the reduction relation for handling the case where the
cast does not address the method that is being requested.

The signature selection judgement is also precise on the types of the parameters,
but these are irrelevant to processing a request on a cast. Because parameter types
in a cast are ignored, the only types that end upmattering are the ones on the actual
method in the object itself. Cast transparency in store lookup comes into play here
as well, as the value in the cast is used to look up the actual method that will be
requested, and source the appropriate parameter types from there.

Typically casts in a contravariant position such as parameter types on amethod
express a negative cast that needs to be reversed when flipped into a positive cast
on the arguments of a request or call. If the type of a parameter is⊥ and this is cast
to ⊤ (still a down-cast, since the polarity is reversed in a contravariant position),
it would be necessary to remember that⊥ was the original type rather than that⊤
is the outcome, so that reversing the parameter cast produces a new cast from the
input of type ⊤ to ⊥. Under subsumption, the parameter type on the underlying
method might actually be more permissive than the parameter type, and casting

117

casts

Γ ⊢ t ∶ T (T-Cst)
 ⊢ t ∶ T ⊢ S T <∶ ground(S)

 ⊢ (t ∶ S) ∶ T ∩S

ground ∶ Struct → Type
ground(type { D }) = ⋃type { ground(identify(D)) }

Figure 5.4.1: Term typing with casts

the input to ⊥ is not necessary to preserve the safety of the request: satisfying the
parameter on the method is all that is required.

As discussed in §5.1.1, casting to the real parameter types instead of just revers-
ing the assumption allows casts to change the parameter types of a method in the
‘then’ branch of amatch to the desired assumption, without having to cast the input
to⊥when the method is requested. The parameter types of any method newly dis-
covered by amatch are always⊥ regardless of what actually appears on themethod
in the store, so just reversing the assumption would still leave the method unable
to be requested: it would now be type-safe, but always evaluate to a raise.

5.4 Static Semantics

Given that we have only introduced a single new form of term, only a single rule is
required to type this extension. The extended type system is defined in Figure 5.4.1.
Since a cast is a delta of an the underlying term’s type, Rule T-Cst first types the
term in the cast, and then types the cast as the intersection of that term’s type and
the type in the cast (guaranteed to be a sub-type of both by Lemma 13). The type
in the cast must also be well-formed.

The ground of a type is effectively the application of the ground function on
method identifiers applied to all of the signatures of the type, so for instance the
type type { m1(z ∶ T1)→ T2 } has the ground type type { m1(z ∶ ⊥)→⊤ }. The type
of the term must subtype the ground of the cast type to enforce the property that
the shallow description of the type in a cast always correctly describes the type of

118

static semantics

the term in the same cast. For any well-typed request with a cast as the receiver, a
corresponding method always appears in the resulting object (or the term in the
cast never reduces to a value).

Note that the type of a cast can be the type ⊥, in which case the ground type is
also ⊥. The term in the cast has no value by Lemma 15, and it is not necessary for
this cast to translate to a raise to ensure that the outcome is uninhabited.

5.4.1 Properties

Thecast extension has been relatively small thanks to the use of the existing features
to perform shallow cast tests, so we only need a few extra lemmas to prove that type
soundness is retained for the extended language. The first is a modified canonicity
lemma: Lemma 19 still holds, but now that casts are also values we need to show
that typing guarantees that a relevantmethod appears in the underlying object. The
conclusions of this lemma are different to Lemma 19, as a method in an object
behind a cast does not necessarily have a compatible signature. The only guarantee
is that a method with the same identifier is present.

Lemma 28 (Canonicity of casts).

⊢ 𝜎 ∶ Γ Γ ⊢ v ∶ type { D }

d ∈ 𝜎(v) identify(d) = identify(D)

Proof. Immediate from the induction hypothesis applied to the inversion of Rule T-
Cst, with the subtyping conclusion of Lemma 19 implying the equality of identi-
fiers.

This is sufficient to update the progress lemma.

Lemma29 (Typing implies progress). For any program ⟨𝜎, t⟩, if⊢ 𝜎 ∶ Γ andΓ ⊢ t ∶ T
then either:

• ∃v. t = v

• ∃v. t = ⇑ v

• ∃𝜎′ t′. 𝜎 ∣ t ⟼ 𝜎′ ∣ t′

119

casts

Proof. Extend the existing case analysis to consider the new typing rule, as well as
new reduction possibilities in old rules.

(T-R/Q) If the receiver is a cast, then Rule E-Req no longer applies. Signature
selection from a type T ∋ D always succeeds thanks to Rule F-Nin, and
Lemma 28 guarantees that a corresponding method appears in the store,
so Rule E-Cst can be applied.

(T-Cst) Immediate from the induction hypothesis and either Rule E-Mrg if the
body is a cast or Rule E-Cng for any other term, or the whole term is a
value.

The remaining rules are unchanged.

For preservation, we need two extra lemmas. Thefirst is that the coerce function
actually coerces the given term into the given type, so long as the term itself is typed.

Lemma 30 (Coercion implies typing).

Γ ⊢ t ∶ T1
Γ ⊢ coerce(t, T2) ∶ T2

Proof. Case analysis of the input T2:

⊥ The outcome is ⇑ t, which has the type ⊥ by Rule T-Rse and the existing
proof that t is well-typed.

⊤ Theoutcome is t, which has the type⊤ by Rule T-Sub and the existing proof
that t is well-typed.

else The outcome is t ∋ a { z → t1 } { z → t2 }, so we can type this with Rule T-
Mch if t1 and t2 are well-typed. Use of z is well-typed by Rule T-Var in the
extended typing environment of the two blocks. The ground of cast signa-
tures introduced in t1 onto z are guaranteed to appear in the type of z by the
surrounding match, and so can be typed by Rule T-Cst, with the remaining
forms typed by induction. The typing of t2 follows directly from induction.

This covers all cases.

120

static semantics

The second lemma proves that signature selection is as precise as possible about
the return type of the selected signature; that is, any signature selected through the
subtyping relation produces a return type that is a super-type of the result of the
selection judgement.

Lemma 31 (Selection return subtypes lookup return).

T <∶ type { m(zi ∶ Ti)→ T1 } T ∋ m(zi ∶ T ′i)→ T2
T2 <∶ T1

Proof. Mutual analysis of the two inputs and rebuilding the corresponding subtyp-
ing rules, ignoring Rule F-Nin thanks to Lemma 1.

These are sufficient to show preservation.

Lemma 32 (Reduction preserves typing).

⊢ 𝜎 ∶ Γ Γ ⊢ t ∶ T 𝜎 ∣ t ⟼ 𝜎′ ∣ t′

⊢ 𝜎′ ∶ Γ ′ Γ ′ ⊢ t′ ∶ T

Proof. Extend the existing case analysis to consider the new reduction rule.

(E-Mrg) RuleT-Cst, with the resulting obligation that T <∶ ground(S1 ∩ S2), which
is satisfied by the fact that no new signatures can be added by a cast and
that ground signatures are trivial to subtype.

(E-Cst) The inversion ofRuleT-Cst (andRuleT-Sub) on the original cast proves
that the value v has a type that subtypes the ground of the cast type T , and
the type of the cast itself is the intersection of the type of v with T . The
application of Lemma 30 to the types of the arguments alongside the typ-
ing of v, whose relation with ground ensures that the relevant method ap-
pears in the type, rebuilds Rule T-R/Q for the request inside the resulting
cast, and then an application of Rule T-Cst types the cast as the intersec-
tion of the return type of the inner request and the return type selected
from T by Lemma 30. The type is the lowest type on the lattice that could
have been selected by the old typing rules by Lemmas 13 and 31, so ap-
plying Rule T-Sub to this typing with Lemma 31 provides the necessary
type.

121

casts

The remaining rules are unchanged.

As before, the progress and preservation lemmas combine to extend our proof
of soundness to the cast language.

Theorem 33 (Well-typed programs don’t get stuck). For any Graceless program
⟨𝜎, t⟩, if ⊢ 𝜎 ∶ Γ and Γ ⊢ t ∶ T , then either:

• ∃v. t = v, so Γ ⊢ v ∶ T

• ∃v. t = ⇑ v, so Γ ⊢ ⇑ v ∶ T

• ∃𝜎′ Γ ′ t′. 𝜎 ∣ t ⟼ 𝜎′ ∣ t′, with ⊢ 𝜎′ ∶ Γ ′ and Γ ′ ⊢ t′ ∶ T

Proof. Immediate from Lemmas 29 and 32.

5.5 Discussion

Directly adjacent casts are immediately merged together to avoid duplicating in-
formation; this behaviour is not necessary, but it avoids the potential for massive
number of casts with overlapping information building up on a single reference.
Merging casts is an interesting comparison point to casts in gradually typed lan-
guages, where the dynamic semantics rely entirely on merging casts to even detect
if the assumptions of the cast are upheld (Siek and Taha 2006; Siek and Taha 2007).
Many of the formal gradual languages perform early merging of casts to maintain
efficiency (Herman, Tomb, and Flanagan 2010; Siek and Wadler 2010; Garcia 2013),
but adding efficientmerging to casts makes the application of blame tracking vastly
more complicated than just tagging a cast with a blame label.

5.5.1 Blame

One aspect that is missing from the design for casts is a system for blame tracking.
Consider a hypothetical design for blame: casts labelled with blame labels ℓ as
in the cast calculi of Wadler and Findler (2009) or Cimini and Siek (2017). The

122

discussion

relevant blame label is attached to a raise generated by a coercion to indicate which
cast was to blame for a run-time type error:

t ∋ ⟨m, 1⟩ { z→ z ∶ℓ type { m(x ∶ T1)→ T2 } } { z→⇑ℓ z }

When a cast expands into a coercion on a request, the blame label on the cast is
distributed into the generated cast and raise forms.

A safe cast is one where the type in the cast is entirely subsumed by the already
known information about the term in the cast, such that the down-cast is to the
existing type of the term (a cast cannot lose type information, but it can express a
cast that gains no new information). A safe cast in some typing environment Γ is
defined as:

Γ ⊢ t ∶ S
t ∶ S safe

The blame theorem for Graceless would then be that any raise cannot have a label
from a safe cast.

Proposition 1 (Safe casts cannot be blamed). For a store 𝜎 and term t1, if ⊢ 𝜎 ∶ Γ,
Γ ⊢ t1 ∶ T , all labels ℓ in t are unique, and 𝜎 ∣ t ⟼∗ 𝜎′ ∣ ⇑ℓ1 v, then for any cast
t2 ∶ℓ2S in t1, if t2 ∶ℓ2S safe then ℓ1 ≠ ℓ2.

This result is not particularly interesting, because a safe cast is effectively useless
anyway.

Themerging of castsmakes the design above untenable. Consider the following
adjacent casts:

(t ∶ℓ1m→ T1) ∶ℓ2m→ T2

To merge these casts together, the types T1 and T2 must be intersected together,
but the blame labels must be part of this intersection as well: if m is requested on
this cast, the resulting coercion on the result of the request must know where to
attribute blame if the result fails to satisfy the assumptions of either T1 or T2:

t ∶m→ T ℓ11 ∩ T ℓ22

The resulting form must also be ordered, as the cast blaming ℓ1 is the closer as-

123

casts

sumption to the body, so if both T1 and T2 fail then ℓ1 must be blamed, not ℓ2.
In order to preserve the appropriate blame label while also coalescing adjacent

casts, the types in a castmust be labelled instead of the cast itself. A single castmust
be capable of havingmultiple blame labels in it at once— as suggested by the syntax
used in the intersection above — in order to preserve the necessary information
to correctly assign blame. The ordering of the arguments to the intersection must
also be retained, so the definition of a corresponding operator to the coercion com-
position operators ∘ of Henglein (1994) or # of Garcia (2013) would also need to be
defined once the syntax of labelled types was established. Given the potential for
an extreme amount of duplicated information that results if casts are not merged,
we have opted to merge casts and leave blame tracking as future work.

5.5.2 Gradual Typing

Gradual typing is a large part of the motivation for these casts, but the extended
Graceless language presented here is not gradual, and does not include a dynamic
or unknown type in its static type system. The design of Graceless casts differs sub-
stantially from the casts found in most gradual typing literature, and in particular
do not describe total source and target types for the cast, just the added structural
assumptions.

Both casts and coercions in gradual typing explicitly describe the act of forget-
ting type information as well as making assumptions about the type of an object.
The rules around consistency (or the syntax of coercions more directly) only allow
information about the type to be forgotten by replacing a type with the dynamic
type ?; in comparison, forgetting some but not all structural information through
subsumption is always performed implicitly, just as in a statically typed language.
Unlike other cast calculi, Graceless only uses casts to describe added assumptions,
and always combine with the existing type of the body of the cast: information
cannot be lost in a cast, only through subsumption.

Our philosophy that the body of a cast should be treated as the source of truth
for checking a cast’s assumptions avoids a problem with structural casts in object-
oriented languages with gradual typing, where a cast that accurately describes the
structure of its body can still fail. Consider the following term in the cast calculus

124

discussion

Ob⟨⋅⟩<∶ of Siek and Taha (2007):

⟨[l ∶ ⋯] ⇐ ?⟩ ⟨? ⇐ []⟩ [l =⋯]

The type and implementation of the l method is unimportant, and so elided. The
term is considered a bad cast, as the casts cannot be merged with a reduction step
despite the fact that the term is well-typed. The merge reduction rule requires that
the target type be a consistent super-type of the source, but in the given term the
target is a sub-type, not a super-type.

Despite the cast’s failure, the assumptions of the target type are satisfied by the
object that is the body of the cast. The only reason for the cast’s failure is that only
the consistency of the types in the casts are considered, never the body of the cast
itself. Because the source type of the cast is a strict super-type of the underlying
object, information has been lost in the cast, and it is this loss of information that
ultimately causes the cast to fail when it would otherwise be safe to proceed with a
merge operation.

We can construct a program in the gradual source language that, following the
cast insertion procedure, reduces to the given Ob⟨⋅⟩<∶ term. The information loss is
encoded using subsumption to forget the exact type of the object before casting it
back to its original type. First, consider a metafunction id that takes a term and a
type, and applies the term to an identity method:

id(t, T) = [m = T 𝜍(x ∶ T) x].m(t)

Any term generated by id is well-typed so long as the given type is a consistent
super-type of the type of the term. The metafunction can be used to forget or as-
sume information about the type of the term, either through subsumption or the
application of a cast (generated by the cast insertion procedure).

AnOb?<∶ program that, following cast insertion, reduces to the bad cast above is
the application of a method that accepts a value of unknown type and casts it to the
ultimate target type of the cast, applied to the cast’s body whose type is forgotten
by subsumption:

[m = [l ∶ ⋯] 𝜍(x ∶ ?) id(x, [l ∶ ⋯])].m(id([l =⋯], []))

125

casts

The application of id inside of the object is used to add an assumption that the type
of the otherwise unknown parameter x has the type [l ∶⋯], required by the return
type of the surrounding method: this assumption will cause a cast to be inserted.
The other application of id uses a simple super-type of the actual type of the object,
so the type information is lost purely by subsumption and no cast is generated.

The Ob⟨⋅⟩<∶ term generated by applying cast insertion to the Ob?<∶ term above is:

[m = [l ∶ ⋯] 𝜍(x ∶ ?) id(⟨[l ∶ ⋯] ⇐ ?⟩ x, [l ∶ ⋯])].m(⟨? ⇐ []⟩ id([l =⋯], []))

The cast inside of the application of id is the result of the method application gen-
erated by id, whereas the cast in the argument of the call to m appears because the
type of the parameter of m is ?. The reason for the bad cast is that the source type
of the latter cast is [], since the more specific type of the body has been forgotten
through subsumption.

The cast insertion procedure does not insert casts that only encode informa-
tion loss from subsumption. The type system does not permit such a cast: the
source and target types of a cast must be consistent, not consistent sub-types, so no
subsumption can be present in the difference of the two types in a cast. Without
interrogating the body, encoding subsumption into casts is necessary to prevent
otherwise correct casts failing because of a loss of information, which would mean
that any use of subsumption would cause a cast to appear in the run-time program.

A coercion in Graceless that correctly describes the shallow structure of its sub-
ject cannot fail, because thematch form actually interrogates the underlying object.
Encoding subsumption in casts is not necessary, as all of the relevant information
is available directly in the value of the object itself, with the trade-off that parameter
types must be retained in every method definition.

5.5.3 Gradual Guarantee

We have taken care in the design of the match and cast forms to apply the lessons
of the gradual guarantee (Boyland 2014; Siek, Vitousek, Cimini, et al. 2015), even if
Graceless itself is not a gradual language. Only performing shallow matching is de-
sirable because performing a full examination of an object’s structural type can be
an inefficient operation, particularly in the presence of recursive types. Despite our

126

discussion

efforts, a gradual form of Graceless would still fail to uphold the dynamic portion
of the gradual guarantee, but the structural match is not to blame.

Run-time type errors become a raise of the body of a failed cast, and since a
raise can be rescued, a Graceless program can suffer a type error and recover. The
guarantee requires that changing a type in otherwise equivalent programs should
not affect its behaviour, except if the change now causes or prevents a type error. In
practically every gradual calculus a type error is fatal to a program’s execution, so
the raise of such an error cannot be manipulated in any way.

If type errors can be rescued then it is possible to construct a program that
violates the gradual guarantee. In Graceless, if we have a term twith an assumption
on its method m, we can attempt to request m with an argument x. If x fails to
satisfy the parameter type on m then a type error will be raised, but the error can
be rescued and a different term evaluated instead.

t.m(x) —⇑ { z→ object {} }

The behaviour of this program depends entirely on the parameter type annotat-
ing m: for instance, changing the type between ⊥ and ⊤ is guaranteed to produce
different outcomes (the fresh object in the block, and the result of calling m, re-
spectively).

The ability to inspect the higher-order types of an object is not specific toGrace-
less, and any language gains this ability if type errors can be rescued, including
languages that are functional rather than object-oriented. The alternative is that
type errors always fatally crash a program, which may be an alarming property for
a practical language to have. The gradual guarantee is only acceptable because it
is applied to core calculi with irrecoverable error states; updating the guarantee to
apply to more practical languages may be necessary to preserve its relevance, but
we leave this as future work.

127

6 Brand Typing

The encoding of a class as a method is sufficient for constructing objects, but struc-
tural types cannot express information about where an object was constructed.
This is an intentional design decision: structural types correspond more closely
to the fundamental nature of object-orientation as the passing of messages: the
type of an object is the set of messages it is capable of responding to, and where
it comes from is unimportant. In contrast, nominal types permit the programmer
to explicitly encode their intent for relationships between objects in a way that is
difficult to express with only structural types.

One of the key advantages of nominal typing over structural typing is that if
we need to determine whether an object satisfies an interface at run-time, it is typ-
ically simpler to ask whether an object is from a particular class that implements
that interface than it is to manually examine the object’s structure. The disadvan-
tage is that the object may well satisfy the required structure of the interface even if
it was not sourced from the particular class we are using to perform this discrimi-
nation, but it is also possible under structural typing that an object implements an
unrelated interface that happens to declare the same structure as the type. Few lan-
guages provide a middle-ground between these two design points, where the user
of the language can choose to discriminate based on either the class or the interface
(or both).

This chapter introduces brand objects to implement nominal typing for Grace
objects and classes. Brand objects are implemented as annotations that tag an ob-
ject constructor or method definition. Each brand has an associated guard object
that matches at run-time those objects that have been appropriately annotated. A

Aspects of this chapter appeared in the ECOOP’15 paper Jones, Homer, and Noble 2015.

129

brand typing

Grace dialect can then reason about these objects via a static, quasi-nominal type
system. Brand typing is modelled using the existing features of Graceless and as a
new well-formed relation for programs that can either extend the previous struc-
tural system or stand alone. We show that if a program is fully-typed then the
combined well-formedness soundly prevents type errors. The nominality is built
from scratch, without modifying the underlying language at all.

The contributions of this chapter are:

• A practical design of brand objects for nominal typing on top of Grace’s ex-
isting structural type system.

• Applications of branding for various components of the language design.

• A formal model of brands as nominal types as an extension to Graceless.

• An implementation of brand objects and a static nominal type checker in
Hopper, our prototype implementation of Grace.

This chapter presents a design for brand types, describes how they can be imple-
mented in Grace and further used to replace a number of otherwise built-in con-
cepts in the language, and, along with the extension to Graceless, presents how
these features that were missing from the formal model can now be implemented.

6.1 Design

In order to support nominal typing, we have added brand objects to the Grace pro-
gramming language as an extension to its existing structural typing mechanism. A
brand object represents a unique marker that can be applied to an object and then
subsequently detected, either statically or dynamically; the effects of these objects
are similar to the branded types in Modula-3 (Nelson 1991). By separating the per-
mission from the guard, a brand can act as a capability object. If the permission
object is kept private to a class then it has exclusive permission to brand the objects
that it constructs, while publicly exporting the guard object as the reified nominal
type.

130

design

Brands applied to nominal typing are typically structured alongside a hierar-
chy of classes, encoding only nominal type structures and including the interface
of objects constructed by the class in the type. In contrast, our brand objects have
no associated class, and two objects branded with the same brand may have en-
tirely distinct interfaces — we rely entirely on the existing structural type system
to provide interface information. A brand type represents exactly those objects
which have been branded by the underlying brand object, and no more. This is not
a weakness of the design: by run-time discrimination on the guard objects, it is
possible to determine more information about an object’s interface when variants
in a union type are eliminated.

We use three existing features of Grace in our implementation. Object annota-
tions (Black, K. B. Bruce, and Noble 2016) — where a newly constructed object is
annotated with some other object — are used to explicitly brand objects. A pattern
object (Homer, Noble, et al. 2012)—which provides run-time pattern-matching fa-
cilities— acts as a brand’s guard object, to test the presence of that brand on a given
object. The dialect system (Homer, Jones, et al. 2014) — allowing the creation of a
pluggable static type system — reasons about the patterns of brands bound to stati-
cally observable names as nominal types, and treats branded objects as inhabitants
of these types.

6.1.1 Creating, Applying, and Using Brands

Consider a class hierarchy representing shapes, defining the concrete classes square
and circle. In Grace, we might first define a Shape type:

let Shape = {

at→ Point

area→ Number

}

The Shape type describes the expected structure of a shape object. We could then
define a class hierarchy which implements this interface. The top of the hierar-
chy is an abstract class that implements the common behaviour of all shapes. The
shapeAt class builds an object which has a location, and leaves the area method
unimplemented, so it is annotated as abstract with the keyword is:

131

brand typing

class shapeAt(location ∶ Point)→ Shape is abstract {

method at→ Point { location }

method area→ Number { required }

}

We can then complete the implementation with concrete classes that inherit from
the abstract one.

class squareAt(location ∶ Point) withLength(length ∶ Number)→ Shape {

inherit shapeAt(location)

method area→ Number is override {… }

}

class circleAt(location ∶ Point) withRadius(radius ∶ Number)→ Shape {

inherit shapeAt(location)

⋯
method area→ Number {… }

}

Note that the classes are annotated with return types, as Grace classes are distinct
from types. Moreover, all of these classes have the same return type, because their
instances all have the same interface.

We could explicitly declare types for the objects created by the squareAt and
circleAt classes, by listing the signatures of the public methods in each class:

type Square = { at→ Point; area→ Number }

type Circle = { at→ Point; area→ Number }

These new types are identical to the Shape type defined above, and represent ex-
actly the same set of objects. Structural types cannot distinguish between different
objects with the same interface, either during static checking or at run-time.

Brands can be used tomake finer distinctions between objects, distinctions that
correspond to standard nominal types. In this design, brand objects are created by
the brand method, which returns a new unique brand object. For example:

def aSquare = brand

132

design

This will create a new brand object named aSquare. We can use this object to
brand other objects (e.g. those created by the square class) by annotating the class
declaration with the brand:

class squareAt(location ∶ Point)
withLength(length ∶ Number)→ Shape is aSquare {… }

The brand aSquare is not a type, and annotating the class with the brand is
different from providing a return type, hence the appearance of both the aSquare

brand and the Square type. Brand objects have a Type method that returns the
guard object of the brand as a Grace pattern, matching the objects that have been
branded. Grace’s pattern objects are also used to reify types as objects, so guards
have the same interface as types. This lets us define distinct Square and Circle types
by combining the structural Shape type with the types of the respective brands via
Grace’s type intersection operator (∩).

type Square = Shape∩ aSquare.Type

def aCircle = brand

type Circle = Shape∩ aCircle.Type

Brands combined with structural interfaces produce Grace types that behave like
nominal types. The Square and Circle above define different types, rather than
aliases of the same structural type.

We can now declare that the square class returns an object of the Square type
instead of the purely structural Shape type:

class squareAt(location ∶ Point)
withLength(length ∶ Number)→ Square is aSquare {… }

The instance’s structural type is the same as before, but it carries the added infor-
mation that it is branded as aSquare, making it an instance of the Square type as
well.

The combination of brand types with structural types follows the same type
rules as other types, including subtyping. A branded object (with the appropriate
brand) must be supplied where a branded object is expected:

def mySquare ∶ Square = squareAt(10@ 50) withLength(20)

133

brand typing

A branded object may be used anywhere an unbranded object with the same struc-
ture is expected:

def myShape ∶ Shape =mySquare

Critically, an unbranded object cannot be used where a branded object is expected:

// Error: not an instance of Square

def myCircle ∶ Square = circleAt(10@ 50) withRadius(20)

If these definitions of brands were repeated in another module (or even in the
same module) then each definition will create a different unique identifier and so
represent distinguishable, different brands (and pattern objects that guard only
their associated declaration), regardless of the name the brand is bound to. The
nominal aspect of the brand is its underlying object identity, and there is no re-
quirement that a brand even be immediately bound to a name.

6.1.2 Brands vs. Brand Types

The distinction between a brand object like aSquare and its type aSquare.Type or
Square is crucial. Branded objects can only be createdwith access to the underlying
brand. An untrusted object can safely be given access to the guard object, as this
does not allow that object to fraudulently brand other objects. This can be achieved
by exposing the branded type to other code as a public constant and retaining the
brand object only within the scope where the permission should be available, for
instance as a confidential field in the surrounding object.

In Grace, a brand definition — like any other named definition — is a method
in an object; the name of a type (branded or not) is simply a request to the object
declaring the type, and so Grace’s existing visibility mechanism suffices to protect
brands. When we define a brand with a def, the definition is confidential by default
so no further action is required. At the user’s discretion the definition could also
be made public. Care does have to taken with confidential fields in the presence of
inheritance, since an inheriting object will also have access to the brand: to make
a brand definition truly private, it can be defined in the closure surrounding the
object that will export the type.

def aSquare = brand

134

design

object {

type Square = aSquare.type

}

Access only flows in one direction: the brand object cannot be retrieved from
the type, but access in the other direction is not limited, as the pattern object is
available through the brand object with the Type method. The pattern object does
not provide any privileged behaviour, so it makes sense to provide uni-directional
access between the objects rather than not linking them at all, and returning a pair
from the brand constructor instead.

The three branding utilities — the brand method, the use of brands as annota-
tions on object literals and classes, and the unique types they introduce — are the
only additions Grace’s structural type system requires in order to support nominal
types. Moreover, using Grace’s patterns and dialects, they are all achieved using ex-
isting functionality, with no brand-specific modifications to the language’s syntax
or semantics.

6.1.3 Extending Brands

Inheriting from a branded object causes the inheriting object to have the same
brands: this behaviour is necessary for inheritance to preserve subtyping (required
by the Grace specification, Black, K. B. Bruce, and Noble 2016). Inheritance is the
easiest mechanism for extending an existing brand, and provides a correspondence
between class and (nominal) type, as in most nominally typed languages.

Consider if the shapeAt class above was also branded:

def aShape = brand

type Shape = aShape.Type∩ type {⋯ }

class shapeAt(location ∶ Point)→ Shape is abstract, aShape {⋯ }

Now the whole shape hierarchy is branded, and the Shape type will only match ob-
jects created by the shape class, including those which inherit from it. The Square

and Circle types remain subtypes of Shape and the square and circle classes inherit
the aShape brand, just as if the classes were in a standard nominal typing hierarchy.

Brands need not conform to single-inheritance class hierarchies, even if the

135

brand typing

class inheritance system does. Because brands are not inherently associated with
an interface and access to the brand object is all that is required to build an object
which satisfies the brand type, any object can inhabit multiple brand types without
multiple-inheritance by simply being branded multiple times. This is conceptually
similar to a class implementingmultiple interfaces in Java or C#, providing a typing
relationship without method reuse.

Brand objects also support the + operator, which creates a ‘sub-brand’ from
two existing brands. Using this new brand is exactly the same as using the two
parts together: branding an object with a composite brand causes the object to be
branded with both of its component parts, and so the object is matched by both
constituent brands’ Types. Combining a brand with a new, anonymous brand, cre-
ates a unique sub-brand of the extended one. This behaviour is included in the
brand interface as the extend method.

6.2 Applications

Brands fulfil a number of different use cases: not only can they be used to simulate
classical nominal types, the dynamic semantics provide the behaviour of object ca-
pabilities (Miller 2006), and the combination of the static brand semantics with
Grace’s existing type system permits the encoding of other typing disciplines as
well. This section presents applications of brands within the existing language im-
plementation, replacing ad-hoc implementations with the branding mechanism.

6.2.1 Abstract Syntax Tree

Anabstract syntax tree (AST)may containmanynodeswith the same structure, but
whichmust nevertheless be distinguished. This is a particularly important problem
for Grace, as dialect check methods operate over the AST of the modules that they
check. Nodes for variable and constant definitions will have a name, a value, and
a type, but it is important that neither be mistaken for the other when they must
be considered distinct. While the subtyping structure of an AST node is likely to
be ‘flat’, brands allow overlaying distinguishing features on a range of otherwise-
identical types.

136

applications

We draw out two cases in particular from the AST of Grace source code, reflect-
ing issues we have had ourselves in implementing the language. The var and def

(variable and constant definition) nodes have the same fundamental shape, while
a class node has a superset of the methods of an object node. Before brands, AST
nodes were ‘stringly-typed’, using a kind string field with the name of the node type,
but this was an ad-hoc solution that sat outside of the type system.

We can combine brands and types to avoid both of these issues: each kind of
node now has both a structural interface and one or more nominal brands. Once
we have created the relevant brands, the types can be constructed as:

// The common interface of both var and def nodes.

type DeclNode = Node∩ type {

name→ String

value→ Expression

typeAnnotation→ Expression

}

type VarNode = aVarNode.Type∩ DeclNode

type DefNode = aDefNode.Type∩ DeclNode

The DeclNode type is purely structural, and before brands this was the only type
that applied to each of our nodes (other than its super-types). VarNode, however,
combines the structural type with the pattern of the aVarNode brand: to belong to
the VarNode type, an object must have both the structural type and be branded as
aVarNode.

class varNode(…)→ VarNode is aVarNode {… }

match(varNode(…))

case { d ∶ DefNode→
print(“A def!”)

} case { v ∶ VarNode→
print(“A var!”)

}

Prior to brands, just as in our shapes example from earlier, the VarNode state-
ment would ‘fall into’ the DefNode branch (Boyland 2014), because the structural

137

brand typing

type matches, and the DefNode brand appears first. Similarly, a DefNode could
be passed to a method expecting a VarNode node without error. With brands,
the branch for DefNode does not match against VarNode objects and the correct
branch is given an opportunity tomatch, while both static and dynamic type checks
will behave as desired.

Alternatively, the node patterns like DefNode and VarNode could be defined
as regular objects, rather than structural types, matching on the string value of a
node’s kind field. This would produce the right dynamic behaviour, but the code
could no longer be checked by the standard type checking dialects. A custom di-
alect that treated these custom pattern objects as types could also solve this prob-
lem, but the branding dialect subsumes this solution anyway.

6.2.2 Dialects

Dialects can be defined by expressing the checking as a series of rule blocks (Homer,
Jones, et al. 2014). Rule blocks specify which nodes they apply to by typing their
input, but this presents a problem to the type checker: if the input is stringly-typed,
the type checker cannot determine what the type means and so cannot check the
body of the rule. Misuses such as the spelling error below will not be caught until
run-time, despite the rule being annotated with what appear to be types.

rule { vn ∶ VarNode→
if (vn.vallue.isEmpty) then {

vn.raise(“All vars must have initial assignments”)

}

}

The extended reasoning of the branding allows the type checker to understand the
combination of structural and nominal type.

Using structural types is not sufficient to express the necessary run-timematch-
ing to discriminate different kinds of nodes. When one type is a structural super-
type of another, the super-type will match instances of both types. In the case of
class and object AST nodes, the type of object nodes subsumes the type of class
nodes, so using the structural ObjectNode type as the pattern in a rule will cause

138

applications

class nodes to be erroneously matched to that rule as well. Brands can resolve this
problem:

type ObjectNode = anObjectNode.Type∩ type {

body→ ListJNodeK
}

type ClassNode = aClassNode.Type∩ type {

body→ ListJNodeK
name→ String

}

class classNode(⋯)→ ClassNode is aClassNode {⋯ }

Objects created by a request to classNode will not be considered to belong to
the type ObjectNode, notwithstanding that they possess all of the methods of ob-
ject nodes. As discussed above, before brands these nodes were distinguished by
string fields found in all nodes, outside of the type system. Using fields in this way
is clearly sub-optimal, particularly as it sits outside the protection of the type sys-
tem. Now the structural information is still encoded in the types, but the run-time
matching behaves as required.

6.2.3 Exceptions

Representations of run-time errors encode a degree of hierarchy, and must be both
created and caught within this hierarchy. For example, a FileNotFoundError may
be a specialisation of IOError, which is itself a RuntimeError. An exception handler
must be able to declare it wishes to trap all IOErrors, including specialisations. In
a nominal language such as Java this behaviour maps naturally onto nominal class
inheritance, with a handler for one exception type implicitly trapping all its sub-
types by subsumption. In a structurally-typed language this relationship does not
exist innately and must be created.

Grace’s explicit exception hierarchy leverages the pattern-matching system for
handlers. An exception kind is an object representing a kind of exception, and in-
cludes two methods. The refine method creates a new exception kind as a child
of the receiver. The raise method creates an exception object, which is propagated

139

brand typing

up the stack until a handler is reached. All exception kind objects are patterns,
matching any exception packet derived from itself or its refined descendants.

def FileNotFoundError = IOError.refine(“File not found”)

try {

if (!exists(path)) then {

FileNotFoundError.raise(“{path} does not exist”)
}

} catch { e ∶ IOError→
print(“An IO error occurred: {e}”)

}

The catch block above will trap the exception raised in the try block because the
exception kind FileNotFound was refined from IOError.

This system is reminiscent of brands and canbe placed onfirmer footing through
their use. An ExceptionKind’s match method delegates to the Type object of a
brand, and its raise method creates an appropriately-branded exception packet.
The structure of the exception kind hierarchy looks like the following:

class exceptionKind(name ∶ String)
branded(aKind ∶ Brand)→ ExceptionKind {

method refine(name ∶ String)→ ExceptionKind {

exceptionKind(name) branded(aKind.extend)

}

method raise(message′ ∶ String)→ None {

object is aKind {

inherit exception

def message is public =message′

}.raise

}

method match(obj ∶ Object)→MatchResult {

aKind.Type.match(obj)

}

}

140

applications

The root of the hierarchy is then created with a fresh brand.

def Exception = exceptionKind(”Exception”) branded(brand)

In this way brands provide a well-founded structure for an existing sui generis con-
struct of the language. An exceptional behaviour has been replaced with a consis-
tent general-purpose approach that can be applied in user code elsewhere.

6.2.4 Singleton Types and Variants

A singleton type is a type with only a single element, which may or may not be
trivial. Singleton types are one way of adding nominal types into a structural lan-
guage, (we discuss this approach in §6.4) but we find it more advantageous to go
in the other direction: to use brands as the means to add singleton types to a lan-
guage without them. Our sentinel value done is defined as an empty object, then
its structural type is type {}, which is inhabited by every object. If Done is to be a
proper unit type, with done as its only inhabitant, then we can define:

def theDone is confidential = brand

type Done = theDone.Type

def done is public = object is theDone {}

As theDone is not publicly available, other modules cannot brand other objects
with it, and so done will always be the only inhabitant proper of Done.

Similarly, an empty type can also be constructed by taking the pattern of an
anonymous brand, ensuring that no object can ever be branded by it and, by exten-
sion, ever be an instance of the resulting type.

type None = brand.Type

A brand need not be bound to a name to take its Type. Note that the type system
does not treat this type as bottom — it is not a subtype of every other type — be-
cause only the code flow is responsible for it being empty, and it does not seem
worth adding a special case for this syntax given that other brands could well go
unused as well, and Grace already has a bottom type.

We can generalise these type forms to any type with any set of variants, or
tagged sums: each of the variants can be represented by a brand, and the over-

141

brand typing

all type is the union of all the brand types (intersected with the relevant structural
types). As an example, Grace’s Boolean type is just the interface of the true and
false objects, and as such the Boolean type is inhabited by any object that satisfies
the interface, not just true and false. This can be problematic if we need guarantees
about the behaviour of a program using an object of type Boolean. Consider the
following expression:

t1.ifTrue({ t2 }) ifFalse({ t3 })

If the type of t1 is Boolean, then we might expect that either t2 or t3 will be eval-
uated, but the reality is that we have no such guarantee: t1 could also be an object
whose ifTrue() ifFalse() method executes both blocks, or neither, or multiple times,
or stores the blocks for execution in the future.

With brands, we can define a type for booleans that truly only contains the
relevant objects:

def theTrue = brand

def theFalse = brand

type True = theTrue.Type

type False = theFalse.Type

theTrue.annotateObject(true)

theFalse.annotateObject(false)

type RealBoolean = Boolean∩ (True∪ False)

Not only do we now know the entire potential of a request to ifTrue() ifFalse() on
an object of type RealBoolean, we can also write code involving booleans in a func-
tional style:

match (t1)
case { x ∶ True→ t2 }

case { x ∶ False→ t3 }

The values true and false already match themselves as patterns so we can already
writematching expressions like this, but if t1 is only typed structurallywithBoolean

then the type system would not be able to guarantee that using a match like this
does not ‘fall-off ’ the bottom when neither case matches. With the brand types

142

branded graceless

True and False we know that we have covered all possible cases when t1 is of type
RealBoolean.

Each of the variants need not contain a single object, nor do the variants need to
have the same interface: the type of a linked list can be described with two brands
aNode and theEnd, where Node is inhabited by all of the constructed node objects.

type Node = aNode.Type∩ type { value→ E; next→ List }

type List = Node∪ End

class nodeWith(value ∶ E) next(next ∶ List)→ Node is aNode {⋯ }

Note that the return type of nodeWith() next() is not List but Node, which is a sub-
type of List.

Combining brands with both intersection and union types means that we can
encode any algebraic data type and perform case analysis on the resulting construc-
tors as in functional languages such as ML or Haskell. We also have individual
types for each of the variants, so we can express more precise combinations of the
variants that those languages permit: this is how typing a match expression works,
because we can subtract the type on each case from the union type of the object be-
ing matched as we examine each branch of the match, and guarantee that we have
matched all of the possibilities if the remaining type at the end is ⊥.

6.3 Branded Graceless

We now proceed to extend the Graceless language with brands. As with Graceless,
this extension allows the features of brands to be encoded through a translation,
rather than directly encoding the design presented thus far. We discuss these dis-
tinctions and present the relevant translations as they come up.

We do not include casts in this model, as the semantics require that abstract
variables will always be substituted with concrete variables to remain syntactically
valid. Given the existing cast transparency property, integrating casts should not
be too difficult, but we leave this as future work.

143

brand typing

Grammar

D ⩴ ⋯ | 𝛽(x) | 𝜂(x) | 𝜏(x) | x

a ⩴ ⋯ | 𝛽(x) | 𝜂(x) | 𝜏(x) | x

d ⩴ ⋯ | 𝛽(x) | 𝜂(x) | 𝜏(x)

Figure 6.3.1: Extended grammar for Branded Graceless

6.3.1 Syntax

The grammar for Branded Graceless is defined in Figure 6.3.1. The extension adds
a number of new object definitions, as well as corresponding signatures. Variables
feature in all of these additions, and variables may now also be used as declarations
even though they cannot appear directly as a definition in an object. One of the
key differences between Branded Graceless and the earlier design of brands is that
any object can be used as a brand, not just those created by the brand method, so
long as it is abstracted behind a variable.

The form 𝛽(x) brands an object with the brand x, which encodes the use of the
annotation list with the is keyword. The form 𝜂(x) extends the brand x, so that if
the extending object is used to brand another object (with the 𝛽 form), the object is
also branded with x. The form 𝜏(x) indicates that an object is a type of the brand x:
this is the purpose of allowing regular variables to appear as signatures in types, as
using an object with the 𝜏(x) signature adds those objects that have been branded
by x to the type. The 𝜏 form allows Branded Graceless to separate the brand from
the type, as in the conceptual design.

This extended grammar diverges fairly significantly from the design for brands
presented up until now, and reflects much of the reasoning that is otherwise in-
ternal to the type-checker’s implementation. Where the user of brands sees the
brand method, the extension methods extend and +, and the Brand type, the for-
mal model provides the necessary foundation for building these forms instead of
providing them directly. The static semantics can then reason about this founda-
tion instead. In particular, when the type-checker sees a bound name with the
type Brand, it actually allocates a unique type to the name so that it can distinguish

144

branded graceless

between uses of different brands: this is what the 𝜂(x) form is for.
One purely syntactic difference is that branding an object includes the brand in

the constructor, rather than annotating it: object is x {d t } iswrittenobject {𝛽(x)d t }.
The use of a brand is included in the metavariable d instead of adding the annota-
tion syntax to object constructors because it is easier to extend our existing treat-
ment ofmethod definitions in objects than to add extra syntax to the existing terms
(and add new judgements to deal with them too).

The form𝜂(x)declares a brand that extends another brand x. Aswith applying a
brand, this form appears in the set of object definitions d such as in the constructor
object { 𝜂(x) t }. If an object is constructed with one of these definitions in it, and
it is used to brand other objects, it will also add the brand of x to it. Such an object
uses its own identity as a brand as normal.

Adding the type of a brand to an object with 𝜏(x) allows the calculus to simulate
the pattern object returned by a brand’s Type method: the appearance of 𝜏(x1) in
the definitions of an object x2 means that using x2 as an identifier in a match t ∋
x2 b1 b2 will cause the match to enter the b1 branch if t is branded with x1, and
the b2 branch if not. The use of 𝜏(x) in a signature of a type means that the type
guarantees any inhabiting object contains the branding definition 𝛽(x).

The appearance of these forms in the definition of signaturesD rather than the
top-level types T or structural types S makes sense under consideration that we
need to be able to express the result of intersecting the type x with some structural
type type { ⋯ }: the result is type { x ⋯ }. Even though we are using the brands
as nominal types, these new definitions still correspond to structural information:
that an object satisfies a particular nominal type is just part of its structure, rather
than a fundamental component of its construction.

The use of any of these forms requires that any variable they use actually ap-
pear in scope (and is not shadowed by an intervening method). Note that since
variables can now appear in structural types, each appearance of the type form
binds an implicit self reference in the same way that the object construct does. In
the following code listings, we use the outer keyword to refer to a surrounding self

reference— this is purely for the purposes of textual representation and is a regular
self reference in the calculus.

Using these constructs, we can define the Brand type as:

145

brand typing

Brand = type {

Type→ type { 𝜏(outer) }
extend→ Brand∩ type { 𝜂(outer) }
+(x ∶ type{ 𝜂 })→ Brand∩ type { 𝜂(outer) 𝜂(x) }

}

In this type, the references to outer refer to the self reference bound by the out-
ermost Brand. This variable refers to the particular value of the brand inhabiting
this Brand type, so Brand actually describes a family of types indexed by an object
reference, where each object’s type depends on its own value. While two variables
x1 and x2 might both share the Brand type, when requesting the extendmethod on
both of them they each produce an object of distinct type, since the return types of
the two methods each depend on the values of x1 and x2 respectively.

The brand method is more complicated than the encoding of the Brand type,
since we need to be able to implement the extend and+methods recursively. First
we define a variant of the method that accepts a brand as an argument, and builds
a brand that extends the argument. Since every object can act as a brand, the argu-
ment has the type ⊤. First we present the signature of the method:

method brand(a ∶ ⊤)→ Brand∩ type { 𝜂(a) }

Note that return type of the method intersects the structural type Brand with
the nominal information that the resulting brand also extends the argument a. The
type system for Branded Graceless encodes a limited form of dependent typing,
where the return type of a signature can depend on the values of the parameters
(parameter types may also depend on the values of earlier parameters). When re-
questing this brand method, the type system knows that the resulting brand ex-
tends the argument, because this is encoded directly into the return type.

We now consider the body of the object returned by the method. Firstly, the
object extends the argument a, as required by the return type.

𝜂(a)

Even though a has the type ⊤, every object acts as a brand, so it is always safe to
extend any variable.

Next, the Type method builds the simplest object that satisfies the return type
required by the Brand type of the surrounding object.

146

branded graceless

method Type→ type { 𝜏(outer) } {
object { 𝜏(outer) }

}

This object isn’t a type by itself, but it can be placed inside of a type as a signature
and combined with other types using the ∩ and ∪ combinators.

The extend method is implemented simply in terms of the surrounding brand

method, using it to build a fresh brand that extends the receiver of the request to
extend.

method extend→ Brand∩ type { 𝜂(outer) } {
brand(self)

}

The surrounding object is referred to by two different variables in this represen-
tation, since the use of outer appears behind another binding of self, whereas the
request of the brand method does not. In the formal syntax these two variables are
not distinct.

Finally, there is the + method. As required by the Brand type, this takes an
argument and produces a brand that extends both the receiver and the argument.
In order to produce this type, the argument to the method must be a variable, but
the argument is actually an object constructor that must be evaluated before it be-
comes a concrete variable, so the use of the brand method is wrapped in a match
construct that is guaranteed to succeed, just to bind the object to a variable.

method +(b ∶ ⊤)→ Brand∩ type { 𝜂(outer) 𝜂(b) } {
object { 𝜂(outer) 𝜂(b) } ∋ 𝜂(outer) { c→ brand(c) } { c→ c }

}

The ‘else’ case of the match is absurd (c has type ⊥), so we can just immediately
return the parameter of the block and it will take whatever type we need by sub-
sumption.

The brand method presented in the conceptual design can now be defined by
overloading the previous definition, this time taking no parameters. The body is
exactly the same, except the resulting object does not extend any other brand; this
is presented in Figure 6.3.2.

147

brand typing

method brand→ Brand {
object {

method Type→ type { 𝜏(outer) } { object { 𝜏(outer) } }
method extend→ Brand∩ type { 𝜂(outer) } { brand(self) }
method +(x ∶ ⊤)→ Brand∩ type { 𝜂(outer) 𝜂(x) } {

object { 𝜂(outer) 𝜂(b) } ∋ 𝜂(outer) { c→ brand(c) } { c→ c }
}

}
}

Figure 6.3.2: Implementation of brand method in Branded Graceless

The use of the match construct in the definition of the + methods deserves
some further explanation. Brand expressions can only be variables x, to avoid any
computation occurring in types. Reduction can change types using substitution,
but general terms cannot appear in a type. We can encode general terms as types
by binding them to a parameter first, so for instance the expression object is t1 { t2 }
can be encoded as:

t1 ∋ a { z→ object { 𝛽(z) t2 } } { z→ z }

The form a should be any identifier that definitely appears in the value of t1, to
ensure that the second block is absurd. If this is not possible, a rescue with an
immediate raise will also suffice:

(⇑ t1)
—⇑ { z→ object { 𝛽(z) t2 } }

All existing type information about z is lost in this encoding. An immediatemethod
request on an object constructor is another alternative:

object {

method apply(z ∶ T1)→ T2 { object { 𝛽(z) t2} }
}.apply(t1)

The types need to be repeated explicitly on the method defined inside of the object
constructor in this approach.

As variables are indistinguishable from unqualified zero-argument requests, a
syntactically valid use of a brand might reduce to a syntactically invalid state if x

148

branded graceless

ends up qualified: the typing judgement presented in §6.3.4 ensures that any vari-
able used as a brand is always a parameter reference instead of a method call.

Putting these forms together, we can build an example of a nominal class in
Branded Graceless presented in Figure 6.3.3, a class dog that constructs objects
of the nominal type Dog, using the brand aDog. This utilises the separation of a
brand from its type to ensure that the client of the class can use the nominal type
of the class without allowing the client to brand its own objects with the brand of
the class.

The outermost object has two (overloaded) apply methods. The first method
is the client of the class, and the second constructs the dog class and passes it to
the client. In order for the client to be able to type the class object using a nominal
type, it must receive the nominal type separately from the class itself, after which
the type of the class can depend directly on the value of the type. This is expressed
in the signature of the client method: first theDog object is received as a parameter,
and then it is applied as a nominal type to the return type of the newmethod in the
second dog parameter. Because of this arrangement, the class must be responsible
for passing itself (and its nominal type) to the client. The return type of the new

method is not Dog, but a structural type that includes Dog as a signature.
In this example, the client constructs a new Dog and then promptly forgets

whether it was a Dog or a Cat (presumably with a meow method) by passing it to
a method that accepts either. This method checks to see if the argument is a Dog,
barking if it is, and meowing if not. The body of the method is ill-typed, because
the client has forgotten to consider the fact that there might be objects that are
both a Dog and a Cat: the presence of the brand aDog in the object does not imply
the appearance of the method bark, since the Cat could also be branded aDog. In
contrast, the ‘else’ branch of the match is well-typed, because the absence of aDog

implies Cat, through the negation of one side of the union type applied to a.
Structural information about an object such as the presence of the barkmethod

can be recovered by matching on a brand type, but only through signature sub-
traction in the ‘else’ branch of a match construct. The Dog branch just needs to
include another match against some sort of discriminator for the Cat type (like
another brand type) to perform a (now type-safe) bark in the new ‘else’ case, and
the type system can be trivially satisfied in the new ‘then’ case by raising an error

149

brand typing

object {

// The client code.
method client(Dog ∶ ⊤, dog ∶ type {

new→ type { Dog; bark→⊤ }
})→⊤ {

object {
method makeNoise(a ∶ type { Dog; bark→⊤ }∪ Cat)→⊤ {

// Barking remains ill−typed.
a ∋ Dog { d→ d.bark } { c→ c.meow }

}
}.makeNoise(dog.new)

}

method apply(aDog ∶ Brand)→⊤ {
object {

// The constructor of this dog class.
method new→ type { 𝛽(aDog); bark→⊤ } {

object {
𝛽(aDog)

method bark→⊤ {⋯ }
}

}

// Responsible for passing the type and class to the client.
method runClient(Type ∶ type { 𝜏(aDog) })→⊤ {

client(Type, self)
}

}.runClient(aDog.Type)
}

}.apply(brand)

Figure 6.3.3: Example of a nominally-typed class and client

150

branded graceless

Γ ⊢ D (W-Bnd)
 ∋ x ∶ T
 ⊢ 𝛽(x)

(W-Ext)
 ∋ x ∶ T
 ⊢ 𝜂(x)

(W-Typ)
 ∋ x ∶ T
 ⊢ 𝜏(x)

(W-Var)
 ∋ x ∶ T
 ⊢ x

(W-Dep)
 ⊢ T1 , z ∶ T1 ⊢ m(zi ∶ Ti)→ T2

 ⊢ m(z ∶ T1, zi ∶ Ti)→ T2

identify ∶ (Decl ∪ Def) → Ident
identify(𝛽(x)) = 𝛽(x)
identify(𝜂(x)) = 𝜂(x)
identify(𝜏(x)) = 𝜏(x)
identify(x) = x

Figure 6.3.4: Well-formedness for Branded Graceless types

complaining that an object cannot be both a Dog and Cat at the same time.

6.3.2 Types

Due to the presence of variables in types, the well-formedness relation needs to
be updated to include the requirement that the variables actually appear in scope.
Nothing beyond this is required, since every object can act as both a brand and a
type (signature): the well-formedness relation does not have to type the variables
to check they are being used correctly, as any use of a variable in any signature form
is always valid so long as the variable actually appears in scope.

The new rules for the well-formedness judgement are defined in Figure 6.3.4.
The judgement has the new formΓ ⊢ T andoverloaded variants for structural types
and signatures; only the new rules for signatures are defined here. For the exist-
ing rules, the input Γ is threaded through unchanged into all recursive uses of the
judgement. As discussed, all of the rules simply check that any used variable can
be selected from Γ, using the selection Γ ∋ x ∶ T defined in §4.4.1. The variable
must be typed by a variable binding, not as a signature, and the selection operator
ensures that if a local method shadows the variables then it is no longer usable in a
signature.

151

brand typing

One major caveat in the new well-formedness rules is the way that definitions
appear in an object. While we can require in the typing rules that the definitions in
the body of an object constructor have unique identifiers, this property is not neces-
sarily preserved by reduction. Consider the perfectly valid term object { 𝛽(y) 𝛽(z) }:
there is no reason that the variable z cannot refer to the reference y, so a particular
substitution could reduce this object to an ill-formed state:

[y/z]object { 𝛽(y) 𝛽(z) } = object { 𝛽(y) 𝛽(y) }

The identifiers of this object’s definitions are not unique, so its type is not well-
formed. This isn’t actually a problem for the typing, and we could update well-
formedness to only consider the identifiers of method definitions and not of the
various brand forms, but instead we define substitution to remove any duplicate
definitions it would otherwise create in an object, so:

[y/z]object { 𝛽(y) 𝛽(z) } = object { 𝛽(y) }

The same applies to the intersection operator: if a brand form appears in both ar-
guments to an intersection between structural types, it only appears once in the
result.

Rule W-Dep handles the types in a signature depending on one of the signa-
ture’s parameters. The binding of the head of a parameter list is added to the en-
vironment if its own type is well-formed, so that parameter may appear in any of
the remaining parameter types and the return type. When there are no remain-
ing parameters that need to be added to the environment, the regular Rule W-Sig
suffices to finish the judgement.

Extending the type combinators to handle the new forms is straightforward:
union is unchanged, since that combinator never examines a type beyond the top-
level structure of its union, and intersection just needs to accept the intersection of
the new declaration forms when their identifiers are equal. This is trivial, since the
new forms only have equal identifiers when the forms themselves are equal. This
is defined explicitly in Figure 6.3.5.

Subtyping also needs to be updated. As with the well-formedness relation, the

152

branded graceless

∩ ∶ Decl × Decl ⇀ Decl
m(xi ∶ Ti1)→ T1 ∩ m(xi ∶ Ti2)→ T2 = m(xi ∶ (Ti1 ∪ Ti2))→ (T1 ∩ T2)

𝛽(x) ∩ 𝛽(x) = 𝛽(x)
𝜂(x) ∩ 𝜂(x) = 𝜂(x)
𝜏(x) ∩ 𝜏(x) = 𝜏(x)
x ∩ x = x

Figure 6.3.5: Extended declaration intersection for Branded Graceless

presence of variables in types means the judgement must be parameterised by a
typing environment Γ. Subtyping the use of brands in 𝛽 and 𝜏 forms requires dele-
gating to the extends relationship between brands with the form 𝜂, and subtyping
𝜂 and plain variables x requires a mutual recursion with a typing judgement in or-
der to type the variables. This restricted typing judgement Γ ⊢! x ∶ T effectively
reduces the existing typing rules to just Rules T-Var and T-Sub, but we redefine
this restricted relation in order to maintain a separation from the actual typing
judgement defined in §6.3.4.

Rule S-Bnd delegates to subtyping on the corresponding 𝜂 forms, as men-
tioned. An object branded by x1 (𝛽(x1)) can also be considered as branded by x2
(𝛽(x2)) if the object at x1 contains a definition that indicates the object extends the
brand x2 (𝜂(x2) or 𝜂(x′) where x′ also extends x2). Similarly, an object that acts as
the type of x1 also acts as the type of x2 is x1 is a brand that extends x2.

Rule S-Ext implements subtyping between brand extension forms. If typing
the sub-form 𝜂(x1) using the restricted typing judgement Γ ⊢! x ∶ T includes the
super-form 𝜂(x2), then an object that extends the brand x1 also extends x2. Rule S-
Var follows a similar logic to have a branding declaration 𝛽(x1) subtype a nominal
type x2 if x2 is a type for a brand that x1 extends.

Rules S-Typ and S-Rfl encode reflexivity for 𝜏 forms and variables, so long as
the type is well-formed. The 𝜏 forms are invariant under subtyping, since other-
wise no brand could otherwise safely inhabit the resulting type: if they respected
subtyping of brands, then there would be no guarantee that a particular brand sat-
isfied the requirement of the type because the actual definition 𝜏(x1) could bemore
specific than the signature.

153

brand typing

Γ ⊢ T <∶ T

(S-Uni)
∀Si. ∃Sj. , self ∶ Si ⊢ Si <∶ Sj

 ⊢ Si <∶ Sj

Γ ⊢ D <∶ D

(S-Bnd)
 ⊢ 𝜂(x1) <∶ 𝜂(x2)
 ⊢ 𝛽(x1) <∶ 𝛽(x2)

(S-Ext)
 ⊢! x1 ∶ type { 𝜂(x2) }
 ⊢ 𝜂(x1) <∶ 𝜂(x2)

(S-Typ)
 ∋ x ∶ T

 ⊢ 𝜏(x) <∶ 𝜏(x)

(S-Rfl)
 ∋ x ∶ T
 ⊢ x <∶ x

(S-Var)
 ⊢! x2 ∶ type { 𝜏(x3) } ⊢ 𝜂(x1) <∶ 𝜂(x3)

 ⊢ 𝛽(x1) <∶ x2

(S-Dep)
 ⊢ T3 <∶ T1 , z ∶ T3 ⊢ m(z ∶ Ti1)→ T2 <∶ m(z ∶ Ti2)→ T4

 ⊢ m(z ∶ T1, z ∶ Ti1)→ T2 <∶ m(z ∶ T3, z ∶ Ti2)→ T4

Γ ⊢! t ∶ T

(V-Var)
 ∋ x ∶ T

 ⊢! x ∶ T ∩ type { 𝜂(self) }

(V-Slf)
 ⊢! x ∶ T

 ⊢! x ∶ [x/self]T

(V-Sub)
 ⊢! t ∶ T1 ⊢ T1 <∶ T2 ⊢ T2

 ⊢! t ∶ T2

Figure 6.3.6: Subtyping extended with brands

154

branded graceless

Like its well-formedness counterpart, Rule S-Dep extends the existing Rule S-
Sig to add a parameter from the signature to the typing environment, since itmight
appear in types of the following parameters and return types. As usual, the param-
eter names in signatures are not significant between different signatures, so we
assume that the names are the same in both signatures. Rule S-Dep only processes
the parameter at the head of the lists, and then requires that the same signatures
with the tail of the parameter lists are also compatible. When there are no remain-
ing parameters that are depended on by the types (including simply no parameters
at all), the regular Rule S-Sig can finish the subtyping.

Some of the lemmas from Chapter 4 need extending to prove that they remain
true for this extended definition.

Lemma 34 (Subtyping is reflexive).

Γ ⊢ T
Γ ⊢ T <∶ T

Proof. Coinduction over the derivation of Γ ⊢ T . The new forms 𝜏(x) and x are
immediate from their corresponding rules because their subtyping is invariant. The
two interesting cases are:

𝜂(x) Rule V-Var adds the signature 𝜂(x) to the type of x, so x can trivially be
given the type type { 𝜂(x) } in Rule S-Ext.

𝛽(x) Immediate from the previous case by Rule S-Bnd.

The remaining cases trivially follow from the coinduction hypothesis and the proof
that Γ ⊢ D.

Transitivity is less obvious, because it is encoded behind the auxiliary Γ ⊢! x ∶ T
judgement and its subsumption rule. First we need to show that subtyping is pre-
served in a narrower environment, to deal with dependent signatures.

Lemma 35 (Subtype environment narrowing).

Γ1, z ∶ T , Γ2 ⊢ T1 <∶ T2 Γ1 ⊢ T ′ <∶ T
Γ1, z ∶ T ′, Γ2 ⊢ T1 <∶ T2

155

brand typing

Proof. Coinduction on the derivation of Γ1, z ∶ T , Γ2 ⊢ T1 <∶ T2, with a case analy-
sis on the last step.

(S-Ext) If the type of x1 has changed, then the original rule with 𝜂(x2) can be
recovered under Rule V-Sub. If the type of x2 has changed, then this
does not change the type of x1: either 𝜂(x2) is still present in the type of
x1 in Γ or some other variable that transitively references x2.

(S-Typ) A change in the type of x does not affect its presence in the environment.

(S-Rfl) A change in the type of x does not affect its presence in the environment.

(S-Var) If the type of x1 has changed, then Rule S-Ext still applies by induction.
If the type of x2 has changed, then the original rule with 𝜏(x3) can be
recovered under Rule V-Sub.

The remaining cases follow immediately from the coinduction hypothesis.

This is used to show transitivity.

Lemma 36 (Subtyping is transitive).

Γ ⊢ T1, T2, T3 Γ ⊢ T1 <∶ T2 Γ ⊢ T2 <∶ T3
Γ ⊢ T1 <∶ T3

Proof. Mutual coinduction on the derivations of Γ ⊢ T1 <∶ T2 and Γ ⊢ T2 <∶ T3,
with a case analysis on the last step of the latter.

(S-Ext) x1 has the type𝜂(x2), and x2 has the type𝜂(x3). ThegoalΓ ⊢ 𝜂(x1) <∶ 𝜂(x3)
can be shown by Rule S-Ext with a proof that Γ ⊢! x1 ∶ 𝜂(x3), through
a combination of the existing proof that Γ ⊢! x1 ∶ 𝜂(x2) and Rule V-Sub
with the existing proof that Γ ⊢ T2 <∶ T3.

(S-Var) Γ ⊢ 𝜂(x1) <∶ 𝜂(x2) by the inversion of Rule S-Bnd on the former proof,
so Rule S-Var applies on the coinduction hypothesis that the two sub-
type proofs combine to prove that Γ ⊢ 𝜂(x1) <∶ 𝜂(x3).

(S-Dep) Immediate from induction and Lemma 35.

156

branded graceless

The remaining cases trivially follow from the coinduction hypothesis and the proof
that Γ ⊢ D1,D2,D3.

Some of the lemmas about declarations from §4.4.3 still hold for signatures,
but not for the updated declarations. One such lemma is that subtyping between
declarations implies that their identifiers are equal: this is clearly no longer the
case, since Rule S-Var subtypes 𝛽(x) with x. As such, we redefine the lemma for
signatures only.

Lemma 37 (Signature subtype implies identifier equality).

m1(z1i ∶ T1i)→ T1 <∶ m2(z2j ∶ T2j)→ T2
identify(m1(z1i ∶ T1i)→ T1) = identify(m2(z2j ∶ T2j)→ T2)

Proof. Immediate from Rule S-Sig.

Since the definition of intersection has also been extended, it is worth reiterat-
ing the lemma that it always produces a sub-type of both of its inputs.

Lemma 38 (Intersection produces sub-type).

T1 ∩ T2 = T3
T3 <∶ T1 T3 <∶ T2

Proof. The proof remains the same as in Lemma 13, since the new forms only ap-
pear in the result if they appeared in the corresponding structural part of either
input: if one of these forms appears in the super-type, and so must be satisfied
in the sub-type by Rule S-Str, then an equal form is guaranteed to appear in the
corresponding structural type of the sub-type by the definition of the ∩ operation.
Equal forms are always subtypes by Lemma 34.

6.3.3 Dynamic Semantics

Whilemost of the existing dynamic semantics of Graceless are sufficient to describe
the behaviour of Branded Graceless programs, the matching mechanism needs to
be updated to account for the several different new identifier forms. The updated
reduction rules are presented in Figure 6.3.7, changing Rules E-Fst and E-Snd to
use a new identifier lookup judgement 𝜎 ∣ y ∋ a instead of just looking up the

157

brand typing

𝜎 ∣ t ⟶ 𝜎 ∣ t

(E-Fst)
𝜎 ∣ y ∋ a

𝜎 ∣ y ∋ a { z→ t } b ⟶ 𝜎 ∣ [y/z]t

(E-Snd)
𝜎 ∣ y ∌ a

𝜎 ∣ y ∋ a b { z→ t } ⟶ 𝜎 ∣ [y/z]t

𝜎 ∣ y ∋ a

(L-Mem)
𝜎(y) = d a ∈ identify(d)

𝜎 ∣ y ∋ a

(L-Idn)

𝜎 ∣ y ∋ 𝜂(y)

(L-Ext)
𝜂(y2) ∈ 𝜎(y1) 𝜎 ∣ y2 ∋ 𝜂(y3)

𝜎 ∣ y1 ∋ 𝜂(y3)

(L-Bnd)
𝛽(y2) ∈ 𝜎(y1) 𝜎 ∣ y2 ∋ 𝜂(y3)

𝜎 ∣ y1 ∋ 𝛽(y3)

(L-Var)
𝜏(y3) ∈ 𝜎(y2) 𝜎 ∣ y1 ∋ 𝛽(y3)

𝜎 ∣ y1 ∋ y2

Figure 6.3.7: Extended reduction rules for brands

identifier in the store at y. The application 𝜎 ∣ y ∌ a indicates the judgement
does not hold, rather than applying a separate judgement. Rule L-Mem of this new
judgement encodes the original behaviour of direct lookup in the store.

Rule L-Idn encodes the concept that every object is its own brand: the refer-
ence y automatically satisfies a lookup for an object that brands an object with y,
since it does so trivially without needing to contain any definitions. Rule L-Ext
and Rule L-Bnd encode the transitive nature of brands through extension forms 𝜂:
a definition with argument y3 appears in the object at y1 if there is a definition of
the same form at y1 with an argument y2, and y2 extends y3 as a brand. This is why
all three of the rules delegate to searching for 𝜂 forms. Subsequent searches for an
𝜂 form can recurse on Rule L-Ext, ultimately terminating in either Rule L-Mem
or Rule L-Idn.

Rule L-Var handles the case where the identifier is a plain variable, which in-
dicates the use of a type object. In order to satisfy this type, the matched object
y1 must be branded by one of the variable arguments in a 𝜏 forms in the matching
object y2. Rule L-Var delegates to a search for branding forms 𝛽 for a variable that
appeared in one of the 𝜏 forms, which will in turn delegate to searches for 𝜂 forms

158

branded graceless

if the brands do not appear immediately in the object.

As an algorithm, this judgement (and its negation) correspond to a nominal
type check in a multiple-inheritance language: if the object does not immediately
satisfy the given type, it is necessary to check if the object satisfies some extending
type instead, by searching upwards from every nominal type the object is declared
to inhabit. The negation fails if a complete search is exhausted without finding the
original type. The judgement permits a richer analysis than a typical ‘instance-of ’
check, since a program can also examine if an object is the type itself, or the brand
that adds the type to other objects.

The resulting behaviour is as expected: first of all, if a brand x is in scope, the
presence of the brand in a term t can be checked for directly with the matching
construct t ∋ 𝛽(x) b1 b2. If the value of t is branded 𝛽(x) then the control flow
will enter b1 by Rule E-Fst and L-Mem. If the value of t is not branded 𝛽(x), but
is branded 𝛽(x′) where x′ extends x with 𝜂(x), then the match still enters b1, this
time through Rule L-Bnd on top of the other rules. Any number of intervening 𝜂
forms can separate x′ and x, with the path connected by Rule L-Ext.

If z corresponds to a variable with the form 𝜏(x), it can also be used to check for
the presence of a branding with x in the same way as 𝛽(x) does, but x itself need not
be in scope, as in t∋ z b1 b2. If t∋𝛽(x) b1 b2 enters b1, then so does matching on z,
assuming 𝜏(x) is the only tau form that appears in z (extra 𝜏 forms correspond to
a series of successful matches on 𝛽 forms). The derivation of the lookup judgement
is the same, except that Rule L-Var handles the initial lookup for z by invoking the
lookup on 𝛽(x) as described above.

Handling a match on 𝜂 and 𝜏 forms are not strictly necessary to encode the
conceptual design, which permitsmatching on theBrand and Pattern types as usual
but provides nomechanism for asking if a brand or type entirely subsumes another.
Such a mechanism could be added if it turned out to be useful: for instance, the
Brand type could include an extends method that takes another brand and returns
a boolean indicating if branding an object with the receiver also brands that object
with the argument.

159

brand typing

6.3.4 Static Semantics

Theextended typing rules for BrandedGraceless are presented in Figure 6.3.8. Along
with the additional rules for the new syntactic forms, the rules for typing requests
need to be updated to handle types in signatures that dependonparameters. Rules T-
R/U and T-R/Q have been updated to delegate the typing of the parameters to the
new judgement Γ ⊢ (t) ⇀ (z ∶ T) ∶ T ⇀ T , which works to match the argument
terms t to the parameter bindings z ∶ T and introduce them into the remaining
types when possible. The resulting type of these requests is generated by this judge-
ment.

Both Rule M-Var and Rule M-Trm take the head of both the term list and
parameter binding list, and check if the term matches the parameter type as the
typing judgement did in plain Graceless. Both rules also continue the match be-
tween the tail of the two lists. Rule M-End terminates the matching when both
lists are empty, producing the included return type. If none of the argument terms
are variables, then the result is exactly as under Graceless, just with the judgement
manually stepping through the arguments and parameters.

The difference is in Rule M-Var, which applies if the next argument term is a
variable. The corresponding parameter for this argument is substituted into both
the remaining parameter types and the return type. Since Rule M-End requires
that the final type is well-formed, all of the parameters that the return type de-
pended on in the signature must be replaced by argument terms, since those pa-
rameters are no longer in scope outside of the signature, so the use of RulesM-Trm
and M-Var is not ambiguous.

The new Rule T-Dep corresponds to Rule S-Dep in the subtyping judgement,
typing a method by adding the parameter bindings into the environment before
typing the body of the method t. The remaining rules trivially type the new defini-
tion forms so long as their variable arguments are bound in the typing environment.
While the rest of the Graceless typing rules are unchanged, the ground function is
trivially extended to be the identity function on the new signature forms in order
to ensure that typing a match is still sensible.

We examine components of a typing judgement for the example presented in
Figure 6.3.3, by presenting the derivations of the judgement. The derivation for typ-

160

branded graceless

Γ ⊢ t ∶ T

(T-Var)
 ∋ x ∶ T

 ⊢ x ∶ T ∩ type { 𝜂(self) }

(T-Slf)
 ⊢ x ∶ T

 ⊢ x ∶ [x/self]T

(T-R/U)
 ∋ m(x ∶ Ti)→ T ⊢ (ti) ⇀ (x ∶ Ti) ∶ T ⇀ T ′

 ⊢ m(ti) ∶ T ′

(T-R/Q)
 ⊢ t ∶ type { m(z ∶ Ti)→ T } ⊢ (t, ti) ⇀ (self ∶ ⊤, z ∶ Ti) ∶ T ⇀ T ′

 ⊢ t.m(ti) ∶ T ′

Γ ⊢ (t) ⇀ (z ∶ T) ∶ T ⇀ T

(M-Var)
 ⊢! x ∶ T1 ⊢ (ti) ⇀ (zi ∶ [x/z]Ti) ∶ [x/z]T2 ⇀ T ′2

 ⊢ (x, ti) ⇀ (z ∶ T1, zi ∶ Ti) ∶ T2 ⇀ T ′2

(M-Trm)
 ⊢ t ∶ T1 ⊢ (ti) ⇀ (zi ∶ Ti) ∶ T2 ⇀ T ′2

 ⊢ (t, ti) ⇀ (z ∶ T1, zi ∶ Ti) ∶ T2 ⇀ T ′2

(M-End)
 ⊢ T

 ⊢ () ⇀ () ∶ T ⇀ T

Γ ⊢ d ∶ D

(T-Dep)
 ⊢ T1 , z ∶ T1 ⊢ method m(zi ∶ Ti)→ T2 { t } ∶ m(zi ∶ Ti)→ T2

 ⊢ method m(z ∶ T1, zi ∶ Ti)→ T2 { t } ∶ m(z ∶ T1, zi ∶ Ti)→ T2

(T-Bnd)
 ∋ x ∶ T

 ⊢ 𝛽(x) ∶ 𝛽(x)

(T-Ext)
 ∋ x ∶ T

 ⊢ 𝜂(x) ∶ 𝜂(x)

(T-Typ)
 ∋ x ∶ T

 ⊢ 𝜏(x) ∶ 𝜏(x)

ground ∶ Ident → Type
ground(⟨m,n⟩) = type { m(xi ∶ ⊥

i≤n
)→⊤ }

ground(D) = type { D }

Figure 6.3.8: Typing extended with brands

161

brand typing

⋮
Γ ∋ aDog ∶ Brand

Γ, self ∶ type { 𝛽(aDog) } ⊢ 𝛽(aDog) ∶ 𝛽(aDog) (T-Bnd)

Γ ⊢ object { 𝛽(aDog) } ∶ type { 𝛽(aDog) } (T-Obj)

Figure 6.3.9: Derivation for typing a new dog object

(T-Var)

(S-Var)

⋮
Γ ⊢! Type ∶ type { 𝜏(aDog) }

Γ ⊢ 𝛽(aDog) <∶ Type
⋮

Γ ⊢ self ∶ [Type/Dog]type {⋯} Γ ⊢ () ⇀ () ∶ ⊤ ⇀ ⊤
Γ ⊢ (self) ⇀ (dog ∶ [Type/Dog]type {⋯}) ∶ ⊤ ⇀ ⊤ (M-Trm)

Γ ⊢ (Type, self) ⇀ (Dog ∶ ⊤, dog ∶ type {⋯}) ∶ ⊤ ⇀ ⊤ (M-Var)

Γ ⊢ client(Type, self) ∶ ⊤ (T-R/U)

Figure 6.3.10: Derivation for typing the client request

ing the body of the new method in the definition of the dog object is presented in
Figure 6.3.9, ignoring the structural components of the object and type (the bark

method). The object must satisfy the type type { 𝛽(aDog) }: it does so immediately,
because it contains the same definition, and aDog appears in the typing environ-
ment. That it has the type Brand is irrelevant, as any type will satisfy the rule.

Of more interest is the use of the client method, whose second parameter has a
type that depends on the first. A simplified derivation of its typing is presented in
Figure 6.3.10, which proceeds by typing the request with Rule T-R/U, that in turn
delegates to the term and parameter matching judgement.

Since the type of the dog parameter depends on the value of theDog parameter,
the first argument ismatchedwith RuleM-Var. The premise that Type satisfies the
type⊤ is omitted, since it is trivial. The key point here is that, when reapplying the
judgement to also match the tail of the parameter list, the name Dog is replaced
with Type in the remaining parameter type (the same happens to the return type,
but there is no use of Dog in ⊤).

The tail is matched with Rule M-Trm: since self is a variable, either Rule M-

162

branded graceless

Var or Rule M-Trm could apply, but since there is no use of self in the return type
of the signature the simple Rule M-Trm is the easier option. The matching is ter-
minated by Rule M-End, and the only remaining premise is that self can be typed
with the result of the previous substitution. Such a proof proceeds through the
structure of the type until it needs to prove that 𝛽(aDog) is compatible with Type,
in order to show that the new method of self is compatible with the requirements
of the type annotation on the dog parameter. This succeeds by Rule S-Var, since
Type contains a 𝜏 form for the aDog brand (the second premise, which is trivially
fulfilled by Lemma 34). If the substitution of Dog for Type had not been applied,
this subtyping judgement would have been nonsensical, since Dog does not even
appear in the typing environment.

6.3.5 Properties

Branded Graceless does not introduce any new top-level terms to the language:
the major complication to the type system is that the added type forms can include
variables from the typing environment. The primary threat to the type soundness
of Branded Graceless as an extension to the type-safe Graceless language is the
behaviour of dependent signatures and other dependencies on variable values. Ex-
ecution cannot get ‘stuck’ on any of the new definitions, so progress is not really a
problem.

The existing typing of the matching construct — which is not changed by the
extension except to trivially include the new forms into the ground function— and
its use of subtraction in typing the ‘else’ branch can also pose a problem. Since the
subtraction removes any structural variants that contain the failedmatch’s identifier
from the type of the matched object, it is important that the judgement 𝜎 ∣ y ∋ a
correctly discriminates on the identifier a. If not, then the subtractionmay remove
type variants from the union that are still valid, in theworse case assigning the block
parameter of the ‘else’ branch the type ⊥ when there is still a possibility of it being
inhabited.

Both of these threats are potential problems with preservation, not progress, so
we prove the simpler case of progress first. The relevant changes are the slightly
modified variable typing, new typing rules for requests, and the new reduction

163

brand typing

rules formatching. Firstly, the canonicity of forms lemma no longer holds, because
every variable x can be given the type type { 𝜂(x) } even if no such definition appears
in the corresponding object. Progress only requires canonicity for signatures, not
all declarations, so the lemma is updated to only apply for signatures.

Lemma 39 (Canonicity of forms (signatures)).

⊢ 𝜎 ∶ Γ Γ ⊢ y ∶ type { m(x ∶ Ti)→ T }

d ∈ 𝜎(y) signature(d) <∶ m(x ∶ Ti)→ T

Proof. As for Lemma 19, using the updated transitivity lemma (Lemma 36).

Progress follows from this result.

Lemma40 (Typing implies progress). For any program ⟨𝜎, t⟩, if⊢ 𝜎 ∶ Γ andΓ ⊢ t ∶ T
then either:

• ∃v. t = v

• ∃v. t = ⇑ v

• ∃𝜎′ t′. 𝜎 ∣ t ⟼ 𝜎 ∣ t′

Proof. By induction on the derivation of the proof that Γ ⊢ t ∶ T , with a case anal-
ysis on the last step.

(T-Mch) The choice between Rules E-Fst and E-Snd still only depends on the
success of a judgement or its negation, so either one must apply to any
match that is ready to be eliminated.

(T-R/U) As in Lemma 20, this still forms a contradiction.

(T-R/Q) As in Lemma 20, with the two sub-lemmas updated to Lemma 39 and 37.

The remaining cases are unchanged from Lemma 20.

The updated preservation proof is more detailed, mostly thanks to the presence
of variables in the typing environment. All of the preservation sub-lemmas need
updating, and first we need to show that substitution does not affect typing.

164

branded graceless

Since subtyping now occurs in the context of a typing environment, we also
need to show that a value substitution into a type preserves the existence of sub-
typing relations, so that when the arguments of a request are substituted into the
body of a method, dependent substitutions into their own types do not affect the
subtyping relation between the types of the arguments and the parameter type an-
notations.

Lemma 41 (Value substitution preserves subtyping).

Γ1 ⊢! v ∶ T Γ1, z ∶ T , Γ2 ⊢ T1 <∶ T2 Γ2 ∌ ⟨z, 0⟩
Γ1, [v/z]Γ2 ⊢ [v/z]T1 <∶ [v/z]T2

Proof. Coinduction on the derivation that Γ ⊢ T1 <∶ T2, with a case analysis on the
last step.

(S-Ext) If x1 is substituted, then immediate from Γ ⊢! v ∶ T . If x2 is substituted,
then it follows that the type of x1 has changed in [v/z]Γ2, since the envi-
ronment cannot forward-reference variables.

(S-Typ) Immediate from the inversion of Γ ⊢! v ∶ T .

(S-Rfl) Immediate from the inversion of Γ ⊢! v ∶ T .

(S-Var) If x1 is substituted, then immediate from the coinduction hypothesis. If
x2 is substituted, then immediate from Γ ⊢! v ∶ T .

The remaining cases follow immediately from the coinduction hypothesis.

Then we have an updated preservation lemma for value substitution, where the
substitution proceeds into the type as well (since the variable might also appear
there).

Lemma 42 (Value substitution preserves typing).

Γ1 ⊢ v ∶ T1 Γ1, z ∶ T1, Γ2 ⊢ t ∶ T2 Γ2 ∌ ⟨z, 0⟩
Γ1, [v/z]Γ2 ⊢ [v/z]t ∶ [v/z]T2

165

brand typing

Proof. The proof is mostly the same as in Lemma 21, though with Lemma 41 neces-
sary in any applications of subsumption. Where z appears in T2, the relevant typing
rules are preserved by the inversion of Γ ⊢ v ∶ T1 standing in for z ∶ T1 from the
environment.

The variable typing judgement is a subset of the full typing judgement: if we
can demonstrate that Γ ⊢! t ∶ T , then we can prove that Γ ⊢ t ∶ T .

Lemma 43 (Typing subsumes variable typing).

Γ ⊢! t ∶ T
Γ ⊢ t ∶ T

Proof. Immediate translation between the equivalent rules.

The modifications to the ground auxiliary function and the addition of the 𝜎 ∣
y ∋ a judgement mean that we also need to update the lemma that adding ground
preserves the typing of a value.

Lemma 44 (Adding ground preserves typing).

⊢ 𝜎 ∶ Γ Γ ⊢ y ∶ T 𝜎 ∣ y ∋ a
Γ ⊢ y ∶ T ∩ ground(a)

Proof. Induction on the derivation that 𝜎 ∣ y ∋ a, with a case analysis on the last
step.

(L-Mem) Rule V-Var is implied by the proof that ⊢ 𝜎 ∶ Γ.

(L-Idn) Immediate from Rule V-Var.

(L-Ext) We know that 𝜂(y2) ∈ 𝜎(y), and by induction Γ ⊢! y2 ∶ type { 𝜂(y3) }.
We can construct a type for y that contains 𝜂(y2), then add 𝜂(y3) with
Rules V-Sub and S-Ext.

(L-Bnd) We know that 𝛽(y2) ∈ 𝜎(y), and by induction Γ ⊢! y2 ∶ type { 𝜂(y3) }.
We can construct a type for y that contains 𝛽(y2), then add 𝛽(y3) with
Rules V-Sub, S-Bnd, and S-Ext.

166

branded graceless

(L-Var) We know that 𝜏(y3) ∈ 𝜎(y2), and by induction Γ ⊢! y1 ∶ type { 𝛽(y3) }.
From this we can show Γ ⊢! y2 ∶ type { 𝜏(y3) }, and Lemma 34 gives us
Γ ⊢ 𝜂(y3) <∶ 𝜂(y3) to build Rule S-Var into Rule V-Sub.

This analysis proves Γ ⊢! y ∶ T ∩ ground(a) for the purposes of induction; the goal
follows from Lemma 43.

While subtraction was not modified, the existing lemma that a subtraction also
preserves typing is affected by the new judgement 𝜎 ∣ y ∋ a replacing the straight-
forward lookup.

Lemma 45 (Subtraction preserves typing).

⊢ 𝜎 ∶ Γ Γ ⊢ y ∶ T 𝜎 ∣ y ∌ a
Γ ⊢ y ∶ T − a

Proof. We show that any structural type subtracted by a is not a relevant super-
type of y, by case analysis of a with a view to prove that there is no subtyping rule
that applies to the relevant declaration.

⟨m,n⟩ Unchanged from Lemma 25.

𝜂(y2) The form itself cannot appear, nor any sub-declaration 𝜂(y3) that would
permit Rule S-Ext to apply.

𝛽(y2) The form itself cannot appear, nor any sub-declaration 𝛽(y3) that would
permit Rule S-Bnd through Rule S-Ext to apply.

𝜏(y2) The form itself cannot appear, so Rule S-Typ cannot apply.

y2 The form itself cannot appear, so Rule S-Rfl cannot apply, nor can any
sub-declaration 𝛽(y3) appear that would permit Rule S-Var to apply.

Since the structural type cannot be a super-type of the true type of y, some other
member of the unionmust be providing the proof thatΓ ⊢ y ∶ T , so the subtraction
may proceed without affecting the typing.

With these lemmas in hand, we can proceed to a proof of preservation.

167

brand typing

Lemma 46 (Reduction preserves typing).

⊢ 𝜎 ∶ Γ Γ ⊢ t ∶ T 𝜎 ∣ t ⟼ 𝜎′ ∣ t′

⊢ 𝜎′ ∶ Γ ′ Γ ′ ⊢ t′ ∶ T

Proof. Induction on the derivation of the proof that 𝜎 ∣ t ⟼ 𝜎′ ∣ t′, with a case
analysis on the last step.

(E-Obj) By trivial extension of the existing proof with the typing rules for the new
declaration forms. The addition of the form 𝜂(y) for the newly allocated
reference y does not affect the proof, by Lemma 38 and Rule T-Sub.

(E-Req) On top of the changes to Lemma 21, the old proof is affected by the
fact that the inversion of Rule T-R/Q no longer proves that Γ ⊢ v ∶ Ti,
as each of the values v might have its type modified by the substitution
of some of the earlier values. Lemma 41 converts this inversion of the
Γ ⊢ (t) ⇀ (z ∶ T) ∶ T ⇀ T judgement to prove that the types of the val-
ues v still subtype the types in the signature, and can therefore apply to
Lemma 42 when they are substituted both into the body of the method
and its return type.

(E-Fst) As before, with the new Lemma 44.

(E-Snd) As before, with the new Lemma 45.

The remaining cases are unchanged from Lemma 26.

As with Graceless, the progress and preservation lemmas combine to give us
type soundness.

Theorem 47 (Well-typed programs don’t get stuck). For any Branded Graceless pro-
gram ⟨𝜎, t⟩, if ⊢ 𝜎 ∶ Γ and Γ ⊢ t ∶ T , then either:

• ∃v. t = v, so Γ ⊢ v ∶ T

• ∃v. t = ⇑ v, so Γ ⊢ ⇑ v ∶ T

• ∃𝜎′ t′. 𝜎 ∣ t ⟼ 𝜎 ∣ t′, with ⊢ 𝜎′ ∶ Γ ′ and Γ ′ ⊢ t′ ∶ T

Proof. Immediate from Lemmas 40 and 46.

168

discussion

6.4 Discussion

Another option to support nominal types in any structural system is by the addi-
tion of unique method names into the type, and include empty implementations
of these methods into the objects which are expected to fulfil this type. While
the ‘phantom method’ approach works in theory, it is difficult to implement in
a way that preserves the necessary encapsulation goals of nominal typing. If the
methods are provided manually then the developer must provide method names
that will not be used anywhere else in the program, and the encapsulation is triv-
ially bypassed by adding the appropriate methods to other, external objects. If the
methods are produced automatically, then either the branding mechanism can-
not be private because the name generation is globally accessible, or the automatic
namesmust be indexed by something (presumably themodule in which the brand-
ing appears), in which case brands cannot be shared because no other module may
perform the same branding.

A unique singleton type as the return type of a specific signature name reserved
for marking a brand in a type is another approach (intersecting singleton types to-
gether when there are multiple brands forming the type), but it suffers from the
same problem in that the brand and type cannot be exposed separately: the sin-
gleton type must be exposed for the type of the signature to make sense, but if it
is exposed it can trivially be applied to other signatures. Neither mechanism can
simultaneously service both public construction and private implementation. Our
brands, in contrast, provide a fine-grained mechanism for providing access to the
branding mechanism components.

Branding provides a partial solution to the invalidation of the gradual guaran-
tee (Siek, Vitousek, Cimini, et al. 2015) of structural type tests in gradually typed
code (Boyland 2014), as testing an object against a brand pattern at run-time is
always definitive, and is not affected by type annotations. As an extension, brand-
ing is not pervasive among objects, and so using brand patterns is only applicable
to objects which have been explicitly branded. Removing reified types from the
language (another proposed solution) while retaining the existing object instance
rules would remove the consistency of brand patterns (as both static entities and
run-time objects) alongside structural types.

169

brand typing

Compared to standard nominal class declarations, the branding mechanism
is necessarily verbose, requiring a manual separation of the brand from its type
(mirroring the separation between classes and structural types in Grace). This ver-
bosity is mostly a product of the fact that brands have been implemented without
modifying the language syntax or semantics, but it also serves a purpose in demon-
strating that it is not the natural mechanism for typing in Grace: structural typing
is sufficient for most purposes, and it is only special cases (as seen in §6.2) where
branding should apply. It is conceivable that a more terse mechanism for direct
class/type declarations could exist:

class Shape is nominal {… }

Adding nominal classes directly defies Grace’s design goal of maintaining a separa-
tion of type and implementation (Black, K. B. Bruce, Homer, and Noble 2012).

Certainly the encoding of algebraic data types that we presented in §6.2.4 is
very verbose. Consider the definition of a common type in the Haskell language:

data NumList = Cons Number NumList ∣ Null

Compare this to its translation into brands in Grace:

def aCons = brand

def theNull = brand

type Cons = aCons.Type∩ type { value→ Number; next→ NumList }

type Null = theNull.Type

type NumList = Cons∪ Null

def null = object is theNull {}

class cons(x ∶ Number) onto(xs ∶ NumList)→ Cons is aCons {

def value is public = x

def next is public = xs

}

This verbosity is more an indication of the unsuitability of this coding style to the
Grace language than it is amark against the design of brands. Data structure design
like this is not considered good object-oriented design, and branching on potential
variants of data in Grace (and other pure object-oriented languages like Smalltalk)

170

discussion

is often achieved by passingmultiple blocks to methods, such as with the Boolean’s
ifTrue() ifFalse() method. Brands only need enter the equation if the user needs
some guarantee about the behaviour of requesting such a method.

6.4.1 Comparison to RelatedWork

There are three recently developed formal languages that ourmodel should be com-
paredwith. The first is the work in Jones, Homer, andNoble (2015) that this chapter
is derived from. That paper presented the same design for brand objects as we have
presented here, but a very different and much less powerful formal model of the
brand objects, named Branded Tinygrace.

Rather than using the identity of an object as a type (since the model did not
feature a store), all brands are uniquely generated by a preprocessing step runbefore
the beginning of the program execution. Brands are bound to names by a set of
recursive type bindings, and the preprocessing replaces every occurrence of the
brand constructor with a unique 𝛽 identifier, before substituting the bindings into
the program’s top-level term. The result is a significantly less expressive language
than Branded Graceless, because 𝛽 brands cannot be generated dynamically in a
method.

Branded Tinygrace is sufficient to encode the basic idea of nominal types in the
sense of a language like Java, where classes are declarative and therefore the entire
nominal type hierarchy is constructed before the program’s execution begins. It
cannot encode the more free-form kind of nominality in more dynamic languages
(including Grace itself), and in particular branding the objects from an ‘inner class’
in Branded Tinygrace all have the same type, even across what are really different
instances of classes with the same definition.

Consider the following Grace program:

class newFactory(x ∶ Brand) {
object {

class new is x {}

}

}

171

brand typing

The outcome of requesting newFactory twice are two distinct objects, and passing
different brands to these requests mean that the classes produce objects with com-
pletely disparate nominal types. Branded Tinygrace cannot encode this behaviour:
the best it can do is have a single brand shared between all of the objects constructed
by any newFactory object, effectively this:

def x = brand

class newFactory {

object {

class new is x {}

}

}

Branded Graceless, in comparison, can fully encode this behaviour, and just reuses
object identity to implement the uniqueness of separate brands, whichmore closely
follows the conceptual design presented in §6.1.

The other distinction is that all brands are always in scope in Branded Tiny-
grace, because they are all declared at the top-level of the program. Thismeans that
Branded Tinygrace cannot encode the necessary security property of the brands by
hiding the declarations in a different scope while exporting the type. By contrast,
BrandedGraceless can use the 𝜏 declaration form to hide the declaration of a brand
from the use of its type, as seen in Figure 6.3.10.

Branded Graceless still cannot encode the entirety of the conceptual design,
despite extending much of the functionality of Branded Tinygrace: the new model
cannot encode subtyping relationships between types when the brand is not in
scope. If the client wants an Animal type as its first argument, and then Dog as a
subtype of Animal, there is no mechanism for expressing this in the client without
the presence of the brand as well. With the brands anAnimal and aDog in scope
(where aDog 𝜂(anAnimal)), the variables-as-types are not necessary, because the
forms 𝛽(anAnimal) and 𝛽(aDog) precisely describe the necessary type.

There is no syntax for expressing that when a variable is used as a type, it ex-
tends some other variable — or extends the type of some brand, for that matter.
Variables can only precisely encode the type of one or more brands with a 𝜏 form.
This means that a client cannot reason about nominal subtyping without also hav-

172

discussion

ing access to the underlying brand object, which also gives it permission to brand
its own objects. While Branded Graceless can encode Java-like class nominal sub-
typing structures and programs that reason about them, it cannot encode programs
that simultaneously describe such structures while preventing misuse of the brand
object in the client.

The solution to this problem is to include type members, a feature that should
actually already appear in Graceless in order to fully encode Grace programs. The
𝜏 form and using variables as types is effectively a stand-in for fully-fledged type
member support, and type members would also allow the encoding of subtyping
relationships outside of the scope containing the brand. The input to a client ac-
cepting both Animal and Dog types could be expressed in the Dependent Object
Calculus (sugaring zero-parameter methods to use Grace syntax) as:

{ z⇒ Animal : ⊥..⊤∧ Dog : ⊥..(z.Animal∧ bark→⊤)∧ dog→ z.Dog }

This type does not reason about brands at all, but it is inhabited by objects encoding
the Types of anAnimal and aDog, along with the dog class. Working out how to
express a type like z.Dog while also allowing a run-time match against it remains
as future work.

DOT can also express a form of pseudo-nominality in its types, as seen in the
client signature above: even if the Typemembers of theAnimal andDogparameters
are entirely structural, within in the body of the clientmethod theymust be treated
as nominal because there is not enough information in the bounds to decide if any
given object satisfies the type. The only objects that can be said to satisfy the type
Dog.Type in the body of the client method are those created by the new method of
the dog object, as desired by the design of the nominal system.

The missing feature of DOT to fully express a nominal, class-based type sys-
tem is some form of instanceof check, available in Branded Graceless through the
match construct. Such a feature is not strictly necessary — and arguably it is not
good object-oriented design to rely on a discrimination of an object’s type rather
than delegating that discrimination to the object itself through a normal method
request — but without it, a language cannot express the full set of program designs
currently available in popular object-oriented languages. Developing the appro-
priate metatheory for small-step semantics in the presence of type members has

173

brand typing

been a large, long-term problem, and only recently solved (Rompf and Amin 2016;
Amin 2016).

Branded Graceless also bears similarities to the TaggedObjects theory of Lee et
al. (2015), introduced in §2.5.2. While Branded Graceless and Tagged Objects seem
to broadly achieve the same outcome, neither the goals nor the implementation
of either are the same, and when investigated in detail the two are not nearly as
similar as they may have seemed. Even ignoring differences between the cores of
the two languages that are unrelated to branding or tagging, there are a number of
differences between Branded Graceless and the Tagged Objects language.

One of the key differences between the two languages is that tags wrap around
the value they tag, so that a tagged value cannot be transparently used as the under-
lying value without first extracting the value from the tag: the type of new(x; v) is
tagged x, and the type of v is irrelevant so long as it satisfies the corresponding type
𝜏 of the tag x. In contrast, branding an object in Branded Graceless with 𝛽(x) oc-
curs inside the object declaration, so that an object is inherently branded by x and
may still be used normally without having to apply an extract function to unwrap
the underlying value.

One of the key outcomes of this is that an object can satisfy the types of mul-
tiple brands at once, whereas in the Tagged Objects language a value wrapped in
a tag only inhabits the type of the tag, and wrapping it in a second tag forgets the
type of the first. The ability to inhabit the types of multiple brands at once does
not actually require the ability to write multiple 𝛽 forms in an object, as it suffices
to declare a new brand object that extends multiple different brands at once, and
then brand the object with that. Extending the subtag function to take multiple
inputs (along with updating the corresponding judgements) would allow Tagged
Objects to express the nominal subtyping relationships in languages with multiple
inheritance, including implementing multiple interfaces in languages such as Java.

Branding objects after they were constructed was part of the conceptual design
of §6.1 using the annotateObject method on the brand. This is more a happy ac-
cident of the design’s implementation more than it is a crucial part of the design,
though there is no reason a construct for adding a new 𝛽 form to an existing ob-
ject could not also be included in Branded Graceless, given that the resulting type
of the object in the store would always be a subtype of its previous type. Such a

174

discussion

construct raises some interesting problems with the type of an object changing as
the result of an imperative update, reminiscent of typestate (Aldrich et al. 2009)
(though simpler, since the resulting type is always a subtype of the original), but
the implementation of the brand type-checker in Hopper does not reason about
this behaviour anyway, and branding an object after it is constructed is only useful
for run-time matching.

Since the type of a tag depends directly on being able to name the tag (as in
tagged x), the Tagged Objects language is not able to express the separation of
brandobject and brand type that exists inBrandedGraceless. As discussed in §2.5.2,
this means that client code is free to tag its own objects, so a tag type provides no
guarantee that an object was actually constructed by a given class. A tag’s corre-
sponding type 𝜏 enforces that an object implements a particular interface, but tags
are not object capabilities; they cannot be used to enforce the same security proper-
ties as the seals of Morris (1973) that inspired the brand pairs of Miller (2006), the
trademark design for JavaScript of Horwat and Miller (2011), and the brand design
presented here, since the guard of a tag (and the run-time discriminator used in
a match) is the same as the permission object itself. Like Branded Graceless, type
members along with some mechanism to expose the run-time matching compo-
nent of a tag without exposing the tag itself would allow tags to work this way.

The match construct also differs significantly between Branded Graceless and
the Tagged Objects language. In the Tagged Objects language, the match can only
discriminate against tags, and only if the input shares a common super-tag with the
tag used for the match. In contrast, brands may appear in any object in Branded
Graceless, so any object may be inspected for any brand. The ‘else’ branch of the
Tagged Objects match does not bind the matched object to a variable, since no
extra information has been learned in that branch: since the type of the input is
just some tagged form then discovering that the tag on the value is not the one in
the match doesn’t provide any useful information. In Branded Graceless the ‘else’
branch is actually more useful than the ‘then’ branch.

The main advantage of the Tagged Objects approach to matching stems from
the corresponding 𝜏 type of the matched brand, such that the match only needs to
discriminate on the brand to work out what the type of the underlying wrapped
value is. This is why it is useful for the ‘then’ branch to bind the input to a variable

175

brand typing

whose type is tagged with the matched tag: the type of an application of extract on
that variable may now be more precise, as it was in Figure 2.5.2. Branded Graceless
works in the opposite fashion, in that discovering the presence of a brand gives no
extra information beyond that the brand is there because there is no type informa-
tion about any branded object associated with the brand itself, but discovering the
absence of a brand can collapse a larger type down into one that is more precise.

The optional int example is actually easier to encode in Branded Graceless —
despite the fact thatmatching against a Some brand typewould not actually provide
access to the structural type exposing the int — because all of the possibilities do
not actually need to be branded, so a Some type is not necessary.

method incOpt(None ∶ ⊤, x ∶ Number∪ type { None })→ Number {

x ∋ None { y→−1 } { y→ z + 1 }

}

This method can be requested with minimal fuss.

method apply(theNone ∶ ⊤)→ Number { incOpt(object { 𝜏(theNone) }, 5) }

apply(object {})

The trouble is that, because an object can be branded with arbitrarily many brands,
a single match is often not enough. If matching between two possible brands in
an object, and the two variants that contain each brand in the object’s type both
contain structural information that needs to be accessed in the branches, then a
Branded Graceless program needs to account for three cases, since a second match
inside the ‘then’ branch of the first can also succeed.

Consider the following method, which takes two brand types A and B, each of
which appears in one of two possible types for the third input, and then matches
against the brand types in order to request the associatedmethods to return a value
of some type T .

method oneOf(A ∶ ⊤, B ∶ ⊤, x ∶ type { A; a→ T }∪ type { B; b→ T })→ T {

x ∋ A { y→ y ∋ B { z→⇑ x } { z→ z.a } } { y→ z.b }

}

In the ‘else’ branch of both matches, the execution has successfully determined
which of the two variants in the union type of x applies based on discrimination

176

implementation

against the brand types, but in the ‘then’ branch of the inner match, x is branded
by both the underlying brands objects of the types A and B, a perfectly valid possi-
bility given only the information in the types. Having more than two variants only
exacerbates this problem.

Associating structural information with tags allows the Tagged Objects lan-
guage to not have to reason about the existing type of the matched object. Given
the existence of reified types in Grace, there is no reason such an extension could
not be added to the existing design with an overloading of the brand method to
take a type object, so that brand(type { D }) produces a brand that requires any
branded object to have declarations D. The existing brand method would then be
equivalent to brand(type {}). Alternatively, using some sort of negative type would
also suffice, such that the type of x above could be expressed as:

type { A; ¬B; a→ T } ∪ type { B; ¬A; b→ T }

Intersecting either type { A } or type { B } into the type yields one of the two variants
because the other conflicts with the intersected type.

6.5 Implementation

We have implemented brands in Grace on top of Hopper, our existing prototype in-
terpreter for the language (Jones 2016). The core implementation is a single Grace
module, extending an existingHopper implementation of a structural type checker
as a dialect (Homer, Jones, et al. 2014). All of the functionality specific to brands is
implemented using existing features of Grace, provided in a dialect with the neces-
sary definitions. Static checking of brand usage is restricted to just those modules
using the branding dialect, but the dynamic behaviour of the brands will work as
expected in other modules.

Hopper allows arbitrary expressions to appear in any annotation list, requiring
only that the type of the value satisfy a protocol specific to the syntactic object that
it annotates. This protocol is implemented for brand objects so that any annotated
object literal or class is added to a set of objects stored in the brand itself. This way
there does not need to be any special functionality in an object to record that it has

177

brand typing

been branded, because the implementation of the brand itself can handle all of this
information. A brand implements this storage as a weak set, as the only necessary
operation is a membership test, and this prevents a brand from keeping an object
alive when there are no remaining strong references to it.

Because the annotation processing is just handled by a method request, brands
need not be applied only at an object’s creation, so any existing object can also be
passed to the brand through the same protocol. No special access to an object is
required in order to brand it, since no modification is made to the object when it
is branded. Access to the identity of the brand itself is all that is necessary to brand
an object.

Grace’s Pattern type (Homer, Noble, et al. 2012) is used as the interface of the
objects returned by a brand’s Type method. By inheriting from a standard abstract
class that defines the basic implementation of patterns, the objects need only pro-
vide a concretematchmethod, which uses themembership test to discoverwhether
the relevant object is in the brand’s weak set. Because the Type object is defined in
the brand itself, it has access to the brand’s internal of branded objects without the
set having to be exported from the brand.

Internally, most of the brand object functionality is implemented in a preBrand

class. This class is used to build the ‘pre-brand’ object aBrand, which will be used
to brand all other brand types. This pre-brand is local to the dialect, but the dialect
makes the public type Brand available for use outside of the dialect, the value of
which is aBrand’s pattern object combined with the interface of brands.

let Brand = aBrand.Type∩ ObjectAnnotation∩ type {

Type→ Pattern

extend→ Brand

+(other ∶ Brand)→ Brand

}

aBrand has the same implementation as other brands, but an object cannot appear
in its own annotation list and so aBrand does not satisfy the Brand type. Attempting
to do so would look like this:

def aBrand = object is aBrand { inherit preBrand }

178

implementation

This would result in an uninitialised field error, since object cannot yet have been
assigned to the aBrand field at the point when the annotation list is evaluated.

All other brands inherit from the same class that created aBrand, with the sole
addition of being branded by aBrand, causing them to satisfy the Brand type.

class brand→ Brand is aBrand { inherit preBrand }

Brands need to be branded themselves so that when we perform static reasoning
about brands, we can rely on the Brand type to guarantee that the implementation
of the object behaves as we expect. The definitions of the brand method and the
Brand are included with the rest of the standard dialect definitions (the ‘prelude’)
to provide a sensible set of default methods to any module that uses the dialect
alongside the branding mechanisms.

With these definitions in hand, brands provide the appropriate run-time be-
haviour of nominal types: objects can be branded, method parameters can be
guarded by brand types, and execution can branch based on the presence of a brand
with the match construct. At run-time, matching against a brand’s object identity
provides no dynamic information about a brand’s name, so that if a dynamic type
error occurs involving a brand it cannot report the name of the brand that failed
to match. Reporting type names is a standard problem in structural type systems
as types do not naturally have names (Malayeri and Aldrich 2008). This is mostly
solved by including the source location of the assertion that failed, where a name
for the type that raised the error should be available if the type itself was referred
to by name at that location.

On top of this run-time behaviour, the dialect extends the existing structural
type checker’s check method by including extra understanding of the Brand type
and the result of requesting brand. Even though the type of the brandmethod only
indicates that it returns a Brand, each creation of a brand object is considered dis-
tinct by the type system, and this identity is tracked within the scope of its creation
as well as when it is exported by a def declaration (with some caveats explained
below). Additionally, method parameters with the type Brand are also reasoned
about statically as though they had been created at the beginning of the method.
The existing structural rules are still enforced, including when structural types are
paired with brand types. We formalise this combination of static typing in §6.3.

179

brand typing

In order to ensure the type system is sound, it is important that the static identi-
ties that we assign to brand definitions always correspond to a single object identity:

method make {

def aThing = brand

⋯
}

Each time this method is called, the request to brand will construct a new, unique
brand. This is irrelevant to the static type checker, which is reasoning for all calls
to the method. If a brand is bound to a ‘statically-known’ immutable definition,
then we have a guarantee that the identity returned from referencing that defini-
tion will always be the same within the scope that surrounds that definition. It’s
important that we understand what a statically-known definition is, since the pres-
ence of shadowing and inheritance makes this more complicated.

6.5.1 Statically-Known Definitions

All method parameters are local definitions, but not all defs are. When a definition
appears directly in the body of an object, referring to the name of that definition
is a request to the corresponding accessor method on the object, rather than a di-
rect reference to the definition’s value. In the presence of inheritance, there is no
guarantee that a reference to such a definition actually refers to the value defined.
As discussed in Chapter 4, the following code can even result in an error reporting
that aThing is uninitialised:

object {

def aThing = brand

object is aThing {⋯ }

}

If this object expression appears as the final statement of amethod body, then it can
be inherited, and the inheriting object can override the definition of aThing with
anymethod, providing no guarantee that the resulting object is the same every time
the definition is referenced, or even that the result is a brand.

180

implementation

One potential solution to the problem of overriding otherwise constant defini-
tions is to statically prevent any override that would invalidate the brand reasoning
in the branding dialect. The dialect already knows that it needs to reason about
such definitions under the assumption that the definition is immutable once as-
signed, so it makes sense that it could just prevent the override of any such brand
with anymethod that is not itself a constant reference to a brand. This solution fails
to take into account the fact that dialect checking is per-module, and so even if this
was enforced it does not provide a static guarantee that any part of the program
does not invalidate this constraint. This could be simulated as a gradual constraint,
so any attempt to perform an invalid override that was not checked by the dialect
results in a run-time error, but a simpler solution is to adapt the reasoning to make
no assumptions about fields that could be overridden.

Any time a brand is to be created in the body of a potentially inherited object,
then the brand can be created in the closure of the surrounding method instead:

def aThing = brand

object {

object is aThing {⋯ }

}

Since this definition appears in a method body instead of an object body, it is guar-
anteed to bind the result of the request of the brand method. The dialect can safely
reason statically about it within the method scope. If the returned object wants to
make the aThing brand publicly available, it can still declare a public definition in
its body, so long as it has a different name than the private definition: if the name
of the public definition is important, the name of the private definition can always
be changed, since that only has significance in the surrounding scope.

Shadowing definitions in the presence of inheritance is also a potential problem,
since method lookup proceeds up inheritance chains before proceeding into outer
scopes. The dialect needs to be sure that a local reference will actually resolve to
the brand definition it believes it will. We address the problem of ensuring correct
resolution of local references in the presence of inheritance in Part III; given that
you need to know the exact type of an object in order to inherit from it, it is not
hard to guarantee that you can build an accurate model of local method requests.

181

brand typing

6.5.2 Type Evaluation

The story of the implementation is more complicated than the story we have pre-
sented so far, because the Grace specification does not provide a definitive expla-
nation of what terms can appear in a type definition (Black, K. B. Bruce, and No-
ble 2016). It states that, “Types, including parameterised types, may be named in
type declarations.” The examples that follow in the specification include type liter-
als, applications of the standard type combinators (which are defined as types by
the spec), and references to other type definitions (including applications of type
arguments to parameterised definitions). Whether other terms that (might) also
produce types can be used as type definitions is not defined, nor what kind of be-
haviour can be expected if such a term is used in a definitions.

Because types are reified into objects at run-time (and type definitions create
corresponding accessor methods when they appear in an object body), the term in
a type definitionmust be evaluated at some point. With the type forms presented as
examples in the spec this evaluation could happen statically, with the resulting val-
ues substituted in for definitions at the relevant moments at run-time, but if more
general terms are permitted to appear in a type definition then their evaluation
must occur in the same scope as the definition, since they might refer to other defi-
nitions surrounding them. The implementation presented here relies on the ability
to declare types with arbitrary terms, since a request to a brand’s Type method is
not a ‘type’ per the Grace spec — it just shares the interface of a reified type object.
Since the implementation is in Hopper, which is already a non-compliant imple-
mentation of Grace, we can skirt around this issue somewhat by just defining the
behaviour as whatever we need, but it does mean the evaluation semantics of type
definitions need more investigation.

Type definitions cannot be overridden (Black, K. B. Bruce, and Noble 2016),
and it makes sense that we would restrict the values that are assigned to type def-
initions to at least have the same interface as reified types. To that end, we might
define type definitions as a form of def whose accessor method cannot be overrid-
den:

def Thing ∶ Pattern =⋯

182

implementation

Given the evaluation order of object bodies, such an encoding could produce un-
expected behaviour if a method is annotated with the following type definition.

method makeThing→ Thing {⋯ }

type Thing =⋯

It’s not clear what the behaviour of this code should be: does the Thing type need to
be definedbefore the instantiation of the object that contains themethodmakeThing?
Even if the type annotations on a method are evaluated lazily, it is still possible that
the method could be requested in the object’s initialisation code before the defini-
tion Thing is assigned a value.

It seems more reasonable that type definitions terms are evaluated before any
object initialisation code that appears alongside them, and do not truly appear in
the scope directly surrounding them, in the same way that inherit clauses appear
inside the braces of an object constructor but may not refer to any definitions in
that scope (including self) since the value of those definitions relies on the result
of the inheritance. This could result in code that executes out-of-order even for a
linear execution sequence (a problem that an inherit clause does not have, since
it must appear at the top of an object constructor), but perhaps it is sufficient to
recommend (and perhaps enforce in a dialect) that terms whose evaluation has
side-effects should not appear in type definitions.

This design of type definitions affects the design for brands presented above,
since the declarations of brand types often refer to a field definition in the same
scope. The following object constructor is not valid:

object {

def aThing = brand

type Thing = aThing.Type

}

The evaluation of aThing.Type occurs before the evaluation of brand, and in fact
aThing.Type is evaluated in a scope that does not even contain aThing. We can
resolve this problem with the same solution used to avoid overriding definitions:
define the brand outside of the object, and then export the type inside the object.

def aThing = brand

183

brand typing

object { type Thing = aThing.Type }

Defining a brand in the scope outside the type definition does not work in cases
where a definition cannot syntactically be written in the scope surrounding the
type definition. Modules present such a case, since the top-level code of any file
is the body of an object. This can be offset somewhat by defining any top-level
brand objects in other modules and then importing them (or defining a dialect
that extends the branding dialect with the brand object definitions) but given that
modules are likely to be themost common definition site of types, this doesn’t seem
like a realistic solution.

Ultimately we have implemented a compromise between these two points in
the design space for Hopper, evaluating a type definition immediately if it is re-
quested before its appearance in the initialisation sequence, and otherwise evaluat-
ing it in the normal sequence. Type annotations on methods and other definitions
are evaluated lazily, so type names can be used as annotations on definitions im-
mediately alongside their definition. This design was a solution for the separate
problem of run-time evaluation for reified types with mutual dependencies (that
is, recursive types), similar to the lazy evaluation of sub-terms in coinductively
defined types. Even type definitions that are defined to be valid in the Grace spec-
ification may refer to type names declared after the current one:

type A = { a→ B }

type B = { b→ A }

The ability to perform some sort of reference to uninitialised type definitions is
already necessary when the implementation does not evaluate the types statically
(which Hopper, as an interpreter, does not).

Of course, since a dialect is free to reason about whatever it chooses, we could
also forgo type definitions using the type syntax entirely, and rely solely on def:

def aThing = brand

def Thing is public = aThing.Type

We no longer need to rely on undefined behaviour to implement the design, but
we have less guarantees as a result, as def fields can be overridden whereas type

definitions cannot.

184

Part III

Inheritance

185

7 Inheritance Semantics

The story for inheritance in Grace was supposed to be simple: inheriting from an
objects reuses its implementation, extending and modifying it as desired by the
inheriting object (Black, K. B. Bruce, Homer, and Noble 2012). A class is just a
method that constructs and returns a fresh object, so inheriting from a class is as
simple as inheriting from the result of requesting the method. This story turned
out to be insufficient to capture the true complexity of the desired semantics, par-
ticularly with respect to the use of self reference during an object’s initialisation.
As a result, the design of Grace’s inheritance has evolved from object delegation to
a special semantics that attempts to simulate the behaviour of class in Java and C#
(Noble et al. 2017).

This part investigates the challenge of implementing inheritance in a classless
language by considering a number of different semanticmodels and comparing the
outcomes of each. Driving the investigation is a series of modification to Graceless
to express each semantics. All of these formalmodels are individually implemented
in PLT Redex, making it easy to enumerate the individual steps of any given pro-
gram and interpret how that program differs under each of the semantic interpre-
tations.

7.1 On Inheritance

The problem we address in this part focuses more acutely on the tension between
the conceptual simplicity of objects and the practical utility of classes than the pre-
vious part. Can a language be based conceptually on ‘objects first’ and include a

Aspects of this part appeared in the ECOOP’16 paper Jones, Homer, Noble, and K. Bruce 2016.

187

inheritance semantics

method graphic(canvas) {
object {

// An abstract method.
method image { required }
// Using an abstract method.
method draw { canvas.render(image) }
// An uninitialised field.
var name
// A use of self during construction.
canvas.register(self)
// A local method request.
draw

}
}

Figure 7.1.1: The graphic example class

relatively familiar notion of inheritance? We present models of several different
inheritance mechanisms as modifications to the existing Graceless syntax and se-
mantics.

The first set of models — forwarding, delegation, and concatenation — corre-
spond to standard inheritance practice in many classless languages. The second
set — ‘merged identity’ and ‘uniform identity’ — are novel constructs of behaviour
in a classless language, but are intended to introduce classical behaviour and at-
tempt to simulate the inheritance behaviour of C++ and Java classes respectively.
The remaining models introduce several different languages with multiple object
inheritance, using different resolution techniques for conflicts between methods
from multiple inherited objects.

We evaluate the trade-offs between power and complexity of these models,
particularly in their object initialisation semantics, and compare them to the be-
haviour of other languages, demonstrating that the typical class initialisation se-
mantics are fundamentally at odds with prototypical object inheritance. We have
also implemented all of the models in PLT Redex (Felleisen, Findler, and Flatt
2009), making the models executable and allowing direct comparison of the dif-
ferences in execution for any program.

188

on inheritance

def amelia = object {
inherit graphic(canvas)
// An overriding method.
method image { images.amelia }
// An assignment to an inherited field.
name≔ “Amelia”

}

Figure 7.1.2: The amelia example object

Consider the example in Figure 7.1.1, where the graphic method constructs a
fresh object with some methods and a mutable (var) field, and runs some initialisa-
tion code including a local call to the draw method before returning. The required

form is used to represent the body of an abstract method, implying that an im-
plementation of the method’s body is required in some inheriting definition. A
required method evaluates to an exception if invoked.

If we can inherit from objects created by the graphicmethod, what is the result-
ing program behaviour? Results vary for different interpretations of inheritance,
which we examine in depth as we present each semantics. We can inherit from the
objects this method creates, or assign special semantics to methods which directly
construct fresh objects like this and inherit from the method itself. Because of the
presence of initialisation code in the class, these interpretations have different —
and potentially unexpected — behaviours.

In its most basic form, inheritance permits reuse by providing a mechanism
for an object to defer part of its implementation to an already implemented part
of the program, but the reality is that there is much more to consider: the value of
self references in method bodies and during initialisation, intended and accidental
method overriding, whether objects are composed of several object identities in
an inheritance chain or a single unified identity, the meaning of method requests
which are not qualified with a receiver, and so on.

Consider the object amelia in Figure 7.1.2, that inherits froma call to thegraphic
method. We can draw different conclusions about the state of our program after
amelia is constructed, depending on which inheritance semantics is in play. We
group these into a number of relevant concerns:

189

inheritance semantics

• Registration. Is the identity of a super-object stored during initialisation,
either explicitly or through lexical capture, the same as the final object? This
is clearly the intention of the call to register in graphic’s initialisation.

• Down-calls. Can a method in a super-object call down into a method in a
lower object? Can it do so during initialisation? The implementation of the
draw method relies on a down-call to the image method.

• Action at a Distance. Can operations on an object implicitly affect another
object? If the registeredgraphic object is different to amelia, what is the value
of its name field after amelia is initialised?

• Stability. Is the implementation of methods in an object the same through-
out its lifetime? Which imagemethodwill be invoked by the request to draw

at the end of graphic? Can the structural type of an object change after it has
been constructed?

• Preëxistence. Can an object inherit from any other object it has a reference
to? Does amelia have to inherit a call to the graphic method, or will a preëx-
isting object suffice?

• Multiplicity. Can an object inherit from multiple other objects? If amelia

also wished to have the behaviour of another object, can a second inherit
clause be added? If so, how are multiple methods with the same name re-
solved, and where are fields located?

Each of these concerns is explained in more detail as they become relevant to the
model we are discussing.

We are also interested in the general semantics of the inheritance systems, such
as what order the parts of initialisation execute in, what visibility and security con-
cerns arise, and how local method requests are resolved. We also point out partic-
ular curiosities, such as the absence of overloaded methods from super references
and inheriting fromdefinitions already inherited from some other parent, but these
features are specific to individual models.

These are the concerns that we will judge in the following object inheritance
models. While our graphic example clearly assumes some of these features in its

190

on inheritance

implementation, these features are not universally desirable, and each provides cer-
tain abilities or guarantees at some cost. Our intention is to use these concerns to
provide an accurate description of the trade-offs involved with each inheritance
model. Some of our models of inheritance attempt to interpret graphic as a class,
but only in the sense that it is a factory that guarantees fresh graphic objects. We
also compare the models to existing languages that use each form of inheritance,
particularly JavaScript, which is capable of implementing all of the models.

191

8 Object Inheritance

First we consider forms of inheritance that typically exist in classless languages,
expressing reuse directly between objects at run-time rather than between declar-
ative classes. Starting with Graceless, each of the models builds upon the previous
one. The models encode three forms of object inheritance: forwarding, as used
in E (Miller 2006); delegation, as found in JavaScript, Lua, and Self (ECMAScript
Project 2016; Ierusalimschy, Figueiredo, and Filho 2007; Chambers et al. 1991); and
concatenation, as in Kevo (Taivalsaari 1995) and numerous libraries and idioms for
languages with open objects.

In our earlier example, amelia inherits from the call to the graphic method
by evaluating the call normally, and then extending the behaviour of the resulting
object in a new object. A possible resulting structure is visualised in Figure 8.0.1.
We use a custom visual syntax for objects to more easily communicate the relevant
information.

graphic

method image { required }
method draw { ycanvas.render(self.image) }
method name { ⇑ uninitialised }
method name≔(x) { self←method name { x } }

amelia

method image { images.amelia }

Figure 8.0.1: Example visualisation of object inheritance

193

object inheritance

An object is visualised as a rectangle with rounded corners, containing a name
(purely for our reference) and the methods that make up the object’s implementa-
tion. Conceptual inheritance relations between objects are represented by an arrow
with a white triangle, pointing from the inheritor to inheritee. We also omit type
annotations on the implementations. Objects are referred to by their name as a
subscript on any concrete variable y, so ycanvas is a reference to the canvas object
used by amelia in the inherit clause. We also use the form required as described
above, and the form ⇑ uninitialised to represent the body of an uninitialised field
accessor.

Under the object relationship visualised in Figure 8.0.1, the amelia object can
directly handle the imagemethod, and a request to any other method is ‘passed on’
to the graphic object. The specific behaviour of this passing on (and, in some cases,
which graphic object the request to passed to) is what gives rise to the different
models that we present here.

The extended syntax for object inheritance is given in Figure 8.0.2, extending
the final Graceless syntax defined in Figure 5.2.1 in §5.2. The extension introduces
two new components of user-facing syntax: the bodies of object expressions may
now begin with an inherit t clause, and requests can now be qualified by the special
variable super. We use the identifying subscripts ↑ and ↓ in many of our judgment
definitions to help indicate whether a form relates to an inherited (↑) or inheriting
(↓) object: these subscripts form part of the name, and do not change the semantics
of the metavariable that they are attached to.

As methods are locally scoped within the body of an object expression, it’s im-
portant to understand how inheritingmethods affects this scope. An inherit clause
inherit t introduces the methods from the super-object into the local scope of the
inheriting object using an ‘up, then out’ rule (as opposed to the ‘out then up’ rule
of Bracha (2016) in Newspeak): inherited definitions take precedence over those
introduced in a surrounding scope, as if they were defined directly in the inheriting
object.

Because the inherit clause contains an arbitrary expression, in general we can-
not know what method identifiers the clause will introduce. To counter this, sub-
stitutions are delayed by an inherit clause in an object expression: while the substi-
tution will transform the expression in the inherit clause itself, it will not proceed

194

Grammar

i ⩴ 𝜖 | inherit t (Inherit clause)

t ⩴ ⋯ | object { i s d t } | required (Term)

r ⩴ ⋯ | super | (v as x) (Receiver)

s ⩴ ⋯ | (v as self)/super | y/self← (Substitution)

Evaluation contexts

G ⩴ ⋯ | (v as x).m(vi, F, t) (Sub-context)

Figure 8.0.2: Graceless grammar extended for object inheritance

into the body of the object expression, and gets ‘stuck’ on the clause instead, hence
the extra s syntax after an inherit clause. Once the expression in an inherit clause
is resolved to an object reference, the substitution can proceed into the body of the
surrounding object expression, where it may be removed by shadowing. The form
s is a stuck substitution, and [s] continues its application.

Although any inherited object exists in its own right, making a request to the
form super is not the same as making a direct request to the same inherited object,
as a request to super binds the value of self in the super-method to the inheriting
object. At run-time, the variable super is substituted for a special ‘up-call’ receiver
(y as self), which indicates the method will be dispatched to the super-object at
location y, but with self bound in the body of that method to the eventual value
of self at the site of the request. A substitution for self will transform the receiver
into (y↑ as y↓) before the request is evaluated. A super reference or up-call form
by itself is not a valid term.

The substitution y/self← is a special substitution that only applies when self is
the direct target of a method update. For instance, the result of applying the substi-
tution [y/self←](self←(methodm→T { t })) is the term y←(methodm→T { t }),
but [y/self←]self is still self. Receivers of method updates are still substituted as
normal by the other forms of substitution.

Returning to our example, in the extended Graceless language we have pre-
sented there is no corresponding implementation for the connection between amelia

195

object inheritance

and graphic, indicated by an open triangle arrow in the visualisation of Figure 8.0.1.
Wehave notmodified the store to include the presence of an optional ‘super-reference’
for each object; such an extension would require extra reduction rules to deal with
requests which the object cannot directly handle and must be delegated to the
super-reference.

Fortunately, the language as presented is already capable of expressing this
behaviour directly in the implementation of the inherit clause alone, by insert-
ing methods into the inheriting object that just perform a super-call to their cor-
responding method. Reduction rules for object inheritance are defined in Fig-
ure 8.0.3, extending the computation judgement from Figures 4.3.1 and 5.3.1.

Including an inherit clause inherit t in an object evaluates the term t to an ob-
ject reference. The evaluation context G in Figure 8.0.2 has not been extended to
include a term in an inherit clause, to avoid issues in the future with constraints on
what can be evaluated in such a clause. Evaluation in an inherit clause is instead
handled by Rule E-I/C, which is modified by future models to ensure the context
behaves as desired.

Rule E-R/S applies an up-call like a regular request, but looks up the method
in the super object y↑ while retaining the original value of self, y↓. This means that
the body of the method at the y↑ will be run, but any request to a method on self in
that body will return to the inheriting object y↓. Inheriting from a cast is also legal,
and Rule E-R/C ensures that any cast assumptions are distributed across a request
when the receiver is an up-call to a cast.

Rule E-Inh transforms an object expression with an inherit clause into one
without, adding a super-call method for each method in the inherited into the sur-
rounding object expression. Overriddenmethods are removedwith the extend aux-
iliary function, which also handles the generation of the super-call method body
with the delegate function. The rule also applies the delayed substitutions to the
object, after substituting super for an up-call receiver to the inherited object.

To better understand the way that the inheritance is encoded into Graceless,
the encoding of the two objects from Figure 8.0.1 is visualised in Figure 8.0.4 (ig-
noring that the evaluation of the request to graphic will actually get stuck in its
own initialisation). Since there is no direct encoding of the inheritance relation-
ship between amelia and graphic, they are visualised here as unconnected objects,

196

𝜎 ∣ t ⟶ 𝜎 ∣ o

(E-Inh)
𝜎(v↑) = { d↑ } d′↑ = extend(d,d↑)

𝜎 ∣ object { inherit v↑ s d t } ⟶ 𝜎 ∣ [s]object { [(v↑ as self)/super](d′↑ d t) }

(E-R/S)
𝜎(y↑) ∋ method m(x ∶ S)→ U { t }

𝜎 ∣ (y↑ as y↓).m(v) ⟶ 𝜎 ∣ [y↓/self][v/x]t

(E-R/C)
S ∋ m(z ∶ Ti1)→ T1 method m(z ∶ Ti2j)→ T2 { t } ∈ 𝜎(v)

𝜎 ∣ (v ∶ S as y).m(vi) ⟶ 𝜎 ∣ coerce((v as y).m(param(vi, Ti2, Ti1)), T1)

(E-I/C)
𝜎 ∣ t↑ ⟶ 𝜎′ ∣ t′↑

𝜎 ∣ object { inherit t↑ s d t } ⟶ 𝜎′ ∣ object { inherit t′↑ s d t }

extend ∶ Seq(Def) × Seq(Def) → Seq(Def)
extend(di, ⋅) = di

extend(di, (d,dj)) =

⎧⎪⎪⎨
⎪⎪⎩
identify(d) ∈ identify(di) extend(di,dj)
identify(d) ∉ identify(di) delegate(d), extend(di,dj)

delegate ∶ Def → Def
delegate(method D { required }) = method D { required }
delegate(method m(x ∶ Ti)→ T { t }) = method m(x ∶ Ti)→ T { super.m(x) }

Figure 8.0.3: Inheritance extended reduction

197

object inheritance

graphic

method image { required }
method draw { ycanvas.render(self.image) }
method name { ⇑ uninitialised }
method name≔(x) { self← (method name { x }) }

amelia

method image { images.amelia }
method draw { (ygraphic as self).draw }
method name { (ygraphic as self).name }
method name≔(x) { (ygraphic as self).name≔ x }

Figure 8.0.4: Visualisation of Graceless object inheritance

but amelia references graphic as its ‘super-object’ in the methods generated by the
delegate function.

Now that we have the base of amodel for object inheritance, we turn to examin-
ing the different semantic models of object inheritance bymodifying this extended
Graceless language.

8.1 Forwarding

The forwarding model of object inheritance is by far the simplest mechanism: if
an object does not understand a request, it forwards the request unchanged to its
super-object. The super-method receives the same arguments and self binding. In
our example, if amelia receives a request for the draw method, which is not im-
plemented directly inside of amelia, the request is passed on to the graphic super-
object instead as a normal request. If we return to the conceptual linking between
objects in an inheritance relationship, the objects and an example request are visu-
alised in Figure 8.1.1, with a⇝ arrow describing an incoming request to the labelled
method.

The structure of the objects is the same as before, but now we have evaluated
amelia’s initialisation code under forwarding. The assignment to name has up-
dated the method in graphic, and the image field is initialised in amelia. Note also

198

forwarding

graphic

method image { required }
method draw { ycanvas.render(ygraphic.image) }
method name { “Amelia” }
method name≔(x) { ygraphic ←method name { x } }

amelia

method image { images.amelia }
draw

draw

Figure 8.1.1: Visualisation of a forwarded request

⋯ amelia graphic canvas

draw
draw

image

required
required

required

Figure 8.1.2: Sequence diagram of a draw request under forwarding

the absence of self: every use of it has been replaced with a direct reference to the
object which defined the method.

A request to anymethod other than imagewill not be understood by amelia di-
rectly, and will be forwarded to the graphic object. The value of self in the resulting
invocation is the identity of the super-object: this was the case for the assignment to
name, so the value “Amelia” has been assigned to the field in the super-object. This
is also the case for the incoming draw request, so graphic’s draw method crashes,
complaining that the object has not implemented its image method. The local re-
quest to image in the draw method has been resolved to the graphic object and
not passed back down to amelia. The latter’s behaviour is visualised as a sequence
diagram between the relevant objects in Figure 8.1.2.

199

object inheritance

The modification to the existing dynamic semantics of Figure 8.0.3 to imple-
ment this object structure and behaviour is provided in Figure 8.1.3. The modifi-
cation makes one subtle change to the Rule E-Obj, by early-binding the value of
self when an object is created in all of its methods. The result of this change is
that the binding of self in requests no longer achieves anything, because self has al-
ready been bound to the object that themethod or field originally appeared in. Any
forwarded request behaves as though the original object had received the request
directly. Note that this applies to super requests as well, so that up-calls essen-
tially ignore their second reference and the request is equivalent to just calling the
method directly on the inherited object.

This early-binding of self is what gives us the correct forwarding semantics:
even though amelia is performing super-calls to the graphic object, there are no
remaining uses of self in the methods to allow down-calls to occur. This applies
to the super-calls generated by the delegate auxiliary function, which means that
the inherited methods still appear to be performing super-calls as normal as in
Figure 8.1.4, but any method in the super-object that they call will never refer to
self, having already substituted it away when the object was constructed.

The value of self is always the object a method was defined in, so down-calls are
not possible (other than by manually referring to the inherited object in the super-
object); similarly, the value of self during initialisation is the distinct identity of the
super-object, so registration cannot occur then. In this model, an object can only
inherit from another before it has run any of its own initialisation, so every object
is guaranteed to have a stable structure, and one object may be inherited many
times. In Chapter 10, we explain how forwarding could be extended with multiple
inheritance.

(E-Obj)
y fresh a = identify(d) a unique

𝜎 ∣ object { d t } ⟶ 𝜎(y ↦ { [y/self][self/a]d }) ∣ [y/self][self/a]t;y

Figure 8.1.3: Forwarding reduction

200

delegation

amelia

⋯
method draw { (ygraphic as yamelia).draw }

⋯

draw

Figure 8.1.4: Visualisation of Graceless forwarding inheritance

8.1.1 In Other Languages

In the E language, there is no explicit self reference, as all object definitions are
explicitly named (Miller 2006). The authors of E refer to the language’s inheritance
mechanism as “delegation”, but in the absence of self references the behaviour aligns
with what we have called forwarding.

def graphic { to draw() { canvas.render(graphic.image()) } }

def amelia extends graphic { to image() { images.cat() } }

Even though amelia defines a method image, the call in the draw method uses the
graphic object as the receiver of its call to image, so calling amelia.graphic() pro-
duces an error that graphic.image() is not defined. Methods cannot be requested
on the local scope, so the receivermust always be explicit. In order to achieve down-
calls, the inheriting object must explicitly be passed to the super-object, which is a
standard pattern for simulating class behaviour in E, and we consider this in Chap-
ter 9.

8.2 Delegation

Delegation is a design for object inheritance that aimed to be at least as powerful
as inheritance, if not more so since any existing object can be inherited from at any
time (Lieberman 1986; Ungar and Smith 1991; Stein, Lieberman, and Ungar 1989).
A self request in a method called under delegation goes back to the original object,
which distinguishes it from forwarding where a self request to a delegatee will be
handled only by that delegatee. This allows delegation to support down-calls.

The visualisation of a request to amelia under delegation is presented in Fig-
ure 8.2.1. The structure of the objects is the same, but the method implementations

201

object inheritance

graphic

method image { required }
method draw { ycanvas.render(self.image) }
method name { “Amelia” }
method name≔(x) { ygraphic ←method name { x } }

amelia

method image { images.amelia }
draw

draw(self = amelia)

Figure 8.2.1: Visualisation of a delegated request

are slightly different, and the delegation of draw is not an ordinary request. The
value of self is no longer early bound in method bodies. The behaviour of the draw

delegation is actually exactly the same as under forwarding, but the early binding
meant that its behaviour was not distinguishable from an ordinary request. Also
note that like forwarding, the assignment to name in amelia updates the method
in the super-object: self has been early-bound in the setter of the name field.

Under delegation, the self-request of image in the body of draw does not in-
voke the abstract method in the same object, but instead returns to amelia who
can handle such a request directly, producing the result of images.amelia (which
we refer to as yimage). This down-call behaviour is visualised by a sequence diagram
in Figure 8.2.2. In the previous example, it was not safe to request the drawmethod
on amelia under forwarding, as the implementation of draw expects to be able to
see an overridden implementation of the image method. Now this is able to work
as expected: draw executes with self as amelia, so the local request to image calls
down into amelia and successfully retrieves the image of Amelia.

The modification to the dynamic semantics of forwarding to implement dele-
gation is provided in Figure 8.2.3. As in the forwarding model, the modification
early-binds the value of self in the Rule E-Obj, but this time only as the receiver
of an update. The value of self remains late-bound in the bodies of methods to
the receiver of a method request, allowing super-objects to perform down-calls to
methods implemented in a sub-object. Fields are shared between the original ob-
ject and any inheriting objects, and, as under forwarding, mutation of any field

202

delegation

⋯ amelia graphic canvas

draw
draw(self = yamelia)

image
yimage

render(yimage)

done
done

done

Figure 8.2.2: Sequence diagram of a draw request under delegation

which originated in a super-object is reflected in all of its heirs.
Unlike under forwarding, the self reference in a super-call is not early bound, so

super-calls can be chained together, with self always bound by the original receiver
of the request. The difference in the method implementation from the forwarding
model is partly visualised in Figure 8.2.4, where the delegate function has gener-
ated a draw method that up-calls to the definition in ygraphic, and E-Obj has not
early-bound the value of self in this up-call. This provides the behaviour that the
delegating call will bind self to yamelia in the body of the implemented drawmethod
and request image on yamelia instead of the ygraphic reference.

Delegation makes no requirement of freshness, which combined with down-
calls produces a further complication to information hiding in a language with
confidential methods that can only be called on self. These methods may provide
access to secret data or capabilities, and the ability to access them from arbitrary

(E-Obj)
y fresh a = identify(d) a unique

𝜎 ∣ object { d t } ⟶ 𝜎(y ↦ { [y/self←][self/a]d }) ∣ [y/self][self/a]t;y

Figure 8.2.3: Delegation reduction

203

object inheritance

amelia

⋯
method draw { (ygraphic as self).draw }

⋯

draw

Figure 8.2.4: Visualisation of Graceless delegation inheritance

code could be a security concern. Delegation to preëxisting objects opens the way
for the ‘vampire’ problem: any object to which a reference has been obtained can
be taken over and fully controlled from the outside, merely by defining a new child
object. If access to confidentialmethods is instead not provided to delegators, simu-
lating common classical patterns becomes difficult or impossible, and an odd asym-
metry is introduced: the delegator can override an inherited method, changing its
behaviour, but has no access to use the overridden method in its own implementa-
tion.

Unlike forwarding, delegation permits down-calls after the object has been con-
structed, but not during initialisation since the inheritance relation has not actually
been established while the super-object is being initialised. Objects under delega-
tion cannot perform registration during initialisation, as a captured self reference
in a super-object refers to that super-object, which may have no other references
and will not have access to any overriding definitions from the child. These two
limitations of object initialisation are the major barriers to simulating the typical
behaviour of class-based inheritance under delegation.

Object structure and behaviour is not stable during construction, as new meth-
ods may appear on self and existing methods may have different implementations
depending on the stage of inheritance. Like forwarding, delegation permits inher-
itance from a preëxisting object; if this is allowed, stability does not exist after
construction either. Delegation, like forwarding, can be easily extended to mul-
tiple inheritance by introducing multiple inherit clauses and some resolution of
multiply-defined methods.

Including the inherit clause in the object constructor ensures that objects can
delegate either to a preëxisting prototype object or construct a new object with cus-
tom arguments and delegate to that, as an equivalent to calling a super-constructor

204

delegation

in a class system. This distinguishes it from the prototypical inheritance in JavaScript,
which requires that the prototype property of the constructor be set before any in-
heriting object is constructed. In Self, object expressions can set their parents as a
fresh object constructor call:

(| parent* = factory new. |)

This has the same semantics in terms of self binding in the super-constructor as
presented in our model of delegation.

One of the distinguishing features of the particular form of delegation that we
have presented here is that an object shares fields with its parent. Requesting the
name≔ method on the graphic object is visualised in a sequence diagram in Fig-
ure 8.2.5. The change to the super-object graphic is reflected both in graphic and
in amelia: not unsurprising, since name is inherited from graphic by amelia.

Requesting the same setter method on amelia has the same effect, since the
field is equally shared between amelia and graphic. This behaviour is visualised in
the sequence diagram of Figure 8.2.6. Note that this means that any other object
inheriting from graphic will also be affected by a request to a setter method in
amelia: this is the crux of the Action at a Distance concern.

8.2.1 Receiver mutation

Removing the early-binding of self in an object entirely provides a different kind
of delegation, similar to the one found in JavaScript. If self is bound to the original
receiver of the request in method updates as well, then it is this original receiver
that is mutated instead of the object that the method update appeared inside of.
Inheriting objects share the fields of their super-object until the setter is requested
on the lower object, at which point the lower object has its own field. This form of
delegation does not have action at a distance through field setters.

In our running example, requesting the name method on either graphic or
amelia produces the same result: amelia just goes through one layer of indirection
for the super-call. The two objects (and any other object inheriting from graphic)
share the field value: the behaviour is exactly the same as in Figure 8.2.5. As soon
as the name≔method is called directly on amelia, though, amelia’s name method

205

object inheritance

⋯ amelia graphic

name≔ “Graphic”
name← “Graphic”

ygraphic

done

SetSet Set name in graphic

name
“Graphic”

name
name(self = yamelia)

“Graphic”
“Graphic”

GetGet Change reflected in both objects

Figure 8.2.5: Field assignment to graphic under delegation

206

delegation

⋯ amelia graphic

name≔ “Amelia”
name(self = yamelia)≔ “Amelia”

name← “Amelia”

ygraphic

done
done

SetSet Set name in amelia

name
“Amelia”

name
name(self = yamelia)

“Amelia”
“Amelia”

GetGet Change still reflected in both objects

Figure 8.2.6: Field assignment to amelia under delegation

207

object inheritance

⋯ amelia graphic

name≔ “Amelia”
name(self = yamelia)≔ “Amelia”

name← “Amelia”
yamelia

done
done

SetSet Set name in amelia

name
“Graphic”

name
“Amelia”

GetGet Change only reflected in amelia

Figure 8.2.7: Field assignment to amelia under receiver mutation

is replaced by the assigned value, and will no longer look up the method in the
super-object.

The reason this happens is that, while amelia still applies a super-calls to the
name≔ method, thanks to the behaviour of Rule E-R/S the binding of self in the
term self←method name { x } points back to the object that the request was origi-
nally made to: amelia. Field assignments always affect the original object, so there
is no action at a distance. This sequence of events is visualised in a sequence dia-
gram in Figure 8.2.7.

This behaviour is also what happens in JavaScript: fields are shared between
objects until an inheriting object is assigned to, at which point the assigned field is

208

concatenation

unique because it is inserted directly into the object itself.

const amelia = Object.create(graphic(canvas))

graphic.name = “Graphic”

amelia.name //⟹ “Graphic”

amelia.name = “Amelia”

graphic.name //⟹ “Graphic”

amelia.name //⟹ “Amelia”

This is crucial to the language (or at least was before property descriptors; we can
now completely initialise and seal amelia in the call to Object.create in modern
JavaScript), because properties are not declarative and the methods in any object
are set up imperatively by assigning functions into fields. The model presented
here differs in that it will not update a method definition if there is not an already
existing method with the same identity, so it is more accurate to say it behaves like
JavaScript where every object is sealed, which prevents new properties from being
added.

This behaviour is much more difficult to reason about, because field setters are
no longer conclusively tied to their corresponding getter. If amelia had chosen to
override the name method, calling the name≔method would ignore the fact that
the newly declaredmethod is not strictly a gettermethod (there is no distinguishing
feature thatmarks it as such), andwipe this overriding definition for the assignment
value.

8.3 Concatenation

Concatenation is an alternative design for object inheritance that aimed to have
the power of inheritance without the drawbacks of delegation (Taivalsaari 1997;
Taivalsaari 1995). Under concatenation, one object inherits from another by (con-
ceptually) taking a shallow copy of the methods and fields of its parent into itself,
and then appending local overriding definitions. Concatenation supports down-
calls, but unlike delegation does not allow subsequent changes in either the parent
or the child to affect each other.

209

object inheritance

graphic

method image { required }
method draw { ycanvas.render(self.image) }
method name { ⇑ uninitialised }
method name≔(x) { self←method name { x } }

amelia

method image { images.amelia }
method draw { ycanvas.render(self.image) }
method name { “Amelia” }
method name≔(x) { self←method name { x } }

Figure 8.3.1: Visualisation of objects under concatenation inheritance

In the conceptual rendering of our example, there is no longer any connec-
tion between the graphic and amelia objects. The methods in the graphic object
are concatenated into the definition of amelia (excluding overrides) and amelia is
initialised as a single object. This is visualised in Figure 8.3.1. The difference in be-
haviour is immediately apparent in the different values of name. The assignment
to name in the initialisation of amelia only affects amelia, and the change is not
reflected in the graphic object or any other inheritor.

An incoming request todraw requires no special behaviour, as thedrawmethod
is now defined directly in amelia. Figure 8.3.2 visualises this final behaviour, which
never refers to graphic at all. The objects in an inheriting relationship under con-
catenation are not as divorced as they first appear, though. Consider the fact that
amelia is able to directly request render on the canvas reference: the ycanvas ref-
erence actually appears in the scope of the graphic method. If there are mutable
references in the scope of an inherited object, then these can become shared muta-
ble state between that object and any inheritor.

Our implementation of concatenation semantics is a bitmore complicated than
just copying the methods from the inherited object, mostly to deal with super-calls
and overridden methods while avoiding the strange behaviour of the base model.
The updated reduction judgement is defined in Figure 8.3.3 as an extension to the
previous delegation semantics. This modification changes the Rule E-Inh to clone

210

concatenation

⋯ amelia graphic canvas

draw
image

yimage
render(yimage)

done
done

Figure 8.3.2: Sequence diagram of a draw request under concatenation

the inherited object, and substitute the clone as the super-object of the inheritor
instead. These semantics are exactly delegation where inherit clauses clone the re-
sult of evaluating their term before applying the inheritance relation. An auxiliary
definition recast also ensures that the clone reference is cast in the same way as the
original inherited reference (including not cast at all).

The existing late-binding of self in methods is sufficient to provide the desired
behaviour: any inherited method executes in the context of the inheriting object,
and any request to an inherited field accessor will access the copied field in the
inheriting object as well. The only relationship the inheriting object has with its
super-object is explicit up-calls, but it is impossible to access or modify the state
of the super-object without explicitly referring to it through an existing reference.

(E-Inh)
𝜎(v↑) = { d↑ } d′↑ = extend(d,d↑) y↑ fresh

𝜎 ∣ object { inherit v↑ s d t } ⟶
𝜎(y↑ ↦ { d↑ }) ∣ [s]object { d′↑ [(recast(v↑,y↑) as self)/super](d t) }

recast ∶ Term × Term ⇀ Term
recast(v ∶ S, y) = recast(v,y) ∶ S
recast(v, y) = y

Figure 8.3.3: Concatenation reduction

211

object inheritance

amelia

method image { images.amelia }
method draw { (yclone as self).draw }
method name { (yclone as self).name }
method name≔(x) { (yclone as self).name≔(x) }

Figure 8.3.4: Visualisation of Graceless concatenation inheritance

The concatenation model builds on delegation because it is the same as delegation
except that inheriting from an object clones the object first.

The cloned super-object is effectively invisible outside of the inheritance im-
plementation, so it appears as though the method is copied directly into amelia,
but the reality is that the incoming request to draw is just sent to the cloned super-
object as under delegation. Field values are still shared between the inherited clone
and inheriting object, but because no other part of the program has a reference to
the clone this sharing cannot be observed, and it appears as though the inheriting
object has its own personal set of fields copied out of the inherited object. The im-
plementation of the amelia object is visualised in Figure 8.3.4, with yclone as the
reference to the clone of graphic that resulted from the inheritance of amelia.

Concatenation also makes no requirement of freshness. Concatenation with
preëxisting objects does not quite permit the ‘vampirism’ of delegation, but does
allow ‘mind reading’: any confidential state in an object can be read simply by in-
heriting from it, but the existing object cannot be manipulated by the child. Unlike
the two previous models, mutations to inherited fields do not cause action at a
distance, as the mutation will always affect a field in the actual receiver of the re-
quest (even for super-calls). With lexical scoping, inheriting objects are also not
as independent as they seem: methods exist in the same scope in both inheritor
and inheritee, and any lexically captured state is shared between the two. Since the
clone is shallow, mutable state within objects in copied fields is also shared between
objects.

Like delegation, concatenation permits down-calls after the object has been
constructed, but not during construction. Concatenation does not allow registra-
tion, as a captured self reference in a super-object refers to the parent. Object struc-

212

concatenation

ture and behaviour is not stable during construction; as for delegation, if inheri-
tance from preëxisting objects is allowed then stability does not exist afterwards
either. Concatenation can be straightforwardly extended to multiple inheritance
by inserting the contents of each parent into the child, with some resolution of
multiply-defined methods.

8.3.1 In Other Languages

Objects with mutable structure can trivially implement concatenation, by manu-
ally copying the structure of the inherited object into the inheriting one. JavaScript
complicates this story with innumerable properties, implicit field accessors, and ex-
isting delegation relationships, but for the most part this is a valid implementation
of concatenation:

for (let name in inheritee) { inheritor[name] = inheritee[name] }

It is also possible to usemutable object structure to implement either forwarding or
delegation, by assigning methods (or field accessors) to the inheriting object that
directly forward or delegate to the inherited object, as in ourmodels. In a JavaScript
constructor:

const self = this

this.foo = function () { self.bar() }

If the foo method is called on a sub-object, the call to bar is guaranteed to not
perform a down-call, because self is bound directly to the original object.

JavaScript’s built-in object inheritance otherwise works the same way as Grace-
less delegation, but field assignments are directly available in the language instead
of only through accessor methods. The result is that an object shares each field
of its inherited object, but when a field is assigned to it, the field is unique to that
object, shadowing the inherited one. In any language where the objects have mu-
table structure it is necessary to retain a parent reference in order to implement
delegation, in order to accurately defer to the current implementation of a parent
object. Implementingmore complicated forms of inheritance in JavaScript, such as
with traits or mixins, tends to involve combining the built-in delegation alongside
manual concatenation.

213

9 Emulating Classes

The inheritance models in the previous section represent the three foundational
strands of purely object-based inheritance. Class-based languages tend to provide
different semantics for inheritance, and programmers and language designers may
wish to use those semantics or expect classless languages to behave in a similar way.

All of the object inheritance semantic models above have the same registra-
tion behaviour during construction: references to self in a inherited object’s ini-
tialisation code are the identity of the parent object, because the object must be
constructed and initialised before the inheritance can actually occur. When the
graphic object’s initialisation registers itself with the canvas in canvas.register(self),
the object that is registered with the canvas is the graphic object, not amelia. This
will lead to problems if the canvas intends to draw objects in its registry: the draw

method of a graphic object is guaranteed to fail, because it will always request the
unimplemented image method.

A sequence diagram of the behaviour of our running example (ignoring the
down-call during initialisation), and a subsequent attempt by the canvas to draw
the contents of its registry, is provided in Figure 9.0.1. The argument to the register

method request is ygraphic, not yamelia, so when the canvas is asked to update, it
attempts to draw the incomplete graphic object instead of the fully implemented
amelia and produces an error.

It is possible to construct object-based models that emulate classical semantics.
In some languageswith very flexible semantics, such as JavaScript and Lua, libraries
exist to provide ‘classes’ as a second-class construct by mutating objects or leverag-
ing specially-constructed objects with the existing inheritance systems (Lua-Users
2014). In this sectionwe introduce twomodels that approximate the inheritance be-
haviour of C++ (§9.2) and Java (§9.3) respectively in an object-based system. They

215

emulating classes

⋯ amelia graphic canvas

«create»
«create»(ycanvas)

register(ygraphic)

done
«inherit» ygraphic

name≔ “Amelia”
⋯

done

done
yamelia

ConstructConstruct

update

draw
image

required
required

required

UseUse

Figure 9.0.1: Sequence diagram for registration during construction

216

object freshness

remain purely object-based, but trade off some of the flexibilities of the object inher-
itance models for the classical functionalities they provide, including registration,
but also the behaviour of down-calls, and method definition stability.

9.1 Object Freshness

Thekey property that is enforced in the followingmodels is freshness, requiring that
only newly constructed objects may be inherited from. This is a syntactic property
that means that terms in an inherit clausemust reduce to an object constructor dur-
ing their evaluation. More concretely, this means that preëxisting objects cannot
be inherited from, as every inherited object must be constructed at the point of in-
heritance. Inheriting from the result of a request for graphic in amelia satisfies this
condition, since the inherited object is constructed by the method. Constructing
the object beforehand and then inheriting from it is not permitted:

def parent = graphic(canvas)

def amelia = object { inherit parent;⋯ }

A fresh object expression is either an object constructor or a request to amethod
that tail-returns an object constructor. A method tail-returns an expression when
it is returned as the final statement of the method, with no intervening explicit re-
turns elsewhere in the body of the method, ensuring that if an object is returned
it must have been the result of evaluating this final expression. The requirement
that a method must tail-return an object constructor is stricter than necessary,
since a method that tail-returns a request to another fresh object expression is
also guaranteed to return a fresh reference. Explicitly requiring an object con-
structor is easier to implement, and though this means that a request to a method
that tail-returns a request that is otherwise a fresh object expression cannot be
inherited, it can always be modified to be inheritable using Homer’s Device1: a
method method m { t } where t is a fresh expression can instead be implemented
as method m { object { inherit t } } to ensure that requests to it can be inherited
from.

Rather than mutating preëxisting objects, inheritance must now occur from a
1Named for our colleague, Michael Homer.

217

emulating classes

(E-I/C)
𝜎 ∣ t ⟶ 𝜎′ ∣ t′ t = y.m(v) ⟹ t′ = (t; object {⋯})

𝜎 ∣ object { inherit t s d↓ t↓ } ⟶ 𝜎′ ∣ object { inherit t′ s d↓ t↓ }

Figure 9.1.1: Fresh inheritance reduction

fresh object, newly created and immediately returned from amethod call. Without
the requirement of freshness, inheriting objects can directly steal the identity of any
other existing object, inserting its own definitions so that any existing reference is
modified to work as the thief sees fit. The resulting ‘body-snatchers’ problem is
substantially worse than delegation’s vampirism, which can only control objects
internally. The freshness requirement also prevents inheritance from a cast, since
any intervening cast would syntactically interfere with the tail-return of the object
that it wraps.

The models that make use of freshness use as their base a further extension to
Graceless inheritance, provided in Figure 9.1.1, which enforces that the inherited
object is a fresh reference. This extension modifies Rule E-I/C by adding a pred-
icate so that method requests in an inherit clause may only be computed if they
syntactically return an object expression. We abuse notation slightly here, given
that sequences are defined in the grammar as pairs: the equality we draw here is
insisting that the rightmost term in any series of sequences is an object constructor.
This modification does not affect terms that are not requests in an inherit clause,
and still permits an object constructor to be resolved to a reference before process-
ing the inherit clause itself.

The first model, merged identity, builds directly on this new model, and uni-
form identity further modifies the context rule to also prevent an object expression
frombeing reducedwhen it appears in an inherit clause. The requirement of syntac-
tic freshness is not strictly required for merged identity, but it prevents potentially
dangerous manipulation of an object’s definitions from outside of an object’s cre-
ator. Both models ensure that the identity of the resulting object is a consistent,
single value, and they both use the new restriction applied to inherit clauses by the
modified context rule.

218

merged identity

9.2 Merged Identity

The goal of the merged identity model is to ensure that object registration in a con-
structor stores the (eventual) identity of the inheriting object, without changing
the semantics of an inherited request. An inheriting object takes over the identity
of its parent, ‘becoming’ that object but putting in place all of its own method defi-
nitions. The semantics of the model is effectively the reverse of concatenation: the
definitions are copied up into the inherited object, rather than down into the inher-
iting one. The parent object is constructed and initialised before the child (as with
the previous models), but is mutated when the inheritance relation is established,
and no new reference is allocated for the child object, since this is subsumed by the
reference to the parent.

Merged identity models the core of the C++ inheritance behaviour: the appar-
ent type of the object changes during construction, as each layer of inheritance is
processed. After object construction is complete, down-calls resolve to their final
overridden method, but until then they obtain the most recent definition from at
that point in the construction process. The stability of an object’s definitions is
guaranteed after construction by the requirement of freshness. Overridden meth-
ods from the parent remain accessible through super, and will always execute with
the final identity of the object.

Returning to the example of amelia, the registration of self in the body of the
graphic constructor under merged identity will now correctly store the value of
amelia when initialising the super-object. Although the object is not yet the final
version of ameliawhen it is registered (since the inherit clause in amelia’s construc-
tor has not finished evaluating its term yet), amelia becomes the object that was
registered once it has finished initialising, merging the two identities together. The
initialisation of the graphic object will still fail at the local request of draw, because
amelia’s overriding of the abstract method image has not yet been merged into the
object at that point in the object’s initialisation. Unlike in C++, where this is re-
garded as an unreliable behaviour to be avoided, under merged identity this effect
is fundamental to the semantics.

Consider the conceptual visualisation of the object’s construction in themiddle
of the graphic object’s initialisation presented in Figure 9.2.1. The graphic object

219

emulating classes

graphic

method image { required }
method draw { ycanvas.render(self.image) }
method name { ⇑ uninitialised }
method name≔(x) { self name← x }

amelia

method image { images.amelia }

Figure 9.2.1: Conceptual visualisation of merged identity initialisation

amelia

method image { images.amelia }
method draw { ycanvas.render(self.image) }
method name { “Amelia” }
method name≔(x) { self name← x }

Figure 9.2.2: Visualisation of amelia under merged identity

in the visualisation is fully constructed, and is in the middle of running its initiali-
sation code. The representation of amelia is greyed-out to represent that, although
the code path has entered into amelia’s object constructor (since this is where the
inheriting request that generated the graphic object began), the actual amelia ob-
ject has not been constructed, and does not have its own identity.

After the graphic object finishes its initialisation, amelia completes the inher-
itance relationship by inserting and replacing method definitions as under con-
catenation, but into the existing graphic object instead of into a freshly allocated
object. The final object is visualised in Figure 9.2.2, with the conceptual amelia

constructor gone without actually constructing a separate object. As under con-
catenation, there is no reified inheritance relationship between objects once they
are constructed, but unlike concatenation there is only a single object at the end of
the inheritance process.

An updated form of the sequence diagram from Figure 9.0.1 is provided in
Figure 9.2.3. The amelia object no longer exists at any point in the program, so

220

merged identity

it does not appear in the diagram. Once the graphic object is finished initialis-
ing, it is extended by the amelia constructor, which modifies the object’s method
definitions and runs the initialisation of the amelia constructor from within the
existing graphic object (indicated by the «extend» special form). The argument to
the register request is still the identity of the graphic object ygraphic, which was the
source of the error in Figure 9.0.1, but now the graphic object has been modified
to include the overridden image definition, so the program no longer requests an
unimplemented method.

The modification to Graceless with fresh inheritance to implement merged
identity is provided in Figure 9.2.4. The Rule E-Inh is the only part of the original
Graceless inheritance model which is changed. Where the original implementa-
tion of the rule in Figure 8.0.3 resulted in a new object expression with some of
the methods from the super-object, this new rule skips straight to returning the
resulting reference. This is necessary because the resulting reference is not fresh:
it is the reference of the inherited object. The inherited object is updated with the
new methods in the store, and overridden methods are removed and replaced.

One problem with implementing merged identity is that there is no longer an
object which corresponds to super to substitute into the body of the object, since
the parent identity is used as the identity of the child as well. In order to imple-
ment a super object, Rule E-Inh clones the parent object before mutating it with
the definitions of the child. The super-object clone has all of the methods of the
inherited object before it was modified, while the merged object has its methods
replaced with up-calls to this new super-object. As under the concatenationmodel,
the clone is invisible outside of the inheritance relation because it is impossible to
get a direct reference to a super-object. All of the models that emulate classes with
super-references create these ‘part-objects’, which exist purely to store the inherited
methods for super calls, and are only ever referenced under an alias for the ‘real’
object that is bottom-most in the hierarchy.

The structure of part-objects in our model is visualised in Figure 9.2.5. The
super reference is a clone of the graphic object before it was modified by the in-
heritance. The only reference to the clone is as a super reference in the inherited
object. Since super is not a valid term by itself, it is impossible for it to appear in
any other context as a bare reference.

221

emulating classes

⋯ amelia canvas

«create»
register(ygraphic)

done
ygraphic

«extend» amelia
name≔ “Amelia”

name← “Amelia”

yamelia

doneygraphic

ConstructConstruct

update

draw

image

yimage

draw(yimage)

done

done
done

UseUse

Figure 9.2.3: Sequence diagram of registration under merged identity

222

merged identity

(E-Inh)
𝜎(y) = d↑ d′↑ = extend(d,d↑)

y↑ fresh a = identify(d′↑;d) a unique [s′] = [s][self./a][(y↑ as self)/super]
𝜎 ∣ object { inherit y s d t } ⟶ 𝜎(y↑ ↦ { d })(y ↦ { d′↑ [s′]d }) ∣ [y/self][s′]t;y

Figure 9.2.4: Merged identity reduction

super

method image { required }
method draw { ycanvas.render(self.image) }
method name { “Amelia” }
method name≔(x) { self name← x }

graphic

method image { images.amelia }
method draw { (ysuper as self).draw }
method name { (ysuper as self).name }
method name≔(x) { (ysuper as self).name≔ x }

Figure 9.2.5: Visualisation of merged identity part-objects

223

emulating classes

⋯ amelia super canvas

«create»
register(ygraphic)

done
ygraphic

«extend» amelia
«create»

«inherit» ysuper

name≔ “Amelia”

name(self = yamelia)≔ “Amelia”
name← “Amelia”

yamelia
done

doneygraphic

Figure 9.2.6: Sequence diagram of initialisation under merged identity model

A sequence diagramof ourmodel undergoing the sameprocess as in Figure 9.2.3
is presented in Figures 9.2.6 and 9.2.7. The outcome is the same, the only difference
being the creation of the super-object and some extra communication between the
graphic object and the super-object instead of graphic handling its own behaviour
entirely by itself.

Rule E-Inh is a combination of the behaviour of the old Rule E-Inh from Fig-
ure 8.0.3 and Rule E-Obj from Figure 4.3.1. We have highlighted the changes to
their combined behaviour. We take some liberties here on what it means for the
two to be combined: note, for instance, that the inheritedmethods that are not over-
ridden d′↑ appear with the ordinary methods d in the series of calls to the signature
function. While no such combination appeared syntactically in the old rules, the
combination was implied by an application of E-Inh and then E-Obj, as the in-

224

merged identity

⋯ amelia super canvas

update

draw

draw(self = ygraphic)

image
yimage

draw(yimage)

done
done

done
done

Figure 9.2.7: Sequence diagram of use under merged identity model

herited methods would be in the series d by the time the second rule was applied.
Similarly, the use of [s′] is new, but it is just abbreviating an existing sequence of
substitutions.

Like delegation and concatenation, merged identity enables down-calls after,
but not during, initialisation. Unlike those models, a single identity is preserved
throughout the construction process, so registration stores the final object identity.
It does not provide stability during initialisation, but once objects are complete they
cannot change again. The mutation of an object’s definition when merged means
that it unsafe to permit inheritance from arbitrary objects, so preëxisting objects
cannot be inherited from. Merged identity is really the onlymodel presented in this
paper that does not lend itself well to multiple inheritance, because only a single
parent can have its identity preserved.

225

emulating classes

9.2.1 In Other Languages

As a reverse form of concatenation, merged identity is just as easy to implement for
objects with mutable structure. A constructor can call into the super-constructor,
then concatenate its own definitions into the resulting object. Copying the origi-
nal object beforehand ensures that a super-reference is still available. Simulating
merged identity in a JavaScript constructor simply requires referring to the parent
object directly instead of this:

function Amelia() {

const parent = graphic(canvas);

parent.image = images.image;

parent.name = “Amelia”;

return parent;

}

Such an implementation does not play well with the existing prototype system of
JavaScript, though.

Emulatingmerged identity on top of JavaScript’s existing prototype inheritance
is also simple, as any use of inheritance where methods are added to an object in
its constructor rather than through a prototype is effectively merged identity:

function Amelia() {

// Inherit from the Graphic constructor

Graphic.call(this, canvas);

// Then add the image and name definitions to this object

this.image = images.image;

this.name = “Amelia”;

};

Modifying methods in a JavaScript constructor isn’t strictly the form of merged
identity we have presented here because the identity of the resulting object is allo-
cated at the bottom of the inheritance hierarchy and passed up to the top-most con-
structor, instead of actually being allocated at the top, but the behaviour is equiv-
alent because the methods of the inheriting object are not added until after the
initialisation of the inherited object, and there is still only a single object identity

226

merged identity

at the end of the inheritance.
A form of merged identity can also be achieved in E, despite the fact that the

implementation of an object is immutable, because you can pass the reference of
an inheriting object into the closure of its inherited object (Miller 2006). Methods
cannot be requested on this reference until after the super-constructor has com-
pleted, but it will behave correctly under registration, and down-calls are possible
in the methods of the inherited object. In E:

Take self as a parameter

def graphic(self, canvas) {

def parent { # Use self instead of parent

to draw() { canvas.render(self.image()) }

⋯
}

canvas.register(self)

return parent # Except to return parent

}

Refer to amelia before construction, get a promise instead

def amelia extends graphic(amelia, canvas) {⋯ }

The self reference in the call to the graphic method points to a promise of some
inheriting object, to be fulfilled and replaced by amelia when the method com-
pletes, so it is safe to register the object with the canvas, and calling image on it in
the draw method will correctly perform a down-call. The draw method must not
be not called until after the graphic method is finished and amelia finishes extend-
ing from the parent object, since the promise has not yet been fulfilled and so no
such method is present. There are still two unique object identities, but as long as
we do not refer to parent in the graphic method other than to return it, we end up
with the merged identity semantics.

The graphicmethod included a down-call to the drawmethod during initialisa-
tion that we have been omitting because it failed in every model we have presented
so far. If we were to add this back in the E program above (in between the registra-
tion with canvas and the return of parent), we would have two options: either call

227

emulating classes

themethod on self, or on parent. Neither onewill work, though: either waywe end
up requesting a method on self before it has been constructed, which results in an
error. This is a problem with merged identity, not with E: in fact, the language has
a clever mechanism to get around this problem, which resembles our next model,
uniform identity.

9.3 Uniform Identity

Uniform identity is a direct attempt to implement the behaviour of a typical class-
based inheritance system, but based on objects rather than on classes. The first
observable action is to create a new object identity in the bottom-most ‘child’ ob-
ject constructor; this exactly mirrors the merged identity design, which creates a
single identity of the top-most parent. All inherited declarations are assembled in
a single object associated with the initial identity, but no fields are initialised and
no initialisation code runs until the entire inheritance hierarchy is established. In-
heritance occurs with the identity ‘passed along’: declarations are attached to the
original object, without initialisation, until the topmost object with no parent is
reached. Finally, the initialisation code runs from top to bottom.

All initialisation occurs in the context of the final object. No new methods or
overrides are added visibly during construction. Initialisation code always sees ob-
jects as a consistent type, though it may observe uninitialised fields. The semantics
of uniform identity essentially aligns with the semantics of Grace’s inheritance, as
well Java-like languages in general.

We illustrate the conceptual object structure of amelia inheriting from thegraphic
objectmid-initialisation in Figure 9.3.1. This time the super-object is the one greyed-
out, as amelia is the first object that is constructed, before inheriting from the
graphic object. Rather than constructing a distinct identity for the graphic object,
its definitions are added to amelia, and then its initialisation code is executed with
self as amelia.

The addition of the graphic object’s definitions to amelia is in reverse to all of
the semantics we have described so far, as overriding methods are already in the
object when it comes time to add the definitions that they are overriding. An over-
ridingmethod prevents its corresponding super-definition frombeing added to the

228

uniform identity

graphic

method image { required }
method draw { ycanvas.render(self.image) }
method name { ⇑ uninitialised }
method name≔(x) { self name← x }

amelia

method image { images.amelia }

Figure 9.3.1: Conceptual visualisation of uniform identity initialisation

object instead of replacing it: the overridden method is added to a corresponding
part-object instead. The resulting amelia object is the same as under merged iden-
tity, visualised in Figure 9.2.2, because only the initialisation behaviour is different.

A sequence diagramof amelia’s initialisation behaviour under uniform identity
is provided in Figure 9.3.2. The first thing that amelia does after being constructed
is request the graphic method, extending amelia with the resulting object’s defi-
nitions before the graphic object’s initialisation is run (indicated by amelia’s self
application of the inherit special form), and then running the initialisation with
self as amelia.

Themodification toGraceless to implement uniform identity is provided in Fig-
ure 9.3.3. As with merged identity, the Rule E-Inh overwrites the existing Rule E-
Inh. The Rule E-I/C has been further refined to also prevent the evaluation of
object expressions directly inside an inherit clause. This is a direct consequence of
the ‘passed on’ object identity behaviour of inheriting objects, where the identity
of the inherited object constructor is rewritten into the inheriting object. It also
illustrates how requiring fresh objects for inheritance is now a requirement of the
semantics, rather than just a security concern.

Once again, the semantics of uniform inheritance in our model lines up with
the conceptual behaviour discussed above, but the internal behaviour of the model
differs. As under merged identity, we create part-objects to support super-calls
and overriding field setters, and these part-objects are created from top to bottom
(in contrast to our earlier assertion that the bottom identity is the first one that is

229

emulating classes

⋯ amelia canvas

«create»
inherit graphic(ycanvas)

register(yamelia)

done

yamelia

image← yimage

done

name≔ “Amelia”

name← “Amelia”

yamelia

done
yamelia

Figure 9.3.2: Sequence diagram of initialisation under uniform identity

(E-I/C)
t ≠ object { d↑ t↑ } 𝜎 ∣ t ⟶ 𝜎′ ∣ t′ t = y.m(v) ⟹ t′ = t; object {⋯}

𝜎 ∣ object { inherit t s d↓ t↓ } ⟶ 𝜎′ ∣ object { inherit t′ s d↓ t↓ }

(E-Inh)
y fresh a = identify(d) a unique d↑ = [self./a]d
d′↑ = extend(d↓,d↑) [s′] = [s][self./a][(y as self)/super]

𝜎 ∣ object { inherit object { d t } s d↓ t↓ } ⟶
𝜎(y ↦ { d↑ }) ∣ object { d′↑ [s′]d↓ [self./a]t; [s′]t↓ }

Figure 9.3.3: Uniform identity reduction

230

uniform identity

⋯ amelia super canvas

«create»
inherit graphic(ycanvas)

«create»
«inherit» ysuper

register(yamelia)

done

yamelia

name≔ “Amelia”
name← “Amelia”

yamelia
done

yamelia

Figure 9.3.4: Sequence diagram of initialisation under uniform identity model

created). Super-references remain essentially invisible in these semantics, so the
difference is not observable in the result of a computation.

As the semantics outside of initialisation is the same as merged identity, the
resulting object structures are the same between the two formal semantics as visu-
alised in Figure 9.2.5. The sequence of events that results in this structure is dif-
ferent, though. The relevant sequence diagram is presented in Figure 9.3.4. The
creation of amelia immediately creates the super-object without running any ini-
tialisation code: the model does not actually create the identity of amelia yamelia

until after this point, at «inherit» ysuper.

Where Rule E-Inh in Figure 9.2.4 was a modified application of the original
Rules E-Inh and then E-Obj, the uniform identity modification applies this in
reverse. As the body of the inherit clause is an object expression, we have to apply
many of the same processes for reducing a regular object expression, but thenmove
the sequence of expressions resulting from the body of the super-object down into

231

emulating classes

the body of the inheriting object. The evaluation does create a new object reference
for the super-object, but only for up-calls to super, as was the case for merged
identity.

In the new Rule E-Inh, the substitutions to local definitions a need to be ap-
plied to the inherited methods (both those in the store, and the non-overridden
methods in the inheriting object). The same substitution into the body of the in-
heriting object occurs, but now self is not bound in the body: self will be bound by
the ultimate application of Rule E-Obj that constructs the final object. The substi-
tutions applied simultaneously to d↓ and t↓ in the inheriting object by Rule E-Inh
now have to be split between the definitions and the terms, as the super-body t
appears in between, but it amounts to the same behaviour.

While the order of the object creation is different between the merged identity
and uniform identity semantics, the observable behaviour we have investigated so
far has been equivalent. We now consider the down-call to the drawmethod in the
graphic method’s object constructor, and can investigate how the uniform identity
semantics differ from merged identity. The local request to draw in the initialisa-
tion of graphic now successfully down-calls into amelia’s implementation, as the
object is amelia during all initialisation in the hierarchy.

A sequence diagram of amelia’s new initialisation path under uniform identity
is provided in Figure 9.3.5. The call to draw down-calls to the definition of image in
amelia’s constructor, and successfully returns the object at images.amelia. Down-
calls to field accessors during initialisation will always fail with ⇑ uninitialised, be-
cause every field value in inheriting definitions will not be initialised yet.

Uniform identity permits down-calls both during and after construction, as
well as registration. The identity and structure of the object are both constant,
guaranteeing stability. Uniform identity does not allow inheriting from preëxist-
ing objects, instead requiring that parents be fresh. The exact definition of uniform
identity presented here does not support multiple inheritance, but there is a logical
extension to do so, discussed in Chapter 10.

232

uniform identity

⋯ amelia super canvas

«create»
inherit graphic(ycanvas)

«create»
«inherit» ysuper

register(yamelia)

done

draw(self = yamelia)
image
yimage

done

yamelia

name≔ “Amelia”

yamelia
yamelia

Figure 9.3.5: Sequence diagram of initialisation down-call under uniform identity

233

emulating classes

9.3.1 In Other Languages

Uniform identity is also supported in a number of objects-first languages. Con-
structors have a special role in JavaScript, and their behaviour can be manipulated
to simulate classes by setting up their prototype property and then manually pass-
ing the value of this to any super-constructors. One of the main complications is
that JavaScript constructors must have their prototype property set before they are
used to construct a new object. As a result, inheriting from a preëxisting prototype
object is simple (because it can just be directly assigned to prototype), but inher-
iting from another constructor, particularly one that requires arguments specific
to a particular inheriting object, is more difficult, because no actual object exists
to assign to prototype without calling the constructor. Fortunately, Object.create

allows the creation of an object from a prototype without actually invoking the
constructor:

function Child(arg) {

// The arg value is only available when a Child is constructed

Parent.call(this, arg)

}

Child.prototype = Object.create(Parent.prototype)

The ability to bind the value of this in a function call using the call method on a
function allows JavaScript to implement uniform identity, ensuring that the initial-
isation code in a super-constructor can be executed in the context of the inheriting
object instead of creating a fresh object and inheriting from that. JavaScript’s class
syntax, introduced by ECMAScript 2015 (ECMAScript Project 2016), is just sugar
for this behaviour (with extra constraints such as sealing the structure of the objects
involved).

The most natural forms of inheritance in JavaScript are the built-in single dele-
gation and, by extension, single uniform inheritance, now codified directly in the
language with the class syntax. Our primary concern is that without the particular
dynamism of JavaScript, simulating class initialisation is impossible without rein-
terpreting factory methods as constructors with special semantics, at which point
the language has arguably just implemented classes.

234

uniform identity

Similarly, the mechanism to permit down-calls during object initialisation in E
resembles uniform identity (Miller 2006).

def graphic(self, canvas) {

def parent { to draw() { canvas.render(self.image()) } }

self.draw() # Results in an error

return parent

}

def image≔ images.amelia

def amelia extends graphic(amelia, canvas) {

to image() { return image }

}

Because the reference to the child object in the parent’s initialisation is a promise,
not a true reference, methods cannot be called on it directly. The call to self.draw()

results in an error, because the self reference has not yet resolved to an object. Call-
ing parent.draw() instead has the same problem, because parent’s draw method
attempts to call a method on self as well.

E allows interaction with a promise by calling a method asynchronously, to be
called when the promise is resolved. This means we can schedule down-calls to
happen during the initialisation of a super-constructor, to be called when has fin-
ished its entire initialisation process.

def graphic(self, canvas) {

def parent { to draw() { canvas.render(self.image()) } }

self← draw() # Asynchronously calls draw()

return parent

}

def image≔ images.amelia

def amelia extends graphic(amelia, canvas) {

to image() { return image }

}

Now amelia.draw() executes

235

emulating classes

The only difference between this behaviour and the uniform identity semantics is
that down-calls in a super-constructor have to be executed at the end of the con-
structor. Interleaving these down-calls with other arbitrary code requires more
complicated juggling of promises.

As in JavaScript, this more complicated behaviour is made possible only by
the existence of other language features that combine to simulate classes. The E
encoding of classes is clever, but the behaviour of promises in E (primarily that
they actually transform into the object that satisfied the promise) are a domain-
specific feature of the language (Miller 2006), and the uniform identity semantics
generalises the behaviour to a language with a smaller number of core features.

236

10 Multiple Inheritance

Reusing behaviour from multiple parents is often desirable, but is less commonly
supported in language designs in practice. In this section we show three logical ex-
tensions enabling multiple object inheritance. The first extends the uniform iden-
tity model with multiple inherit statements. The second is a separate model follow-
ing the tradition of trait systems, where method names are unique in any object.
The third provides the ability to include multiple inherit statements anywhere in
an object’s initialisation code, processed imperatively. All of these extensions pro-
cess inherit clauses as under uniform identity, but they could all be simplified to
perform inheritance frompreëxisting objects as per forwarding, delegation, or con-
catenation. We have demonstrated this by constructing all possible combinations
in our PLT Redex implementation.

All systems enable code reuse from arbitrarily many parents. All parents are
treated symmetrically in the first two models, but further restrictions or privileges
could be accorded to some parents without substantially affecting the models. In
order to handle conflicts in symmetric inheritance, methods can be abstract in
their body, which causes an error if that method is called. Alternatively, the im-
plementations could ban the construction of an object with abstract methods, but
this would only be valid for uniform identity, as the overriding of a concrete im-
plementation would not take effect until the object was inherited under any of the
other interpretations.

237

multiple inheritance

Extended Syntax

i ⩴ inherit t as z (Inherit clause)

io ⩴ inherit object {⋯} as z (Evaluated inherit clause)

t ⩴ ⋯ | object { i s d t } (Term)

r ⩴ t | (y as x) (Receiver)

s ⩴ ⋯ | (y as self)/z (Substitution)

Figure 10.1.1: Multiple Parents grammar

10.1 Multiple Parents

The multiple parents model allows a sequence of inherit statements to appear at
the start of an object body. Each statement includes an as clause, which binds a
name in the body of the object as a super reference to the particular parent that is
constructed by the expression in the inherit clause. The single-inheritance uniform
identity model is immediately subsumed using inherit parent as super. When the
same method name is inherited from multiple parents, none has priority and an
abstract method of that name is inserted instead. The programmer must provide
a local override calling the version from a particular named parent if desired. All
methods are collected and installed before any initialisation code from the object
bodies executes, so a consistent set of method implementations is seen throughout
the initialisation.

The extended grammar of multiple uniform is presented in Figure 10.1.1. Multi-
ple inherit clauses can now appear at the head of an object constructor. A method
can be marked as unimplemented manually by using required as the method body,
but unimplemented methods can also be generated by the inheritance mechanism.
The super form is gone, as which super-object the reference refers to needs to be
distinguished, so instead inherit clauses include a name binding with as x. Any
abstract variable can be substituted as a reduction as a result (though the reduction
rules will only ever apply a substitution for a super-variable).

Reduction rules for Multiple Parents are presented in Figure 10.1.2. The Rule E-

238

multiple parents

(E-I/C)
t ≠ object { d↑ t↑ } 𝜎 ∣ t ⟶ 𝜎′ ∣ t′ t = y.m(v) ⟹ t′ = t; object {⋯}
𝜎 ∣ object { io inherit t as z i s d↓ t↓ } ⟶ 𝜎′ ∣ object { io inherit t′ as z i s d↓ t↓ }

(E-Inh)

y fresh a = identify(d) a unique d↑ = [self/a]d
d′↑ = join(extend(d↓,d↑)) s′ = [s][self/a][(y as self)/z]

𝜎 ∣ object { inherit object { d t } as z s d↓ t↓ } ⟶
𝜎(y ↦ { d↑ }) ∣ object { d′↑ [s′]d↓ [self/a]t; [s′]t↓ }

join ∶ Seq(Def) → Seq(Def)
join(⋅) = ⋅

join((d,di)) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

identify(d) ∉ identify(di) d, join(di)
body(d) = required join(di)
abstract(d) ∈ di join(di,d)
otherwise join(extend(abstract(d),di))

abstract ∶ Def → Def
abstract(method D { t }) = method D { required }

Figure 10.1.2: Multiple Parents reduction

I/C implements fresh inheritance in objectswith potentiallymultiple inherit clauses,
ensuring each clause is evaluated in order. Rule E-Inh is essentially the same as
in the uniform identity implementation in Figure 9.3.3, but processing multiple in-
herit clauses at once (hence the extramultiplicities formany of the bindings). Once
all of the super-methods are collected, conflicting methods are resolved with the
join auxiliary function that, for each uniquemethodname in the collection ofmeth-
ods, accepts exactly one concrete implementation of a method with that name and
removes all of the abstract implementations, or provides a single abstract method
with that name and removes all other implementations.

Multiple Parents supports registration and downcalls exactly as in uniform
identity, multiple inheritance from freshly-created parents, and is stable because
methods are collected first. These are all properties of uniform inheritance: apply-
ing this modification to the simpler object inheritance models each retains their

239

multiple inheritance

Extended Syntax

i ⩴ inherit t alias a as m exclude m (Inherit clause)

io ⩴ inherit object {⋯} alias a as m exclude m (Evaluated inherit clause)

r ⩴ t (Receiver)

s ⩴ v/z | self/a | y/self← (Substitution)

Figure 10.2.1: Method Transformation grammar

own particular properties as well.

10.2 Method Transformations

Multiple inheritance under Method Transformations resembles trait-like composi-
tion of objects, representing object values as a single mapping of method names to
methods, with no equivalent to super in the previous designs. Instead, an inherit

statement can have any number of alias or exclude clauses associated, which re-
spectively create an alternative name for an inherited method and exclude its im-
plementation. The syntax for these clauses — and the removal of super-references
and up-calls in receivers and substitutions — is defined in Figure 10.2.1.

If a method is overridden locally and still needs to be accessed, the inherited
method can be aliased to a different name and accessed through that name within
the object instead of referring to a super-object. An object contains at most one
method with any given name, and there are no part-objects, but referring to super-
methods can be more verbose because they need to be explicitly aliased individu-
ally.

Multiple inherit statements can appear in an object, treated symmetrically. If
the same name is inherited from multiple parents, all but one must be excluded, or
a local overriding method declared, if a concrete implementation of that method
is to appear in the object. All inheritance expressions are evaluated and the final
method set of the object assembled before any initialisation code executes. Initial-
isation occurs from top to bottom (depth-first search) within each branch of the

240

method transformations

inheritance hierarchy. Methods are decoupled from their names because aliases
may provide multiple equivalent names all reaching the method, while exclusion
means that local definitions may not be implemented in the final object.

If amelia wished to simultaneously be a graphic and a gunslinger, then two in-
herit clauses can be included under the Transformation model. If the gunslinger

class also contained a drawmethod for drawing her gun, ameliawould be required
to choose a single implementation by excluding one of the two. The excluded
method can still be accessed if it is aliased:

def amelia = object {

inherit gunslinger

inherit graphic alias draw as render exclude draw

def image = images.amelia

var name≔ “Amelia”

}

Even if the gunslinger class also has a name method, amelia has successfully com-
bined the twoby overriding both. Note thatmethod resolution is consistent through-
out the entire object: any request to draw on amelia will unholster instead of ren-
dering, including from within the lexical context of the graphic method.

The implementation of Method Transformation inheritance is given in Fig-
ure 10.2.2 as a modification of the previous Multiple Parents extension. Inherit
clauses no longer have super-names, using the method aliasing and excluding syn-
tax instead. Rule E-Inh now pre-processes the methods of each inherited object
before passing them to join, with the aliases and excludes auxiliary functions. Both
of these functions proceed as expected: fold the transformations over the methods,
applying the alias or exclude rules in order. Because these rules are ordered, it is
possible to create an alias of an existing alias that occurs earlier in the list, and it is
possible to exclude aliases. Exclusion is always processed after aliases, so a directly
excluded method cannot be aliased.

Method Transformation permits both down-calls and registration. It provides
stability through time, but not through local analysis of visible declarations. It im-
poses the same freshness requirements as the other models, and supports multiple
inheritance. Applying Method Transformation to the simpler object inheritance

241

multiple inheritance

(E-I/C)
t ≠ object { d↑ t↑ } 𝜎 ∣ t ⟶ 𝜎′ ∣ t′ t = y.m(v) ⟹ t′ = t; object {⋯}

𝜎 ∣ object { io inherit t alias ai as mi exclude aj i s d↓ t↓ } ⟶
𝜎′ ∣ object { io inherit t′ alias ai as mi exclude aj i s d↓ t↓ }

(E-Inh)

y fresh a = identify(d)
d↑ = [self/a]d da = aliases(⟨ai,mi⟩,d↑) de = excludes(aj,da)

de unique d′↑ = join(extend(d↓,de)) s′ = [s][self/a][(y as self)/super]

𝜎 ∣ object { inherit object { d t } alias ai as mi exclude aj s d↓ t↓ } ⟶
𝜎 ∣ object { d′↑ [s′]d↓ [self/a]t; [s′]t↓ }

aliases ∶ Seq(Def) × Seq(Ident ×Name) → Seq(Def)
aliases(d, ⋅) = d
aliases(d, (⟨a,m⟩, ⟨ai,mi⟩)) = alias(a,m,d), aliases(d, ⟨ai,mi⟩)

alias ∶ Ident ×Name × Seq(Def) → Seq(Def)
alias(a,m, ⋅) = ⋅

alias(a,m, (d,di)) =
⎧⎪⎨
⎪⎩
identify(d) = a rename(d,m), ⋅
otherwise alias(a,m,di)

rename ∶ Def ×Name → Def
rename(method m1(x ∶ Ti)→ T { t },m2) = method m2(x ∶ Ti)→ T { t }

excludes ∶ Seq(Def) × (Name ×ℕ) → Seq(Def)
excludes(d, ⋅) = d
excludes(d, (a,ai)) = exclude(a,d), excludes(d,ai)
exclude ∶ (Name ×ℕ) × Seq(Def) → Seq(Def)
exclude(a, ⋅) = ⋅

exclude(a, (d,di)) =
⎧⎪⎨
⎪⎩
identify(d) = a abstract(d), ⋅
otherwise exclude(a,di)

Figure 10.2.2: Method Transformation reduction

242

positional

models continues to maintain their own particular properties, as they were never
stable to begin with.

10.3 Positional

The previous multiple inheritance models treat the inherit clauses as symmetric,
such that no definition in any one is preferred in the case of conflicts, requiring res-
olution either by overriding or Method Transformations. Moreover, they do not
permit any initialisation until all of the inheritance relations are established, which
can be a problem if fields need to be initialised for down-calls in super-initialisation
code. Consider if amelia’s overriding definition of the imagemethodwas provided
as an accessor to a field: the image field would not be initialised during the graphic

method’s evaluation, causing an uninitialised error when the initialisation attempts
to down-call to the image accessor. Positional inheritance addresses these con-
cerns, at the cost of visibly mutating the object during construction, similarly to
what can be achieved with mutable object structure.

Under Positional inheritance, multiple inherit clauses can appear in an object,
amongst the typical statements; this syntax is presented in Figure 10.3.1. These
clauses are processed imperatively where they appear, in order, using the same
semantics as the selected base model of inheritance. As under Multiple Parents,
each inherit statement can have a name associated. Positional inheritance could
also be used for single inheritance, allowing some initialisation before the super-
constructor is called, but the visible mutation is still present, and the distinct or-
dering of the inherit clauses in an object body implies a natural method conflict
resolution: replace the methods that are already defined in the object.

In the most general version, an inherit clause can appear anywhere in the ob-
ject body, and have other code before, after, and in between, with the semantics
of the inheritance taking effect at the point of appearance and later parents having
precedence over earlier. The ordering of the inherit clauses under Positional inher-
itance allows some interesting programmer choices with some of the base models.
Altering the order of parents affects which versions of same-named methods are
accessed, and interleaving other code in between exposes both at different times.
The availability and safety of up-calls and down-calls are affected by the placement

243

multiple inheritance

Extended Syntax

i ⩴ super inherit t as z s | c inherit t as x s (Inherit clause)

c ⩴ ⟨y,d, s⟩ (Inherit context)

t ⩴ ⋯ | i (Term)

r ⩴ t | (y as y) (Receiver)

s ⩴ ⋯ | (y as y)/z | c/super (Substitution)

Figure 10.3.1: Positional inheritance grammar

of the inheritance, field initialisation, and other code. A more restrained approach
could limit inheritance to appearing all at the top (or bottom) of the object body.

Positional delegation with named super-objects is essentially the behaviour of
Self (Chambers et al. 1991), where multiple parent pointers may exist in a single
object; Self does not allow initialisation code to execute in the context of the ob-
ject under construction or have any priority between parents, but does allow par-
ent pointers to be mutable. The nature of concatenation fundamentally supports
Positional multiple inheritance, simply copying in the contents of the inherited ob-
ject in place of the inherit statement, and the limitation in the single inheritance
concatenation model that the inherit clause must appear at the top of the object
constructor was purely syntactic. Named super-objects (or a ‘next-method’ func-
tionality) are also necessary to access overridden methods.

Positional inheritance with forwarding is quite straightforward, and strictly
named super-objects are not required: because forwarding only accesses the pub-
lic interface, an ordinary reference to each parent suffices. One of the primary
use-cases of Positional inheritance — initialising fields before invoking a super-
constructor — is irrelevant without uniform identity, as the super-constructor can-
not make a down-call into the inheriting object anyway.

Merged identity does not lend itself to the Positional extension because it relies
on taking over the identity of the parent object, and the identity of the child ob-
ject is established before any inheritance occurs. We have already established that
merged identity is not conducive to multiple inheritance, and multiple parents in

244

positional

the Positional model would result in repeated identity changes, some of whichmay
even lose methods. A different extension could merge multiple identities together,
or resolve the resulting issues in some other way, but we do not address this com-
bination here and simply exclude it from consideration as confusing at best.

Positional inheritance is the only one of our multiple-inheritance models that
permits inheriting from something obtained from a parent. A parent could define
a number of specialised ‘inner classes’, with the intention that its child would in
turn inherit from one of those specialisations as well. It is not obvious to us that
such an ability is useful, but nor is it obvious that it is not. We note this unique
ability, but do not pursue it further.

Positional inheritance reintroduces mutation during construction to uniform
identity, because each inherit adds new methods to the object. When multiple
methods are inherited by the same name, the last-inherited method wins out. An
unusual aspect is that while down-calls are always available, during construction
‘side-calls’ to co-parents of a common child can be made only to parents whose
inherit preceded this one. An object can even define a fresh constructor directly
inside of itself, and then inherit from it:

object {

method parent { object {⋯ } }

inherit parent

}

Each line of initialisation occurs after preceding inheritance statements and
before subsequent inheritance statements. If inheritprecedes a field initialisation or
other expression, upcalls to that parent are available from that expression; if inherit
follows a field initialisation, down-calls from that parent accessing that field are safe.
This means that amelia can implement the image method as a field accessor, and
safely initialise it before inheriting from a request to the graphic method:

def amelia = object {

def image = images.amelia

inherit graphic(canvas)

name≔ “Amelia”

}

245

multiple inheritance

Note that amelia must wait until after the inherit clause has completed before set-
ting the name field, as it is not defined in amelia until after it is defined in the
graphic method.

The implementation of Positional inheritance is provided in Figure 10.3.2. The
primary difficulty with implementing Positional inheritance is that the binding of
local definitions can change imperatively: a local request might refer to some defi-
nition in the surrounding scope, but after processing an inherit clause during the
initialisation phase that request might now refer to an inherited definition instead.
This presents a particular difficulty for substitution, which irreversibly binds an
unqualified name to a particular definition. Substitutions are now delayed by all
object expressions, as the inherit clauses are now nested in the object statements.
Rule E-Objmodifies theRule E-Obj originally defined in Figure 4.1.1, handling the
new statement form with the updated body translation and applying the delayed
substitution.

In order to implement the necessary dynamic scoping, we introduce an inherit
context c, which records the referencey of the object that an inherit clause appeared
inside, the source of the methods d that appeared directly in that object, and the
delayed substitutions s that were on that object. Any processed inherit clause has
an ordered stack of these contexts on it, from the actual object the inherit clause
appeared in, down to the bottom-most inheriting object. The super prefix is used
as a placeholder on newly created inherit expressions, so that Rule E-Obj can sub-
stitute it out for the initial inherit context.

By retaining the source of the methods and the substitution scope they ap-
peared in, the methods can be re-substituted in any new scope that appears. The
update auxiliary function applies this for any newly inherited methods d↑ to every
object in the current stack of contexts. Rule E-Inh handles any inherit expression,
constructing a new part-object y, and using update to include the new methods in
the original object and every intervening part-object, after applying overrides from
the existing methods. The value of self is bound in the inherited object body by the
last object reference in the inherit context, as that is the location of the original
object. The inherited body is processed in the same way as in Rule E-Obj. One of
the key distinctions here is that the value of self to substitute in the inherited body
already exists, whereas under single uniform identity the body is concatenated into

246

positional

(E-I/C)
t ≠ object { s↑ d↑ t↑ } 𝜎 ∣ t ⟶ 𝜎′ ∣ t′ t = y.m(v) ⟹ t′ = t; object {⋯}

𝜎 ∣ c inherit t as z s ⟶ 𝜎′ ∣ c inherit t′ as z s

(E-Obj)
y fresh a = identify(d) a unique

𝜎 ∣ object { s d t } ⟶ 𝜎(y ↦ { [s][self/a]d }) ∣ [s][⟨y,d, s⟩/super][y/self][self/a]t;y

(E-Inh)
y↑ fresh a = identify(d↑)

a unique d′↑ = [s↑][self/a]d c′ = ⟨y,d, (s, (y↑ as y↓)/z)⟩, c, ⟨y↓,d↓, s↓⟩
𝜎 ∣ (⟨y,d, s⟩, c, ⟨y↓,d↓, s↓⟩) inherit object { s↑ d↑ t↑ } as z s; t ⟶

update(𝜎(y↑ ↦ { d′↑ }),d′↑, c′) ∣
[self/a](([s↑][(⟨y,d↑, s↑⟩, c′)/super][y↓/self]t↑); [s][c′/super][(y as y↓)/x]t)

update ∶ (Var ⇀ Seq(Def)) × Seq(Def) × Seq(Ctxt) → Var ⇀ Seq(Def)
update(𝜎,d↑, ⋅) = 𝜎
update(𝜎,d↑, (⟨y,d, s⟩, c)) = update(𝜎(y ↦ { d′↑,d′,d′↓ }), (d′↑,d′), c)

where a↑ = identify(d↑) and a↓ = identify(d↓)
d′↑ = extend(d,d↑) d′ = [s][self/a↑][self/a↓]d

{ d↓ } = 𝜎(y) d′↓ = extend(d↓, (d,d↑))

Figure 10.3.2: Positional reduction

247

multiple inheritance

an object expression and self is substituted once that is evaluated.
Note that inherit expressions still delay substitutions, preventing them from

applying to expressions later in any sequence. After each inherit expression is eval-
uated, the substitutions are then applied to the following expressions, after being
shadowed by inherited definitions and the super-name defined by the as clause. Po-
sitional inheritance preserves the other traits of uniform identity from §9.3, with
the exception of stability: during construction, an object’s apparent structure and
behaviour can change. Applied to the simpler object inheritance models, it pre-
serves each of their unique properties.

248

11 Classless Inheritance

Table 11.1 compares the models according to the criteria established in Section 7.1.
Each model provides a different mix of the criteria, which may be appropriate for
different circumstances or languages. The uniform identity design provides the
closest match to Java semantics (given at the bottom of the table). No model pro-
vides every property; indeed, stability, down-calls, and inheriting from existing
objects are fundamentally in conflict, particularly during initialisation. The com-
plexity of each design and its implementation roughly increases down the table,
which is a further trade-off for language designers to consider.

The key insight of this investigation is that there are gaps in the design space
presented by Table 11.1: nomodel permits inheriting from preëxisting objects while
also permitting down-calls during initialisation, for instance. Combinations not
found in the table do exist in other languages, but they tend to require a significant
amount of dynamism to achieve, such as JavaScript’s dynamic binding of the this

parameter and the special role of the prototype field on constructors.
While delegation, forwarding, and concatenation can fundamentally support

inheriting fromarbitrary objects, the othermodels lean towards supporting planned
reuse rather than ad-hoc reuse — that is, inheriting from objects that have been de-
signed to be inherited from, rather than from any arbitrary object. Both planned
and unplanned reuse have solid software-engineering motivations; indeed, lan-
guage features exist both specifically to prevent inheritance (final or sealed classes)
and to enable ad-hoc reuse (structural types).

We do not wish to present one or another choice as better, but to draw atten-
tion to a potentially-unintended side effect of various points in the solution space.
Nonetheless, it is possible for any of the fresh-object-based systems to support dele-
gation or forwarding semantics simply by exposing amethod, accepting any object

249

classless inheritance

Reg. Down. Dist. Stable Exist. Mult. Overl. Par.
Forwarding no no yes yes yes no yes no
Delegation no no* yes no yes no yes no
Concatenation no no* no no yes no yes no
Merged yes no* no no* fresh no yes no
Uniform yes yes no yes fresh no yes no
Mult. Uniform yes yes no yes fresh yes yes no
Transform U. yes yes no no fresh yes no no
Positional U. yes yes no no fresh yes yes yes
Java yes yes no yes class no yes no

Table 11.1: Comparison of models of object-first inheritance. A * indicates answer
holds during construction, but is reversed after. The Overl. column indicates mul-
tiple definitions of the same method name in an object, accessible through super-
references. The Par. column indicates ability to inherit from something obtained
through another parent. All other columns relate to criteria from Section 7.1.

as an argument, that returns a fresh object whosemethods provide the behaviour in
question. Concatenation semantics can similarly be supported by inheriting from
a standard clone.

Diamond inheritance (repeatedly inheriting from the same class or trait two
or more times) has long been recognised as a problem in object-oriented language
design. Eiffel and C++ both offer the same essential solution to the problem: ar-
ranging that some classes can be replicated each time they are inherited, while other
classes will be inherited only once. Malayeri and Aldrich present a good discussion
of the problems diamonds cause for inheritance, and then argue that diamond in-
heritance can be prevented in languages, partly by supporting a requires clause in-
spired by Scala which indicates that a trait depends upon the eventual final self
object providing a set of methods, but not actually implementing those methods
itself (Malayeri and Aldrich 2009).

The twomultiple-inheritance systemswe describe are open to the sort of collab-
oration used to solve issues with diamond inheritance in other languages, but do
not require it. Because they are object-based, rather than class-based, some issues
of diamond inheritance do not arise, as each instance of a parent is (unavoidably)
separately obtained and constructed: conceptual problems such as whether fields

250

typing

should be duplicated if a class is inherited from multiple times are no longer rele-
vant, since the objects are logically separated and fields are naturally duplicated. In
an object-based system, coalescing similar ancestors is a dubious activity, as side ef-
fectsmay occur on the path to construction and be semanticallymeaningful, which
cannot happen in a static, declarative class system.

11.1 Typing

In our formal model we have made a conscious effort to handle as many errors
as possible in the operational semantics (i.e. at run-time) rather than by defining
erroneous programs as ill-formed (i.e. at compile-time). There are several reasons
for this, but most important is that we see further layers on top — such as type
systems or checks for diamond inheritance — as an important, but separable part
of the design process. Omitting such definitions highlights the inheritance designs,
and enables the core language of the model to be smaller and more general.

Extending the static semantics of Graceless to type the inheritance systems that
we have defined produces some interesting challenges. The primary difficulty is
that wemust know the exact type of an object in order to safely inherit from it, both
in terms of width and depth: to add new methods, the type system must know that
there is not a correspondingmethod in the super-object that is being overridden; to
override existingmethods, the type systemmust know exactly the type annotations
on the parameters and return of the overriddenmethod to ensure that the override
does not generalise the signature type. Under the structural subtyping of Graceless,
types need not describe the exact interface of an object, and there is no mechanism
to express an exact type.

Annotating a method with the exact type of the object it returns instead of
its public interface is potentially burdensome and may expose more information
about its implementation than is necessary when the object is not being inherited
from. In order to type a programwithout explicit and exact type annotations, exact
return types need to be inferred for inheritable methods. Because method declara-
tions in an object can mutually refer to one another, inference requires an unfortu-
nate dependency between typing a definition and determining the exact type of a
term.

251

classless inheritance

Consider the following program:

method first {

object {

inherit second

method inner {⋯ }

}

}

method second {

object {

inherit first.inner

}

}

The first method constructs an object that inherits from the second method, but
second constructs an object that inherits from a definition in the result of request-
ing first. An exact type for first is required to type second, but the reverse is also
true. Typing a program such as the one above requires more advanced constraint
solving.

Inherit clauses also introduce bindings into scope, so a further challenge is to
integrate this feature into the type environment Γ. Exact typing is also required
for this, since otherwise there may be definitions in the inherited object but not
specified in the type that shadow definitions surrounding the object, causing un-
qualified references to be typed incorrectly otherwise. All of the methods defined
in the super-object must be included in the environment Γ when typing the body
of any inheriting object.

The different dynamic semantics of our inheritance models also require dif-
ferent modifications to the type system. Typically an object-oriented type system
would aim to prevent the construction of objects with unimplemented methods,
just as an abstract class cannot be instantiated in Java. In the object inheritance
models it must be possible to create objects with required methods, because the
inherited objects have a distinct identity and are created individually before being
inherited from.

In a type system for the object inheritance models, direct requests to methods

252

conclusion

that create unimplemented objects should not be possible. Unimplemented objects
still need to exist for the purposes of inheritance, so we must build a parallel type
system for terms that are safe, yet remain ‘abstract’. Terms typed by this parallel
system are not safe to interact with directly, since any of there methods may raise
required, but are safe when inherited by an object that completes their implemen-
tation.

11.2 Conclusion

Object-based inheritance is unexpectedly complicated, especially when common-
place desires for functionality available in classical models are involved, and pro-
grammers have resorted to increasingly complex workarounds in existing object-
based languages. We have demonstrated that object inheritance without classes
is both viable and desirable, avoiding the conceptual complexity of an additional
conceptual entity (the class) in an object-oriented language without losing func-
tionality through careful feature selection, and set out a range of options with their
various trade-offs made explicit.

We have presented several models of object inheritance, including the well-
known approaches of delegation, forwarding, and concatenation. We have pre-
sented a novel extended operational semantics for a base language incorporating
advanced but standard features affected by inheritance, and formalised the models
as extensions to that single base language, formally demonstrating the subtle be-
havioural differences of each model. In particular, we have addressed the complex
questions of down-calls, object registration, stability, inheriting from preëxisting
objects, action at a distance, and multiple inheritance, as well as their interactions.

We have illustrated that object-based inheritance has the full range of possibil-
ities of classical inheritance, and showed that many of these models can be used as
effectively as purely declarative classes, but particular combinations — especially
class initialisation semantics combined with inheritance from preëxisting objects
— require a specific set of features usually reserved for very dynamic and reflec-
tive languages. Crucially, some of the concerns we have considered are directly at
odds with each other, and cannot be implemented at the same time without the
intervention of other, invariably more complicated language features.

253

Part IV

Conclusions

255

12 Classless Object Semantics

This dissertation has investigated the role of classes as a fundamental component
of the object-oriented paradigm. The overall conclusion of our investigation is
that classes need not be a foundational component of object-orientation, and that
objects alone can express much of the necessary functionality made available by
classes. This conclusion is couched in the premise that a classless language is in-
herently different to one that is class-based, and programs built in such a language
must take this into account. We have validated this conclusion by analysing the de-
sign and formal semantics of classless languages, comparing their properties and
considering case studies.

12.1 Graceless

We have developed Graceless, a classless object-oriented language that has served
as a useful platform for exploring the implementation of class features in terms
of objects. The Graceless language encodes much of the Grace programming lan-
guage, and with it much of the functionality of an object-oriented languages with-
out the need for classes as a fundamental construct. We have designed Graceless
to focus on the practical aspects of classless languages, particularly object initiali-
sation and self references as a point of differentiation from existing object theory.

We have demonstrated how Graceless is capable of checking the shallow type
of an object with coercions, and extended the language with casts to allow the ex-
pression of assumptions about the type of an object. We have considered these
casts in the context of gradual typing, demonstrating how Graceless casts are more
appropriate than traditional casts when typing with subsumption.

257

classless object semantics

12.2 Brand Typing

Brand objects implement the dynamic semantics of nominal types within the exist-
ing semantics of Grace, and are interpreted as nominal types in Grace’s pluggable
type checker. We have demonstrated how brand objects can be used to describe the
nominal type of a class, hiding the permission component of the brand within the
scope surrounding a constructor so that only the objects created by the constructor
can inhabit the associated type.

We have extendedGraceless to encodemuch of this design in the formalmodel
of Branded Graceless, and proven that the resulting type system soundly describes
the safe use of brand guards as nominal types. We have also considered a number
of recent developments to place our work in context, considering the role of type
members to pair a class with its type and express nominal subtyping relationships
outside of the scope of the brand, as well as other attempts to encode nominal types
on top of existing structurally-typed languages.

12.3 Object Inheritance

Wehave extended Graceless tomodel a number of different semantic models of ob-
ject inheritance, in order to better understand the differences between the models.
A driving part of this investigation is the expectations of ‘class-like’ behaviour, and
we chose each semantics in order tomodel the behaviour of different programming
languages, including the different phases of design that inheritance underwent in
Grace itself.

Our comparison of these models illustrate our conclusion that the interaction
of inheritance with object initialisation and self references means that standard
object inheritance mechanisms such as delegation are not sufficient to simulate
the behaviour of classes from popular languages such as Java. Several classless
object-oriented languages — most prominently JavaScript — only manage to emu-
late classes through the confluence of other, unrelated language features. We have
augmented our investigation by considering a number of different designs for sup-
porting multiple inheritance as extensions to all of the models that are capable of
it.

258

implementation

12.4 Implementation

Implementation has been an important part of these contributions, both for the
formal models with PLT Redex, and in the Grace language proper with our cus-
tom Hopper interpreter and contributions to other Grace implementations. Using
Grace’s dialect system, we have implemented both structural and nominal type sys-
tems in a platform independent manner, and have taken care in Hopper to ensure
that modules written under any type checker, including none at all, can safely in-
teract with one another.

The implementation of the inheritance semantics in Redex has allowed us to
run automatic tests of particular properties and immediately visualise the reduction
of any program, as well as demonstrate the many combinations of our semantics
with multiple inheritance without having to put every different combination to pa-
per. All of the implementation work that we have developed in support of these
contributions is publicly available as free software.

259

13 Future Work

Each of our contributions has the potential for further research; we have collected
and summarised our earlier discussions here. Where relevant, we refer back to the
section that contained a more in-depth discussion of the possible future work.

13.1 Graceless

Extending the type system of Graceless to embrace the discipline of gradual typing
is an obvious first step to more fully encoding the realities of the full Grace lan-
guage. Casts and coercions allow the expression of interoperation between typed
and untyped languages, but they differ significantly from the standard gradual typ-
ing literature by only describing down-casts and not including the unknown type
as part of the cast calculus. A cast insertion judgement that erases the unknown
component of every type as part of its translation from a gradually-typed program
to one in the cast calculus may be sufficient to encode the expected behaviour of
gradually-typed languages, including Grace, but that remains to be seen.

Graceless fails to uphold the gradual guarantee, as we have discussed in §5.5.3,
despite the fact that the language’s match construct cannot inspect the type anno-
tations on an object’s methods: the original impetus for the gradual guarantee was
earlier work of ours that included matching on type annotations (Jones and Noble
2014; Boyland 2014). When an assumption in a Graceless cast is invalidated, the
result is a raise of the underlying object.

Since a raise can be rescued, Graceless cannot meet the refined criteria for a
gradually-typed language (Siek, Vitousek, Cimini, et al. 2015): two programs that
are equivalent save for the precision of their type annotations can have different

261

future work

behaviour. Since it does not seem reasonable to require that a run-time type error
must fatally crash a program, formal languages that allow rescuing type errors will
require a more nuanced expression of the gradual guarantee.

13.2 Brand Typing

A proper theory of bounded type members are the missing ingredient for fully
supporting the conceptual design of brand objects as nominal types, discussed in
§6.4.1. Branded Graceless cannot reason about subtyping between nominal types
without the brand permission object — which should be private to the class — ex-
posed to the client code. While there are other potential solutions to this problem,
the recent advent of the Dependent Object Types calculus as a well developed and
sound theory of typemembers for small-step semantics is the logical solution, since
this feature would also be useful for the goal of modelling the semantics of Grace
programs with public type exports in their objects (Rompf and Amin 2016).

Type members also allow the easy pairing of the nominal type and the object
constructor of a class. Branded Graceless must pass these two components as sepa-
rate arguments to a client instead of grouping them together in a single object. The
Tagged Objects language uses dependent sums in order to permit the return type
of the constructor to depend on the value of the accompanying tag (Lee et al. 2015),
but such sums are subsumed by type members.

The outstanding question for a language like Branded Graceless extended with
type members is how this affects the run-time match construct — which cannot
match directly on a type, only perform a shallow structural test — so it is likely the
case that a class would need to include a third component to act as a pattern for the
purposes of determining if an object was constructed by a particular class at run-
time. The type of this pattern would also need to indicate that a matching object
satisfied the associated type of the class. This is not a concern for the practical
implementation, which can match on types directly.

262

object inheritance

13.3 Object Inheritance

As discussed in §11.1, we have not presented accompanying type systems for any
of the object inheritance systems that we modelled. The primary challenge here
is collecting exact information about the type of the inherited object, since both
width and depth subtyping of the structural types of Graceless are at odds with the
needs of typing inheritance. The exact information is needed to ensure both that
method overrides respect the type annotations on the overridden methods, and
that new methods are not accidentally overriding methods that are in the object
but not included in the type.

There has been some work in typing first-class classes with row typing and the
ability to express in a type what methods do not appear in any inhabiting object
(Takikawa et al. 2012), but Grace opts for the simpler mechanism that the relevant
object constructor must be statically resolved. Even collecting this information
can be difficult, since each constructor may also inherit from another definition,
and there is no inherent ordering in the class declarations. Unlike the declarative
classes of languages like Java, the relevant constructors can be buried arbitrarily
deep inside of a term.

While we have explored a variety of semantic models, there is the potential
for both a wider and deeper analysis of object inheritance. Many classless object-
oriented programming languages featuremutable object structure (as objectsmem-
bers introduced imperatively): as discussed in §8.2.1, modelling this feature makes
a language significantly more difficult to soundly type-check, but there are more
opportunities to find a semantics that can more accurately simulate the behaviour
of classes. Other features — such as the promises of E that resolve in-place (Miller
2006) — could also be worth modelling, though they are also likely to present a
significant challenge for developing a coherent and sound type system.

263

Bibliography

Abadi, M. “Baby Modula-3 and a Theory of Objects”. In: Journal of Functional Pro-
gramming 4.2 (1994), pp. 249–283.

Abadi, M. and Cardelli, L. A Theory of Objects. New York: Springer-Verlag, 1996.
Abadi, M., Cardelli, L., Pierce, B. C., and Plotkin, G. D. “Dynamic Typing in a Stat-

ically Typed Language”. In: ACM Transactions on Programming Languages and
Systems. TOPLAS 13.2 (1991), pp. 237–268. doi: 10.1145/103135.103138.

Aldrich, J., Sunshine, J., Saini, D., and Sparks, Z. “Typestate-oriented program-
ming”. In: Proceedings of the 24th Conference on Object-Oriented Programming,
Systems, Languages, and Applications. OOPSLA 2009. Orlando, FL, USA, Oct.
2009, pp. 1015–1022. doi: 10.1145/1639950.1640073.

Amin, N. “Dependent Object Types”. PhD thesis. Lausanne, Switzerland: École
polytechnique fédérale de Lausanne, Aug. 2016.

Amin, N. and Tate, R. “Java and Scala’s Type Systems Are Unsound: The Existen-
tial Crisis of Null Pointers”. In: Proceedings of the 31st International Conference
on Object-Oriented Programming, Systems, Languages, and Applications. OOP-
SLA’16. Amsterdam, Netherlands, 2016, pp. 838–848. doi: 10.1145/2983990.
2984004.

Andreae, C., Noble, J., Markstrum, S., and Millstein, T. D. “A framework for im-
plementing pluggable type systems”. In: Proceedings of the 21st International
Conference on Object-Oriented Programming Systems, Languages, and Applica-
tions. OOPSLA’06. Portland, OR, USA, Oct. 2006, pp. 57–74. doi: 10.1145/
1167473.1167479.

Apel, S., Kästner, C., and Lengauer, C. “Feature Featherweight Java: a calculus for
feature-oriented programming and stepwise refinement”. In: Proceedings of the
7th International Conference on Generative Programming and Component Engi-

265

https://doi.org/10.1145/103135.103138
https://doi.org/10.1145/1639950.1640073
https://doi.org/10.1145/2983990.2984004
https://doi.org/10.1145/2983990.2984004
https://doi.org/10.1145/1167473.1167479
https://doi.org/10.1145/1167473.1167479

neering. GPCE’08. Nashville, TN, USA, Oct. 2008, pp. 101–112. doi: 10.1145/
1449913.1449931.

Arnold, K., Gosling, J., and Holmes, D. The Java Programming Language, Third
Edition. Addison-Wesley, 2000. isbn: 0-201-70433-1.

Baars, A. I. and Swierstra, S. D. “Typing dynamic typing”. In: Proceedings of the 7th
International Conference on Functional Programming. ICFP’02. Pittsburgh, PA,
USA, Oct. 2002, pp. 157–166. doi: 10.1145/581478.581494.

Barendregt, H. P. The Lambda Calculus, Its Syntax and Semantics. North-Holland,
1981. isbn: 978-0444875082.

Baumgartner, G. and Russo, V. F. “Implementing Signatures for C++”. In: ACM
Transactions onProgramming Languages and Systems. TOPLAS 19.1 (1997), pp. 153–
187. doi: 10.1145/239912.239922.

Bettini, L., Capecchi, S., and Venneri, B. “Featherweight Java with multi-methods”.
In: Proceedings of the 5th International Symposium on Principles and Practice
of Programming in Java. PPPJ’07. Lisbon, Portugal, Sept. 2007, pp. 83–92. doi:
10.1145/1294325.1294337.

Bierman, G. M., Abadi, M., and Torgersen, M. “Understanding TypeScript”. In:
Proceedings of the 28th European Conference on Object-Oriented Programming.
ECOOP’14. July 2014, pp. 257–281. doi: 10.1007/978-3-662-44202-9_11.

Birtwistle,G.M.,Dahl,O.-J.,Myhrhaug, B., andNygaard,K. SimulaBegin. Chartwell-
Bratt Ltd., 1979. isbn: 978-0862380090.

Black, A. P., Bruce, K. B., Homer, M., and Noble, J. “Grace: the absence of (inessen-
tial) difficulty”. In: Proceedings of the 11th Symposium on New Ideas in Program-
ming and Reflections on Software. Onward!’12. Tucson, AZ, USA: ACM, Oct.
2012, pp. 85–98. doi: 10.1145/2384592.2384601.

Black, A. P., Bruce, K. B., Homer,M., Noble, J., Ruskin, A., and Yannow, R. “Seeking
Grace: a new object-oriented language for novices”. In: Proceedings of the 44th
Technical Symposium on Computer Science Education. SIGCSE’13. Mar. 2013,
pp. 129–134. doi: 10.1145/2445196.2445240.

Black, A. P., Bruce, K. B., andNoble, J.The Grace Programming LanguageDraft Spec-
ification Version 0.7.0. 2016. url: http://gracelang.org/documents/
grace-spec-0.7.0.pdf.

266

https://doi.org/10.1145/1449913.1449931
https://doi.org/10.1145/1449913.1449931
https://doi.org/10.1145/581478.581494
https://doi.org/10.1145/239912.239922
https://doi.org/10.1145/1294325.1294337
https://doi.org/10.1007/978-3-662-44202-9_11
https://doi.org/10.1145/2384592.2384601
https://doi.org/10.1145/2445196.2445240
http://gracelang.org/documents/grace-spec-0.7.0.pdf
http://gracelang.org/documents/grace-spec-0.7.0.pdf

Black, A. P., Hutchinson, N. C., Jul, E., and Levy, H. M. “The Development of the
Emerald Programming Language”. In: Proceedings of the 3rd Conference on His-
tory of Programming Languages. HOPL-III. San Diego, California, 2007, pp. 11-
1–11-51. doi: 10.1145/1238844.1238855.

Black, A. P. and Palsberg, J. “Foundations of Object-Oriented Languages — Work-
shop Report”. In: SIGPLAN Notices 29.3 (1994), pp. 3–11.

Borning, A. H. “Classes Versus Prototypes in Object-Oriented Languages”. In: Pro-
ceedings of 1986 ACM Fall Joint Computer Conference. ACM’86. Dallas, Texas,
USA: IEEE Computer Society Press, 1986, pp. 36–40. isbn: 0-8186-4743-4.

Boyland, J. T. “The problem of structural type tests in a gradual-typed language”.
In: Proceedings of the 21st International Workshop on Foundations of Object-
Oriented Languages. FOOL’14. 2014.

Bracha,G.NewspeakProgramming LanguageDraft SpecificationVersion 0.096. Tech.
rep. Apr. 2016.

Bracha, G. “Pluggable Type Systems”. In: Proceedings of the OOPSLA Workshop on
Revival of Dynamic Languages. Oct. 2004.

Bracha, G. “The Strongtalk type system for Smalltalk”. In: Proceedings of the OOP-
SLA Workshop on Extending the Smalltalk Language. 1996.

Bracha, G. and Griswold, D. “Strongtalk: Typechecking Smalltalk in a Production
Environment”. In: Proceedings of the 8th International Conference on Object-
Oriented Programming Systems, Languages, andApplications. OOPSLA’93.Wash-
ington, D.C., USA: ACM, 1993, pp. 215–230. doi: 10.1145/165854.165893.

Bruce, K. B. “A Paradigmatic Object-Oriented Programming Language: Design,
Static Typing and Semantics”. In: Journal of Functional Programming 4.2 (1994),
pp. 127–206. doi: 10.1017/S0956796800001039.

Bruce, K. B. Foundations of Object-Oriented Languages: Types and Semantics. MIT
Press, 2002.

Büchi, M. and Weck, W. “Compound Types for Java”. In: Proceedings of the 13th
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications. OOPSLA’98. Vancouver, BC, Canada, Oct. 1998, pp. 362–373.
doi: 10.1145/286936.286975.

C# Project. C# Reference. July 2015. url: https://msdn.microsoft.com/en-
us/library/618ayhy6.aspx.

267

https://doi.org/10.1145/1238844.1238855
https://doi.org/10.1145/165854.165893
https://doi.org/10.1017/S0956796800001039
https://doi.org/10.1145/286936.286975
https://msdn.microsoft.com/en-us/library/618ayhy6.aspx
https://msdn.microsoft.com/en-us/library/618ayhy6.aspx

Cameron, N., Drossopoulou, S., and Ernst, E. “AModel for Java withWildcards”. In:
Proceedings of the 22nd European Conference on Object-Oriented Programming.
ECOOP’08. Paphos, Cyprus, July 2008, pp. 2–26. doi: 10.1007/978-3-540-
70592-5_2.

Cardelli, L. “Structural Subtyping and the Notion of Power Type”. In: Proceedings
of the 15th Symposium on Principles of Programming Languages. POPL’88. San
Diego, CA, USA, Jan. 1988, pp. 70–79. doi: 10.1145/73560.73566.

Cardelli, L., Donahue, J. E., Jordan,M. J., Kalsow, B., andNelson, G. “TheModula-3
Type System”. In: Proceedings of the 16th Symposium on Principles of Program-
ming Languages. POPL’89. Austin, TX, USA, Jan. 1989, pp. 202–212. doi: 10.
1145/75277.75295.

Cardelli, L., Martini, S., Mitchell, J. C., and Scedrov, A. “An Extension of System F
with Subtyping”. In: Information and Computation 109.1 (1994), pp. 4–56. doi:
10.1006/inco.1994.1013.

Cardelli, L. and Wegner, P. “On Understanding Types, Data Abstraction, and Poly-
morphism”. In: Computing Surveys 17.4 (1985), pp. 471–522. doi: 10.1145/
6041.6042.

Castanos, J. G., Edelsohn, D., Ishizaki, K., Nagpurkar, P., Nakatani, T., Ogasawara,
T., and Wu, P. “On the benefits and pitfalls of extending a statically typed lan-
guage JIT compiler for dynamic scripting languages”. In: Proceedings of the 27th
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions. OOPSLA’12. Tucson, AZ, USA, Oct. 2012, pp. 195–212. doi: 10.1145/
2384616.2384631.

Chalin, P., Kiniry, J. R., Leavens, G. T., and Poll, E. “Beyond Assertions: Advanced
Specification and Verification with JML and ESC/Java2”. In: Proceedings of the
4th International Symposium on Formal Methods for Components and Objects.
FMCO’05. Amsterdam, The Netherlands, Nov. 2005, pp. 342–363. doi: 10 .
1007/11804192_16.

Chambers, C., Ungar, D., Chang, B., and Hölzle, U. “Parents are Shared Parts of
Objects: Inheritance and Encapsulation in SELF”. In: Lisp and Symbolic Com-
putation 4.3 (1991), pp. 207–222.

Cimini, M. and Siek, J. G. “Automatically Generating the Dynamic Semantics of
Gradually Typed Languages”. In: Proceedings of the 44th Symposium on Princi-

268

https://doi.org/10.1007/978-3-540-70592-5_2
https://doi.org/10.1007/978-3-540-70592-5_2
https://doi.org/10.1145/73560.73566
https://doi.org/10.1145/75277.75295
https://doi.org/10.1145/75277.75295
https://doi.org/10.1006/inco.1994.1013
https://doi.org/10.1145/6041.6042
https://doi.org/10.1145/6041.6042
https://doi.org/10.1145/2384616.2384631
https://doi.org/10.1145/2384616.2384631
https://doi.org/10.1007/11804192_16
https://doi.org/10.1007/11804192_16

ples of Programming Languages. POPL’17. Paris, France, 2017, pp. 789–803. doi:
10.1145/3009837.3009863.

Cimini, M. and Siek, J. G. “The Gradualizer: A Methodology and Algorithm for
Generating Gradual Type Systems”. In: Proceedings of the 43rd Symposium on
Principles of Programming Languages. POPL’16. St. Petersburg, FL, USA, 2016,
pp. 443–455. doi: 10.1145/2837614.2837632.

Clarke, D. G., Potter, J., and Noble, J. “Ownership Types for Flexible Alias Protec-
tion”. In: Proceedings of the 13th International Conference on Object-Oriented
Programming, Systems, Languages, and Applications. OOPSLA’98. Vancouver,
BC, Canada, Oct. 1998, pp. 48–64. doi: 10.1145/286936.286947.

Cook, W. R. “A Proposal for Making Eiffel Type-Safe”. In: Proceedings of the 3rd Eu-
ropean Conference on Object-Oriented Programming. ECOOP’89. Nottingham,
UK, July 1989, pp. 57–70.

Cook, W. R. “On Understanding Data Abstraction, Revisited”. In: Proceedings of
the 24th Conference on Object-Oriented Programming, Systems, Languages, and
Applications. OOPSLA 2009. Orlando, FL, USA: ACM, Oct. 2009, pp. 557–572.
doi: 10.1145/1640089.1640133.

Cook, W. R., Hill, W. L., and Canning, P. S. “Inheritance Is Not Subtyping”. In: Pro-
ceedings of the 17th Annual Symposium on Principles of Programming Languages.
POPL’90. San Francisco, CA, USA, Jan. 1990, pp. 125–135. doi: 10 . 1145 /
96709.96721.

Cook, W. R. and Palsberg, J. “A Denotational Semantics of Inheritance and Its Cor-
rectness”. In: Proceedings of the 4th International Conference on Object-oriented
Programming Systems, Languages and Applications. OOPSLA’89. New Orleans,
Louisiana, USA, Oct. 1989, pp. 433–443. doi: 10.1145/74877.74922.

Dart Project.Dart Programming Language Specification. StandardECMA-408. Ecma
International, June 2015.

Dubochet, G. and Odersky, M. “Compiling structural types on the JVM: a compar-
ison of reflective and generative techniques from Scala’s perspective”. In: Pro-
ceedings of the 4th Workshop on the Implementation, Compilation, Optimization
of Object-Oriented Languages, Programs and Systems. ICOOOLPS’09. Genova,
Italy, July 2009, pp. 34–41. doi: 10.1145/1565824.1565829.

269

https://doi.org/10.1145/3009837.3009863
https://doi.org/10.1145/2837614.2837632
https://doi.org/10.1145/286936.286947
https://doi.org/10.1145/1640089.1640133
https://doi.org/10.1145/96709.96721
https://doi.org/10.1145/96709.96721
https://doi.org/10.1145/74877.74922
https://doi.org/10.1145/1565824.1565829

ECMAScript Project. ECMAScript 2016 Language Specification. Ed. by A. Wirfs-
Brock. 6th Edition. ECMA-262. Ecma International, June 2016.

Fähndrich, M. and Xia, S. “Establishing object invariants with delayed types”. In:
Proceedings of the 22nd International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications. OOPSLA’07. Montreal, Quebec,
Canada, Oct. 2007, pp. 337–350. doi: 10.1145/1297027.1297052.

Felleisen, M., Findler, R. B., and Flatt, M. Semantics Engineering with PLT Redex.
MIT Press, 2009.

Felleisen, M., Findler, R. B., Flatt, M., Krishnamurthi, S., Barzilay, E., McCarthy,
J. A., and Tobin-Hochstadt, S. “The Racket Manifesto”. In: 1st Summit on Ad-
vances in Programming Languages. SNAPL’15. May 2015, pp. 113–128. doi: 10.
4230/LIPIcs.SNAPL.2015.113.

Findler, R. B. and Felleisen, M. “Contracts for Higher-Order Functions”. In: Pro-
ceedings of the 7th International Conference onFunctional Programming. ICFP’02.
Pittsburgh, PA, USA, Oct. 2002, pp. 48–59. doi: 10.1145/581478.581484.

Flanagan, C., Leino, K. R. M., Lillibridge, M., Nelson, G., Saxe, J. B., and Stata,
R. “Extended Static Checking for Java”. In: Proceedings of the 23rd Conference
on Programming Language Design and Implementation. PLDI’02. June 2002,
pp. 234–245. doi: 10.1145/512529.512558.

Furr, M., An, J., Foster, J. S., and Hicks, M. “Static Type Inference for Ruby”. In:
Proceedings of the 2009 ACM Symposium on Applied Computing. SAC’09. Hon-
olulu, Hawaii: ACM, 2009, pp. 1859–1866. doi: 10.1145/1529282.1529700.

Garcia, R. “Calculating Threesomes, with Blame”. In: Proceedings of the 18th Inter-
national Conference on Functional Programming. ICFP’13. Boston, MA, USA,
Oct. 2013, pp. 417–428. doi: 10.1145/2500365.2500603.

Garcia, R. and Cimini, M. “Principal Type Schemes for Gradual Programs”. In:
Proceedings of the 42nd Symposium on Principles of Programming Languages.
POPL’15. Mumbai, India, Jan. 2015, pp. 303–315. doi: 10 . 1145 / 2676726 .
2676992.

Garcia, R., Clark, A. M., and Tanter, É. “Abstracting Gradual Typing”. In: Proceed-
ings of the 43rd Symposium on Principles of Programming Languages. POPL’16.
St. Petersburg, FL,USA, 2016, pp. 429–442. doi:10.1145/2837614.2837670.

270

https://doi.org/10.1145/1297027.1297052
https://doi.org/10.4230/LIPIcs.SNAPL.2015.113
https://doi.org/10.4230/LIPIcs.SNAPL.2015.113
https://doi.org/10.1145/581478.581484
https://doi.org/10.1145/512529.512558
https://doi.org/10.1145/1529282.1529700
https://doi.org/10.1145/2500365.2500603
https://doi.org/10.1145/2676726.2676992
https://doi.org/10.1145/2676726.2676992
https://doi.org/10.1145/2837614.2837670

Gil, J. and Maman, I. “Whiteoak: introducing structural typing into Java”. In: Pro-
ceedings of the 23rd Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications. OOPSLA’08. Nashville, TN, USA, Oct. 2008, pp. 73–
90. doi: 10.1145/1449764.1449771.

Gil, J. and Shragai, T. “Are We Ready for a Safer Construction Environment?” In:
Proceedings of the 23rd European Conference on Object-Oriented Programming.
ECOOP’09. Genoa, Italy, July 2009, pp. 495–519. doi: 10.1007/978-3-642-
03013-0_23.

Glew, N. “Type Dispatch for Named Hierarchical Types”. In: Proceedings of the 4th
International Conference on Functional Programming. ICFP’99. Paris, France,
Sept. 1999, pp. 172–182. doi: 10.1145/317636.317797.

Go Project. The Go Programming Language Specification. Version of May 31. 2016.
url: https://golang.org/ref/spec.

Goldberg, A. and Robson, D. Smalltalk-80: The Language and its Implementation.
Addison-Wesley, 1983. isbn: 978-0201113716.

Graver, J. O. and Johnson, R. E. “A Type System for Smalltalk”. In: Proceedings of the
17th Annual Symposium on Principles of Programming Languages. POPL’90. San
Francisco, CA, USA, Jan. 1990, pp. 136–150. doi: 10.1145/96709.96722.

Hall, C. V., Hammond, K., Peyton-Jones, S. L., and Wadler, P. “Type Classes in
Haskell”. In:ACMTransactions onProgramming Languages and Systems. TOPLAS
18.2 (1996), pp. 109–138. doi: 10.1145/227699.227700.

Harper, R. Practical Foundations for Programming Languages. Cambridge Univer-
sity Press, 2012. isbn: 9781107150300.

Henglein, F. “Dynamic typing: syntax and proof theory”. In: Science of Computer
Programming 22.3 (1994), pp. 197–230. doi: http://dx.doi.org/10.1016/
0167-6423(94)00004-2.

Herman,D., Tomb,A., and Flanagan, C. “Space-efficient gradual typing”. In:Higher-
Order and Symbolic Computation 2 (2010), pp. 167–189. doi:10.1007/s10990-
011-9066-z.

Homer, M., Bruce, K. B., Noble, J., and Black, A. P. “Modules As Gradually-typed
Objects”. In: Proceedings of the 7th Workshop on Dynamic Languages and Ap-
plications. DYLA’13. Montpellier, France, July 2013, 1:1–1:8. doi: 10 . 1145 /
2489798.2489799.

271

https://doi.org/10.1145/1449764.1449771
https://doi.org/10.1007/978-3-642-03013-0_23
https://doi.org/10.1007/978-3-642-03013-0_23
https://doi.org/10.1145/317636.317797
https://golang.org/ref/spec
https://doi.org/10.1145/96709.96722
https://doi.org/10.1145/227699.227700
https://doi.org/http://dx.doi.org/10.1016/0167-6423(94)00004-2
https://doi.org/http://dx.doi.org/10.1016/0167-6423(94)00004-2
https://doi.org/10.1007/s10990-011-9066-z
https://doi.org/10.1007/s10990-011-9066-z
https://doi.org/10.1145/2489798.2489799
https://doi.org/10.1145/2489798.2489799

Homer, M., Jones, T., Noble, J., Bruce, K. B., and Black, A. P. “Graceful Dialects”. In:
Proceedings of the 28th European Conference on Object-Oriented Programming.
ECOOP’14. July 2014, pp. 131–156. doi: 10.1007/978-3-662-44202-9_6.

Homer, M., Noble, J., Bruce, K. B., Black, A. P., and Pearce, D. J. “Patterns as objects
in Grace”. In: Proceedings of the 8th Symposium on Dynamic Languages. DLS’12.
Tucson, AZ, USA, Oct. 2012, pp. 17–28. doi: 10.1145/2384577.2384581.

Horwat, W. and Miller, M. S. ES6 Strawman: Trademarks. 2011. url: http://
wiki.ecmascript.org/doku.php?id%20=strawman:trademarks.

Ierusalimschy, R., Figueiredo, L. H. de, and Filho, W. C. “The Evolution of Lua”. In:
Proceedings of the Third History of Programming Languages Conference. HOPL-
III. SanDiego,CA,USA, June 2007, pp. 1–26. doi:10.1145/1238844.1238846.

Igarashi, A., Pierce, B. C., andWadler, P. “Featherweight Java: a minimal core calcu-
lus for Java and GJ”. In: ACM Transactions on Programming Languages and Sys-
tems. TOPLAS 23.3 (May 2001), pp. 396–450. doi: 10.1145/503502.503505.

Ina, L. and Igarashi, A. “Gradual typing for generics”. In: Proceedings of the 26th
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications. OOPSLA’11. Portland, OR, USA, Oct. 2011, pp. 609–624. doi:
10.1145/2048066.2048114.

Ingalls, D. “The Smalltalk-76 Programming System”. In: Proceedings of the 5th Sym-
posium on Principles of Programming Languages. POPL’78. Tucson, AZ, USA,
Jan. 1978, pp. 9–16. doi: 10.1145/512760.512762.

James, P. R. and Chalin, P. “Extended static checking in JML4: benefits of multiple-
prover support”. In: Proceedings of the 24th Annual Symposium on Applied Com-
puting. SAC’09. Honolulu, HI, USA, Mar. 2009, pp. 609–614. doi: 10.1145/
1529282.1529410.

Jantz,M. R. andKulkarni, P. A. “Performance potential of optimization phase selec-
tion during dynamic JIT compilation”. In: Proceedings of the 9th Conference on
Virtual Execution Environments. VEE’13. Houston, TX, USA, Aug. 2013, pp. 131–
142. doi: 10.1145/2451512.2451539.

Jones, T. Hopper. 2016. url: https://github.com/zmthy/hopper.
Jones, T., Homer, M., and Noble, J. “Brand Objects for Nominal Typing”. In: Pro-

ceedings of the 29th EuropeanConference onObject-Oriented Programming. ECOOP’15.
July 2015, pp. 198–221. doi: 10.4230/LIPIcs.ECOOP.2015.198.

272

https://doi.org/10.1007/978-3-662-44202-9_6
https://doi.org/10.1145/2384577.2384581
http://wiki.ecmascript.org/doku.php?id%20=strawman:trademarks
http://wiki.ecmascript.org/doku.php?id%20=strawman:trademarks
https://doi.org/10.1145/1238844.1238846
https://doi.org/10.1145/503502.503505
https://doi.org/10.1145/2048066.2048114
https://doi.org/10.1145/512760.512762
https://doi.org/10.1145/1529282.1529410
https://doi.org/10.1145/1529282.1529410
https://doi.org/10.1145/2451512.2451539
https://github.com/zmthy/hopper
https://doi.org/10.4230/LIPIcs.ECOOP.2015.198

Jones, T., Homer, M., Noble, J., and Bruce, K. “Object Inheritance Without Classes”.
In: Proceedings of the 30th European Conference on Object-Oriented Program-
ming. Ed. by S. Krishnamurthi and B. S. Lerner. Vol. 56. ECOOP’16. Dagstuhl,
Germany: SchlossDagstuhl–Leibniz-Zentrum fuer Informatik, 2016, 13:1–13:26.
doi: 10.4230/LIPIcs.ECOOP.2016.13.

Jones, T. and Noble, J. “Tinygrace: A simple, safe, and structurally typed language”.
In: Proceedings of the 16th International Workshop on Formal Techniques for
Java-like Programs. FTfJP’14.Uppsala, Sweden, July 2014, 3:1–3:6. doi:10.1145/
2635631.2635848.

Kiczales, G., des Rivières, J., and Bobrow, D. G. The Art of the Metaobject Protocol.
MIT Press, 1991. isbn: 978-0262610742.

King, G. The Ceylon Lanugage. Version 1.3. 2016. url: https://ceylon-lang.
org/documentation/1.3/spec/.

Läufer, K., Baumgartner, G., andRusso, V. F. “Safe Structural Conformance for Java”.
In: The Computer Journal 43.6 (2000), pp. 469–481. doi: 10.1093/comjnl/
43.6.469.

Lee, J., Aldrich, J., Shaw, T., and Potanin, A. “A Theory of Tagged Objects”. In:
Proceedings of the 29th European Conference on Object-Oriented Programming.
ECOOP 2015. Prague, Czech Republic, July 2015, pp. 174–197. doi: 10.4230/
LIPIcs.ECOOP.2015.174.

Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D., andVouillon, J.The OCaml
System Release. 4.03. Institut National de Recherche en Informatique et en Au-
tomatique, 2016. url: http://caml.inria.fr/pub/docs/manual-
ocaml.

Lieberman,H. “UsingPrototypicalObjects to Implement SharedBehavior inObject-
Oriented Systems”. In: Proceedings of the 1st Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications. OOPSLA’86. Portland, Ore-
gon, USA: ACM, 1986, pp. 214–223. doi: 10.1145/28697.28718.

Lindholm, T., Yellin, F., Bracha, G., and Buckley, A. Java Virtual Machine Specifi-
cation. Java SE 7 Edition. 2013. url: https://docs.oracle.com/javase/
specs/jvms/se7/html/index.html.

273

https://doi.org/10.4230/LIPIcs.ECOOP.2016.13
https://doi.org/10.1145/2635631.2635848
https://doi.org/10.1145/2635631.2635848
https://ceylon-lang.org/documentation/1.3/spec/
https://ceylon-lang.org/documentation/1.3/spec/
https://doi.org/10.1093/comjnl/43.6.469
https://doi.org/10.1093/comjnl/43.6.469
https://doi.org/10.4230/LIPIcs.ECOOP.2015.174
https://doi.org/10.4230/LIPIcs.ECOOP.2015.174
http://caml.inria.fr/pub/docs/manual-ocaml
http://caml.inria.fr/pub/docs/manual-ocaml
https://doi.org/10.1145/28697.28718
https://docs.oracle.com/javase/specs/jvms/se7/html/index.html
https://docs.oracle.com/javase/specs/jvms/se7/html/index.html

Liquori, L. and Spiwack, A. “FeatherTrait: A modest extension of Featherweight
Java”. In: ACM Transactions on Programming Languages and Systems. TOPLAS
30.2 (Mar. 2008), 11:1–11:32. doi: 10.1145/1330017.1330022.

Liskov, B. “Keynote Address — Data Abstraction and Hierarchy”. In: Addendum to
the Proceedings of the 2nd International Conference onObject-Oriented Program-
ming Systems, Languages and Applications. OOPSLA’87. Orlando, FL, USA, Oct.
1987, pp. 17–34. doi: 10.1145/62138.62141.

Lua-Users. Object Oriented Programming. [Online; accessed 30-November-2015].
2014. url:http://lua-users.org/wiki/ObjectOrientedProgramming.

Mackay, J., Hannes, Potanin, M. A., Groves, L., and Cameron, N. “Encoding Feath-
erweight Java with Assignment and Immutability Using the Coq Proof Assis-
tant”. In: Proceedings of the 14th International Workshop on Formal Techniques
for Java-like Programs. FTfJP’12. Beijing, China, July 2012, pp. 11–19. doi: 10.
1145/2318202.2318206.

Malayeri, D. and Aldrich, J. “Combining structural subtyping and external dis-
patch”. In: Companion to the 22nd International Conference on Object-Oriented
Programming, Systems, Languages, andApplications. OOPSLA’07.Montreal,Que-
bec, Canada, Oct. 2007, pp. 789–790. doi: 10.1145/1297846.1297889.

Malayeri, D. and Aldrich, J. “CZ: Multiple Inheritance Without Diamonds”. In:
Proceedings of the 24th International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications. OOPSLA’09. Orlando, FL, USA,
Oct. 2009, pp. 21–40. doi: 10.1145/1640089.1640092.

Malayeri, D. and Aldrich, J. “Integrating Nominal and Structural Subtyping”. In:
Proceedings of the 22nd European Conference on Object-Oriented Programming.
ECOOP’08. Paphos, Cyprus, July 2008, pp. 260–284. doi: 10.1007/978-3-
540-70592-5_12.

Markstrum, S., Marino, D., Esquivel, M., Millstein, T. D., Andreae, C., and No-
ble, J. “JavaCOP: Declarative pluggable types for Java”. In: ACM Transactions
on Programming Languages and Systems. TOPLAS 32.2 (2010). doi: 10.1145/
1667048.1667049.

Martelli, A. Type checking in Python? 2000. url: https://groups.google.
com/forum/#!msg/comp.lang.python/CCs2oJdyuzc/NYjla5HKMOIJ.

Martin, R. C. “The Interface Segregation Principle”. In: C++ Report (June 1996).

274

https://doi.org/10.1145/1330017.1330022
https://doi.org/10.1145/62138.62141
http://lua-users.org/wiki/ObjectOrientedProgramming
https://doi.org/10.1145/2318202.2318206
https://doi.org/10.1145/2318202.2318206
https://doi.org/10.1145/1297846.1297889
https://doi.org/10.1145/1640089.1640092
https://doi.org/10.1007/978-3-540-70592-5_12
https://doi.org/10.1007/978-3-540-70592-5_12
https://doi.org/10.1145/1667048.1667049
https://doi.org/10.1145/1667048.1667049
https://groups.google.com/forum/#!msg/comp.lang.python/CCs2oJdyuzc/NYjla5HKMOIJ
https://groups.google.com/forum/#!msg/comp.lang.python/CCs2oJdyuzc/NYjla5HKMOIJ

Meyer, B. Design by Contract. Tech. rep. TR-EI-12/CO. Interactive Software Engi-
neering Inc., 1986.

Miller, M. S. “Robust Composition: Towards a Unified Approach to Access Con-
trol and Concurrency Control”. PhD thesis. Baltimore, Maryland, USA: Johns
Hopkins University, May 2006.

Milner, R., Tofte, M., Harper, R., and MacQueen, D. The Definition of Standard ML
(Revised). MIT Press, 1997. isbn: 978-0262631815.

Morris Jr., J. H. “Protection in Programming Languages”. In: Commun. ACM 16.1
(Jan. 1973), pp. 15–21. issn: 0001-0782. doi: 10.1145/361932.361937. url:
http://doi.acm.org/10.1145/361932.361937.

Nelson, G., ed. Systems Programming with Modula-3. Prentice-Hall, 1991.
Nistor, L., Kurilova, D., Balzer, S., Chung, B., Potanin, A., and Aldrich, J. “Wyvern:

A Simple, Typed, and Pure Object-Oriented Language”. In: Proceedings of the
5th Workshop on Mechanisms for Specialization, Generalization and Inheritance.
MASPEGHI’13.Montpellier, France, July 2013, pp. 9–16. doi:10.1145/2489828.
2489830.

Noble, J., Homer, M., Jones, T., Black, A., and Bruce, K. “Grace’s Inheritance”. In:
Journal of Object Technology (2017).

Noort, T. van, Achten, P., and Plasmeijer, R. “Ad-hoc polymorphism and dynamic
typing in a statically typed functional language”. In: Proceedings of the 6th Work-
shop onGeneric Programming.WGP’10. Baltimore,MD,USA, Sept. 2010, pp. 73–
84. doi: 10.1145/1863495.1863505.

Norell, U. “Towards a practical programming language based on dependent type
theory”. PhD thesis. Chalmers Institute of Technology, 2007.

Odersky, M. The Scala Language Specification: Version 2.9. Programming Methods
Laboratory, EPFL, Switzerland, June 2014.

Owens, S. “A Sound Semantics for OCamlLight”. In: Proceedings of the 17th Euro-
pean Symposium on Programming. ESOP’08. London, UK, 2008, pp. 1–15. doi:
10.1007/978-3-540-78739-6_1.

Palsberg, J. and Schwartzbach,M. I.Object-OrientedType Systems. Chichester: John
Wiley & Sons, 1994.

Papi,M.M., Ali,M., Jr., T. L. C., Perkins, J. H., and Ernst,M. D. “Practical pluggable
types for Java”. In: Proceedings of the 7th International Symposium on Software

275

https://doi.org/10.1145/361932.361937
http://doi.acm.org/10.1145/361932.361937
https://doi.org/10.1145/2489828.2489830
https://doi.org/10.1145/2489828.2489830
https://doi.org/10.1145/1863495.1863505
https://doi.org/10.1007/978-3-540-78739-6_1

Testing and Analysis. ISSTA’08. Seattle, WA, USA, July 2008, pp. 201–212. doi:
10.1145/1390630.1390656.

Pearce, D. J. “JPure: A Modular Purity System for Java”. In: Proceedings of the 20th
International Conference on Compiler Construction. CC’11. Saarbrücken, Ger-
many, Mar. 2011, pp. 104–123. doi: 10.1007/978-3-642-19861-8_7.

Pearce, D. J. “Sound and Complete Flow Typing with Unions, Intersections and
Negations”. In: Proceedings of the 14th International Conference on Verification,
Model Checking, and Abstract Interpretation. VMCAI’13. Rome, Italy, Jan. 2013,
pp. 335–354. doi: 10.1007/978-3-642-35873-9_21.

Pierce, B. C. Types and Programming Languages. MIT Press, 2002.
Pierce, B. C. and Turner, D. N. “Simple Type-Theoretic Foundations for Object-

OrientedProgramming”. In: Journal of Functional Programming 4 (1994), pp. 207–
247. doi: 10.1017/S0956796800001040.

Python Project. The Python Language Reference. Version 2.7.13. 2016. url: https:
//docs.python.org/2/reference/.

Qi, X. and Myers, A. C. “Masked types for sound object initialization”. In: Proceed-
ings of the 36th Symposium on Principles of Programming Languages. POPL’09.
Savannah, GA, USA, Jan. 2009, pp. 53–65. doi: 10.1145/1480881.1480890.

Rastogi, A., Chaudhuri, A., and Hosmer, B. “The ins and outs of gradual type in-
ference”. In: Proceedings of the 39th Symposium on Principles of Programming
Languages. POPL’12. Philadelphia, PA, USA, Jan. 2012, pp. 481–494. doi: 10.
1145/2103656.2103714.

Rompf, T. and Amin, N. “Type soundness for dependent object types (DOT)”. In:
Proceedings of the 31st International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications. OOPSLA’16. Oct. 2016, pp. 624–
641. doi: 10.1145/2983990.2984008.

Ruby Project. Ruby. Standard ISO/IEC 30170:2012. International Organization for
Standardization, Apr. 2012.

Rust Project. The Rust Programming Language. 2016. url: https://doc.rust-
lang.org/book/.

Schaffert, C., Cooper, T., Bullis, B., Kilian, M., and Wilpolt, C. “An Introduction
to Trellis/Owl”. In: Proceedings of the 1st Conference on Object-Oriented Pro-

276

https://doi.org/10.1145/1390630.1390656
https://doi.org/10.1007/978-3-642-19861-8_7
https://doi.org/10.1007/978-3-642-35873-9_21
https://doi.org/10.1017/S0956796800001040
https://docs.python.org/2/reference/
https://docs.python.org/2/reference/
https://doi.org/10.1145/1480881.1480890
https://doi.org/10.1145/2103656.2103714
https://doi.org/10.1145/2103656.2103714
https://doi.org/10.1145/2983990.2984008
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/

gramming Systems, Languages and Applications. OOPSLA’86. Portland, Ore-
gon, USA: ACM, 1986, pp. 9–16. doi: 10.1145/28697.28699.

Servetto, M., Mackay, J., Potanin, A., and Noble, J. “The Billion-Dollar Fix — Safe
Modular Circular Initialisation with Placeholders and Placeholder Types”. In:
Proceedings of the 27th European Conference on Object-Oriented Programming.
ECOOP’13. Montpellier, France, July 2013, pp. 205–229. doi: 10.1007/978-
3-642-39038-8_9.

Shaughnessy, P.RubyUnderAMicroscope. No StarchPress, 2013. isbn: 978-1593275273.
Siek, J. G. and Taha,W. “Gradual Typing for Functional Languages”. In: Proceedings

of the Scheme and Functional Programming Workshop. SFP’06. Portland, OR,
USA, Sept. 2006, pp. 81–92.

Siek, J. G. and Taha, W. “Gradual Typing for Objects”. In: Proceedings of the 21st
European Conference on Object-Oriented Programming. ECOOP’07. July 2007,
pp. 2–27. doi: 10.1007/978-3-540-73589-2_2.

Siek, J. G. and Vachharajani, M. “Gradual typing with unification-based inference”.
In: Proceedings of the 4th Symposium on Dynamic Languages. DLS’08. Paphos,
Cyprus, July 2008, 7:1–7:12. doi: 10.1145/1408681.1408688.

Siek, J. G., Vitousek, M. M., and Bharadwaj, S. Gradual Typing for Mutable Ob-
jects. Unpublished manuscript. 2012. url: https://ecee.colorado.edu/
~siek/gtmo.pdf.

Siek, J. G., Vitousek, M. M., Cimini, M., and Boyland, J. T. “Refined Criteria for
Gradual Typing”. In: Proceedings of the 1st Summit on Advances in Programming
Languages. SNAPL’15. May 2015, pp. 274–293. doi: 10.4230/LIPIcs.SNAPL.
2015.274.

Siek, J. G. and Wadler, P. “Threesomes, with and Without Blame”. In: Proceedings of
the 37th Symposium on Principles of Programming Languages. POPL’10. Madrid,
Spain, Jan. 2010, pp. 365–376. doi: 10.1145/1706299.1706342.

Standish, T. A. “Extensibility in programming language design”. In: Proceedings of
the American Federation of Information Processing Societies National Computer
Conference. AFIPS’75. Anaheim, CA, USA, May 1975, pp. 287–290. doi: 10.
1145/1499949.1500003.

277

https://doi.org/10.1145/28697.28699
https://doi.org/10.1007/978-3-642-39038-8_9
https://doi.org/10.1007/978-3-642-39038-8_9
https://doi.org/10.1007/978-3-540-73589-2_2
https://doi.org/10.1145/1408681.1408688
https://ecee.colorado.edu/~siek/gtmo.pdf
https://ecee.colorado.edu/~siek/gtmo.pdf
https://doi.org/10.4230/LIPIcs.SNAPL.2015.274
https://doi.org/10.4230/LIPIcs.SNAPL.2015.274
https://doi.org/10.1145/1706299.1706342
https://doi.org/10.1145/1499949.1500003
https://doi.org/10.1145/1499949.1500003

Stein, L. A., Lieberman, H., and Ungar, D. “A Shared View of Sharing: The Treaty
of Orlando”. In: Object-Oriented Concepts, Databases, and Applications. 1989,
pp. 31–48.

Strickland, T. S. and Felleisen, M. “Contracts for first-class classes”. In: Proceedings
of the 8th Symposium on Dynamic Languages. DLS’10. Reno, NV, USA, Oct.
2010, pp. 97–112. doi: 10.1145/1869631.1869642.

Strickland, T. S., Tobin-Hochstadt, S., Findler, R. B., and Flatt, M. “Chaperones and
impersonators: run-time support for reasonable interposition”. In: Proceedings
of the 27th Conference on Object-Oriented Programming, Systems, Languages,
and Applications. OOPSLA’12. Tucson, AZ, USA, Oct. 2012, pp. 943–962. doi:
10.1145/2384616.2384685.

Stroustrup, B. “Evolving a language in and for the real world: C++ 1991-2006”. In:
Proceedings of the 3rd Conference on History of Programming Languages. HOPL-
III. San Diego, California, 2007, pp. 1–59. doi: 10.1145/1238844.1238848.

Strub, P.-Y., Swamy, N., Fournet, C., and Chen, J. “Self-certification: bootstrapping
certified typecheckers in F* with Coq”. In: Proceedings of the 39th Symposium
on Principles of Programming Languages. POPL’12. Philadelphia, PA, USA, 2012,
pp. 571–584. doi: 10.1145/2103656.2103723.

Summers, A. J. “Modelling Java Requires State”. In: Proceedings of the 11th Interna-
tional Workshop on Formal Techniques for Java-like Programs. FTfJP’09. Gen-
ova, Italy, July 2009, 10:1–10:3. doi: 10.1145/1557898.1557908.

Summers, A. J. and Müller, P. “Freedom before commitment: a lightweight type
system for object initialisation”. In: Proceedings of the 26th International Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications.
OOPSLA’11. Portland, OR, USA, Oct. 2011, pp. 1013–1032. doi: 10 . 1145 /
2048066.2048142.

Swamy, N., Chen, J., Fournet, C., Strub, P.-Y., Bhargavan, K., and Yang, J. “Secure
distributed programming with value-dependent types”. In: Proceedings of the
16th International Conference onFunctional Programming. ICFP’11. Tokyo, Japan,
Sept. 2011, pp. 266–278. doi: 10.1145/2034773.2034811.

Taivalsaari, A. “Classes Versus Prototypes: Some Philosophical and Historical Ob-
servations”. In: Journal of Object-Oriented Programming 10.7 (1997), pp. 44–50.

278

https://doi.org/10.1145/1869631.1869642
https://doi.org/10.1145/2384616.2384685
https://doi.org/10.1145/1238844.1238848
https://doi.org/10.1145/2103656.2103723
https://doi.org/10.1145/1557898.1557908
https://doi.org/10.1145/2048066.2048142
https://doi.org/10.1145/2048066.2048142
https://doi.org/10.1145/2034773.2034811

Taivalsaari, A. “Delegation versus Concatenation or Cloning is Inheritance too”. In:
OOPS Messenger 6.3 (1995), pp. 20–49. doi: 10.1145/219260.219264.

Takikawa, A., Strickland, T. S., Dimoulas, C., Tobin-Hochstadt, S., and Felleisen,
M. “Gradual typing for first-class classes”. In: Proceedings of the 27th Conference
on Object-Oriented Programming, Systems, Languages, and Applications. OOP-
SLA’12. Tucson, AZ, USA, Oct. 2012, pp. 793–810. doi: 10.1145/2384616.
2384674.

The Coq Development Team. The Coq Proof Assistant Reference Manual. Version
8.5pl3. 2016. url: http://coq.inria.fr/distrib/V8.4/refman.

Torgersen, M., Ernst, E., and Hansen, C. P. “Wild FJ”. In: Proceedings of the 12th
Workshop on Foundations of Object-Oriented Languages. FOOL’05. Long Beach,
CA, USA, Jan. 2005.

Ungar, D. and Smith, R. B. “SELF: The Power of Simplicity”. In: Lisp and Symbolic
Computation 4.3 (1991). doi: 10.1007/BF01806105.

Urban, C., Berghofer, S., and Norrish, M. “Barendregt’s Variable Convention in
Rule Inductions”. In: Proceedings of the 21st International Conference on Auto-
mated Deduction. CADE’07. Bremen, Germany, July 2007, pp. 35–50. doi: 10.
1007/978-3-540-73595-3_4.

Wadler, P. and Findler, R. B. “Well-Typed Programs Can’t Be Blamed”. In: Proceed-
ings of the 18th European Symposium on Programming. ESOP’09. Mar. 2009,
pp. 1–16. doi: 10.1007/978-3-642-00590-9_1.

Wehr, S., Lämmel, R., and Thiemann, P. “JavaGI : Generalized Interfaces for Java”.
In: Proceedings of the 21st European Conference on Object-Oriented Program-
ming. ECOOP’07. Berlin, Germany, July 2007, pp. 347–372. doi: 10.1007/
978-3-540-73589-2_17.

Xu, D. N. “Extended static checking for Haskell”. In: Proceedings of the 10th Haskell
Workshop. Haskell’06. Portland,OR,USA, Sept. 2006, pp. 48–59. doi:10.1145/
1159842.1159849.

Zibin, Y., Cunningham, D., Peshansky, I., and Saraswat, V. A. “Object Initialization
in X10”. In: Proceedings of the 26rd European Conference on Object-Oriented
Programming. Beijing, China, June 2012, pp. 207–231. doi: 10.1007/978-3-
642-31057-7_10.

279

https://doi.org/10.1145/219260.219264
https://doi.org/10.1145/2384616.2384674
https://doi.org/10.1145/2384616.2384674
http://coq.inria.fr/distrib/V8.4/refman
https://doi.org/10.1007/BF01806105
https://doi.org/10.1007/978-3-540-73595-3_4
https://doi.org/10.1007/978-3-540-73595-3_4
https://doi.org/10.1007/978-3-642-00590-9_1
https://doi.org/10.1007/978-3-540-73589-2_17
https://doi.org/10.1007/978-3-540-73589-2_17
https://doi.org/10.1145/1159842.1159849
https://doi.org/10.1145/1159842.1159849
https://doi.org/10.1007/978-3-642-31057-7_10
https://doi.org/10.1007/978-3-642-31057-7_10

	Introduction
	Contributions
	Structure
	Publications

	I Classless Languages
	Related Work
	Objects First
	Object Inheritance
	Self Binding
	Emulating Classes

	Programming Language Formalisms
	Verifying Languages

	Type Systems
	Nominal Typing
	Structural Typing

	Gradual Typing
	Consistency
	Casts
	Blame
	Gradual Guarantee

	Hybrid Type Systems
	Brands
	Tagged Objects

	Pluggable Typing
	Extensible Languages

	Grace
	The Core Language
	Inheritance
	Types
	Patterns

	Annotations
	Dialects
	Implementation

	II Type Systems
	Graceless
	Syntax
	Terms
	Types
	Substitution
	Evaluation Contexts

	Types
	Well-Formedness
	Type Combinators
	Signature Subtraction
	Subtyping

	Dynamic Semantics
	Static Semantics
	Signature Selection
	Term Typing
	Properties

	Casts
	Design
	Coercing Requests

	Syntax
	Type Coercion

	Dynamic Semantics
	Static Semantics
	Properties

	Discussion
	Blame
	Gradual Typing
	Gradual Guarantee

	Brand Typing
	Design
	Creating, Applying, and Using Brands
	Brands vs. Brand Types
	Extending Brands

	Applications
	Abstract Syntax Tree
	Dialects
	Exceptions
	Singleton Types and Variants

	Branded Graceless
	Syntax
	Types
	Dynamic Semantics
	Static Semantics
	Properties

	Discussion
	Comparison to Related Work

	Implementation
	Statically-Known Definitions
	Type Evaluation

	III Inheritance
	Inheritance Semantics
	On Inheritance

	Object Inheritance
	Forwarding
	In Other Languages

	Delegation
	Receiver mutation

	Concatenation
	In Other Languages

	Emulating Classes
	Object Freshness
	Merged Identity
	In Other Languages

	Uniform Identity
	In Other Languages

	Multiple Inheritance
	Multiple Parents
	Method Transformations
	Positional

	Classless Inheritance
	Typing
	Conclusion

	IV Conclusions
	Classless Object Semantics
	Graceless
	Brand Typing
	Object Inheritance
	Implementation

	Future Work
	Graceless
	Brand Typing
	Object Inheritance

