
VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wānanga o te Ūpoko o te Ika a Māui

School of Engineering and Computer Science
Te Kura Mātai Pūkaha, Pūrorohiko

PO Box 600
Wellington
New Zealand

Tel: +64 4 463 5341
Fax: +64 4 463 5045

Internet: office@ecs.vuw.ac.nz

Simulating and Visualising a
Model Railway

Nicky van Hulst

Supervisor: Dr David J. Pearce

October 15, 2016

Submitted in partial fulfilment of the requirements for
Bachelor of Engineering with Honours.

Abstract

This project is concerned with creating a software simulation and visualisa-
tion of a model railway to improve the efficiency of testing software controllers.
Testing a train controller on a physical railway is time consuming and limited
by what is physically available to test on. A simulation and visualisation of the
model track will reduce these issues by providing a quicker testing platform for
the controllers. The simulation, visualisation and a track builder were success-
fully created in Java. A controller was developed on the simulation to control
the trains and transferred over to the physical system. The controller was able to
successfully control the trains.

Acknowledgements

I would like to thank my supervisor David Pearce for the continued feedback and advice
throughout the project. This support has improved the quality of the project and report.

i

ii

Contents

1 Introduction 1
1.1 The Problem . 1
1.2 The Solution . 2
1.3 Contributions . 2

2 Background 3
2.1 Existing Train Simulators . 3
2.2 Model Railway Hardware . 4
2.3 Java Model Railway Interface . 6

2.3.1 JMRI Implementation . 6
2.4 JavaFX . 7

3 Design 9
3.1 Model Railway Components . 9
3.2 Model Railway Hardware . 10
3.3 The Simulation . 11
3.4 Design Features . 11

3.4.1 User Interface Design . 13
3.4.2 Track Builder . 14

4 Implementation 15
4.1 Modelling Physical Objects . 15

4.1.1 Tracks and Sections . 15
4.1.2 Simulating Trains . 18

4.2 Collision Detection . 19
4.3 Physics Modelling . 20
4.4 Clock Tick . 21
4.5 Generating track events . 21
4.6 Rendering . 22
4.7 Track Builder . 23
4.8 Saving and Loading . 24
4.9 Controllers . 24

4.9.1 Loading Configurations . 25

5 Evaluation 27
5.1 Testing the Simulation . 27

5.1.1 Simulation testing Framework . 27
5.1.2 Controller Testing in Simulation . 27

5.2 Controller Evaluation Experiment . 28
5.2.1 Setup . 28

iii

5.2.2 Methodology . 29
5.2.3 Results . 29
5.2.4 Discussion . 31

5.3 Simulation Accuracy Experiment . 31
5.3.1 Methodology and Results . 31
5.3.2 Discussion . 32

6 Future Work and Conclusion 33
6.1 Future Work . 33
6.2 Conclusion . 33

A Experiment results 35

iv

Figures

2.1 Track Layout - The image shows the sections and junction of the track. The
sections are indicated with ’S’ and the section ID. Every odd number in the
sections are detection sections and the even number are non-detection sec-
tions. Junctions are labelled with ’T’ and the junction ID. The junctions are
used by the train to diverge into other lanes. 4

2.2 The Hardware Architecture diagram shows the communication between com-
ponents in Model Railway . 5

3.1 Event Generation Sequence . 10
3.2 Simulation Architecture, separated out into MVC components the model is

the Simulation the view is the visualisation and the controller the User Interface. 12
3.3 The Main Screen of the program that shows the created track layout and trains

in the current configuration. 13
3.4 Toolbar . 13
3.5 Track Builder . 14

4.1 The Track hierarchy shows is a simplified version 15
4.2 Direction indicates track direction. The dots separate the individual tracks

and the triangles indicate the trains orientation. 16
4.3 Different track directions example . 17
4.4 These sliders can modify train attributes that effect the physics calculations . 18
4.5 Naive Bounding Box . 19
4.6 Accurate Bounding Box . 20
4.7 . 24

5.1 The simulation creates a configuration file for the controller to load the rail-
way state. 29

5.2 The trains on the model track one section behind the other. The locking con-
troller should prevent a collision. 30

5.3 Locking Test: the train at the back is set to a faster speed to cause a collision. . 30

v

vi

Chapter 1

Introduction

Simulations are used to model real-world systems. Simulations are able to emulate different
scenarios and configurations without the significant cost of failure. Testing control software
for trains is made easier with a simulation. Gaining access to trains and a track would be
extremely costly, if something were to go wrong it could also be dangerous. A simulation
of the hardware reduces this problem. Therefore a model railway has been created in the
School of Engineering and Computer Science department (ECS). The railway has the pur-
pose of emulating the important safety concerns and features that a railway system would
have. For example, trains can collide or derail if not managed correctly.

One of the reasons this is important is that a software controlled railway system falls
under the category of a safety critical system. Safety critical systems are concerned with
systems that, when things go wrong, the consequences could cause serious harm to peo-
ple, the environment and or equipment. These types of systems are difficult to test safely
and cost-efficiently, which is why simulations are a commonly used tool to help with the
problem.

An important safety concern of a model railway is the potential for collisions. The model
railway was specifically designed to model software interlocking to prevent collisions [1].
Interlocking considers a number of tracks and signals that work together to work out if a
route is safe [2]. The system is designed to make it impossible to allow a train down a route
that is unsafe. In the model railway, this is achievable in software by using the sectioning
system.

The model railway can be controlled by a software program running on a machine con-
nected to the railway via the Java Model Railway Interface (JMRI). The software can indi-
vidually control trains using unique identification numbers. The trains can be instructed to
move forward or in reverse. The Junctions of the track can be toggled. The sensors on the
tracks can generate events based on the entering or exiting of trains in sections.

1.1 The Problem

The physical model railway has many benefits compared to testing the controllers on real
trains, however, there are still issues that can be addressed. Setting up different tests is still
time-consuming to run, partly due to having to manually reset the track and trains. Other
limitations include having a limited number of tracks and trains to test with unless more are
purchased. Therefore there needs to be a way to make testing and extending tracks easy and
cost-efficient. The solution to this is to create a full software simulation of the model track
that will emulate the features of the physical track.

1

1.2 The Solution

A simulation has been created using Java and the user interface implemented using JavaFX.
In order to get the simulation running a controller can be selected to control the trains or
the user can manually send events to the simulation. The layout of the track should be
specified, along with the trains and rolling stock that will be part of the simulation. The
track and train configurations can be loaded with a structured JSON file into the simulation
or controller. The simulation can be executed without a user interface but one is created for
convenience. In order to simulate the model track more accurately, a simple physics engine
was implemented. The physics engine models important aspects of a real system: mass,
acceleration, friction, etc.

The positioning of trains is done using an absolute positioning system on a two-dimensional
plane. The simulation enables you to create different types of controllers that can be tested
on the simulation first before testing on the model track.

The project also has a track builder used to edit the track layout and create testing con-
figurations. It allows custom tracks and custom trains to be added. To make this efficient,
loading and saving of these configurations is also implemented. This allows the creation of
a new track with a number of trains in different locations, which can be saved and loaded
later for simulation. It also supports different software controllers. Two examples have been
created to show the potential a controller can have. One controller is a locking controller that
makes sure that two trains are never in the same section at once. Adding another controller
is very simple as it only needs to communicate with a single interface.

In order to make the simulation more user-friendly, a user interface and visualisation was
created. The interface was created using JavaFX which is one of the standard user interface
libraries that comes with Java. It is what is used for the menus buttons and canvas. The
visualisation displays the train’s location on the track from a top-down perspective. Vector
graphics are used to draw the track, showing the trains moving around the track in real time.
A log of events that are generated by the track and controller software is also displayed.

The simulation was evaluated by comparing it against the physical hardware. The first
requirement is accuracy. For example, the accuracy of how the trains move along tracks
including stopping time and acceleration. This can be tested as covered in the evaluation
section. The simulation also has to be accurate in how and when it send events to the con-
troller. The event format needs to be identical in order to substitute the simulation for the
hardware and the timing of events ensures the trains exhibit the same behaviour. This can
be checked by using a controller on the hardware that was created on the simulation and
observing the train behaviour is identical.

1.3 Contributions

• A Simulation and visualisation of the Model Railway have been developed. This al-
lows user-defined software controllers to be developed and tested prior to use with
the physical hardware.

• A Track builder and loading/saving functionality were created to simplify creating a
variety of configurations of track layout, trains, and rolling stock.

• Two example controllers were developed to evaluate the simulation and compare
against the hardware. A Routing and locking controller to control the track and trains.

2

Chapter 2

Background

This chapter briefly covers existing train simulator research and important components that
impact the project.

2.1 Existing Train Simulators

Real world train systems do use software to automate certain parts of the process of con-
trolling trains and tracks. However, there are still a lot of tasks humans have to conduct.
There is research aimed at making routeing more efficient and there are a number of differ-
ent simulators that try to simulate different aspects of the system. The main goals of these
simulators are safety and efficiency [3].

Japan’s Railway Technical Research Institute (RTRI) has created a number of these sim-
ulators to work towards these goals. One example of this is a simulation that estimated
track damage after an earthquake. The earthquake simulator makes use of three modules,
an earthquake motion simulator that calculates seismic motion in the deep subsurface. An-
other simulator simulates the movement on of the surface and the third simulator calculates
the dynamic behaviour of the railway structure. Analysis models use the output of these
three simulations to calculate the total damage. To validate the simulation, actual data from
real large earthquakes that occurred were compared to the simulation output. The simu-
lation output, that 26% of railway structures would need to be repaired, the actual repairs
required was 14%.

Another simulation studies the effect of the wind and aeroacoustic effects on trains mov-
ing at very high speeds. The wind simulation uses the Cartesian grid method. The aeroa-
coustic calculates the sound effects using Howe’s theory of vortex sound.

Finally, a simulator has been developed that model the contact between the train wheels
and the track [3].

The other set of train simulators which exist and are not aimed at research are simu-
lations for hobbyists [4]. Open rails are one of these simulators. Open Rails is based on
Microsoft’s train simulator which is open source and runs on the Windows platform. The
goal of Open Rails is to create an open and extensible architecture for simulation, to allow for
community contributions and interactions. The simulator Supports rolling stock, trains and
activities. The intent for these simulators is different than the research simulations. The goal
of most of the hobby simulations is to provide an immersive visual simulation experience.

The mentioned simulators are vastly different to the simulator in this project. They are
either aimed at very specific parts of the train and track or for visual appeal. In contrast,
this project is about enabling software control on a physical model of a railway. The project
is very specific to the track that is modelled so other previous research on simulation of a

3

railway will not be of much benefit.

2.2 Model Railway Hardware

The simulator is directly modelling the physical track and therefore it is important to know
how the railway hardware functions in order to accurately simulate the system. The model
railway uses the Digital Command Control protocol (DCC) to control the trains. DCC uses
modulation of voltage on the track to encode packets of information. Also, junctions are
controlled in roughly the same manner. Each train on the track can be controlled indepen-
dently using unique identifiers anywhere along the tracks. The track can receive events to
change the train speed and direction.

Train location is vital in controlling the trains in a safe manner. To achieve this the con-
cept of sectioning is used. The track is split up into sections, where each of these sections
has a unique identification number and can be made up of a number of tracks.

Figure 2.1: Track Layout - The image shows the sections and junction of the track. The
sections are indicated with ’S’ and the section ID. Every odd number in the sections are
detection sections and the even number are non-detection sections. Junctions are labelled
with ’T’ and the junction ID. The junctions are used by the train to diverge into other lanes.

[1]

A section is either a detection or non-detection section. Figure 2.1 shows the layout of
the hardware. A detection section contains a sensor that can detect if a train is on it or not
but not which train or how many. Rolling stock is not detectable and has to be managed
by software to avoid collisions. A non-detection section is a standard piece of track that

4

has no real interaction with the controller. To make efficient use of the sensor hardware the
detection and non-detection sections alternate. Efficiency with sensors is important as the
hardware support a maximum of 16 sensors. The detection alternation systems mean that
when a train leaves a detection section we know it is now in the non-detection section next
to it. The track can detect a change in section by looking at the state of the sensors. When
a train moves from a non-detection section to a detection section the state of the sensor
changes from a low to a high state. When a train moves from a detection section to a non-
detection section it changes from a high to low state. Using this sectioning system we are
able to keep track of the trains. This does, however, require the controller to receive starting
section information of all the trains on the sections.

These sections are the only way the controller software can keep track of the trains. There
are however more aspects to consider. Within these sections there are tracks. Most of these
are simple and do not provide extra functionality but there are junction tracks which are
used to switch the trains between tracks. Therefore in order for the controller to know where
the train went it must also know the starting state of these junctions.

Figure 2.2: The Hardware Architecture diagram shows the communication between compo-
nents in Model Railway

Figure 2.2 shows the architecture of the model railway. The arrows in the architecture in-
dicating communication between the components. The Model Railway Hardware generates
events and sends it onto the Java Model Railway Interface Implementation which interprets
the event and passes it onto the controller. The controller then updates its state based on
this data and can send an event back to instruct a train or toggle a junction. The events
supported are:

• Section state changed event - This is what the controller uses to determine the location
of the trains. It passes through the ID of the section

• Set Junction - The controller can manage junctions on the track by specifying the ID
of the junction to toggle the state to either thrown or not thrown.

• Set train speed - Sets the target speed of the train, 0-100 percent power, trains vary in
top speeds.

5

• Set train Direction - Sets the direction of the train to forward or reverse.

2.3 Java Model Railway Interface

The purpose of the Java Model Railway Interface project (JMRI) is to create a range of tools
to control model railways from the computer [5]. JMRI is an open source project widely used
by hobbyists to control model railways. As previously mentioned the model railway uses
Digital Command Control, this can be quite complicated to program for, therefore JMRI has
created interfaces to smooth out this process. There is also a standalone program that can
be customised to your needs. For the purposes of this project, the tool was used as a library.
JMRI provides an interface to connect to the hardware through a USB port, it establishes
a connection and handles the transfer of messages. An important method in the interface
is the message method, there is where all the messages from the hardware go through [5].
There are a couple more interfaces used in the project from JMRI, LocoNetListener and
ThrottleListener, which are used to listen for events from the hardware.

2.3.1 JMRI Implementation

A small standalone client was developed at VUW on top of JMRI for use with the model
railway. The client uses the JMRI interfaces to control the trains on the hardware. The
implementation provides a command line interface for controlling trains on the physical
track. It simplifies the JMRI software into a simple event based system. There are a number
of commands to control the track and trains. For example Start id speed to start the
train at a given speed. Turnout id to set a turnout. Loop id array sections to make
the train loop. These commands can easily be extended by creating a new keyword and
defining a method with the behaviour you desire.

The software has a direct connection to the model railway which it uses to communicate
events and instructions. The messages from the hardware then get translated into simple
events in the Event class. For example, a Section changed event. The class also implements
a listener interface with a notify(Event e)method. This is used by the controller to send
Events back to the hardware. The notify method translates the event back into a message
the JMRI interface can understand. The events the client supports are:

• Power Changed - Railway is off or on

• Section Changed - This provides an integer section identifier, and a boolean indicating
whether the event represents a train entering or leaving the section.

• Speed Changed: This provides an integer for the train identifier and a float for the
speed.

• Direction Changed - This provides an identifier for the train and a boolean for direc-
tion, forward or backwards.

• Emergency Stop - The identifier of the train to stop.

• Junction Changed - The identifier of the junction and a boolean for thrown or not.

The controller also implements the listener interface and registers with the ModelTrack.
The ModelTrack also registers with the controller. That way they can send events to each
other. The software also has a controller package which is where the controllers that are cre-
ated from the simulation will go into. The simulation has been created so that the interfaces
are the same as the client, therefore, transferring controllers into it is trivial.

6

2.4 JavaFX

JavaFX is used for obtaining user input and drawing the user interface within the simula-
tor. JavaFX is created by Oracle and is “a set of graphics and media packages that enable
developers to design, create, test, debug, and deploy rich client applications that operate
consistently across diverse platforms” [6].

JavaFX is one of the two standard GUI libraries that come with Java. It is used through-
out the program to render the window, menus, buttons, text, etc. JavaFX also provides a
canvas, which has a range of methods used to draw shapes, this is what is used to draw the
trains and tracks in the middle of the screen and everything is updated at 60fps.

To decide on which User interface framework to use the pros and cons needed to be
considered. The default style of the windows, buttons and menus of the frameworks are
different I found applications made by both and found the modern look of JavaFX a better fit.
Looking into some tutorials on JavaFX the code looked more concise and easy to understand
for my purpose, therefore, I decided to go with it. Contrary to Swing which I have used
in the past where the lines of code required can escalate quickly. After finishing the User
Interface I concluded that the right decision was made. Creating layouts was easier and
required less code.

7

8

Chapter 3

Design

This chapter covers the design of the program and the important design decisions made
throughout the project. Before explaining these design decisions, it is important to describe
all of the components that make up the project. There are four main components: the Java
Model Railway Interface (JMRI), the JMRI Client, Train Controllers, and the Simulation.

3.1 Model Railway Components

• Model Railway Hardware - The main focus of the simulation is emulating the phys-
ical hardware. The track needs to be modelled as software; to do this, the physical
attributes of the track and trains needs to be considered, along with how events are
generated and received to control the trains and junctions.

• Java Model Railway Interface - The Java Model Railway Interface handles the connec-
tion to the Model Track Hardware through a USB connection and provides an interface
to receive the events generated by the track, as well as a way to send events back to
the track.

• JMRI Client - A standalone Java program created at VUW that implements the JMRI
interface to receive and send events. The program converts the events received from
the hardware into a simple format that the controllers can use to manage the trains.
The controller can then process received events, as well as send new events back to the
hardware, which is done by sending an event to the JMRI implementation. The JMRI
converts it back into a format that the hardware can process, and finally, the event is
executed on the hardware.

• Train Controller - The Train Controller is the software that decides what the trains
should do based on the events received from the hardware. Also, it can control parts
of the hardware, such as junctions. Separate controllers can be implemented to show
this, two controllers have been implemented for testing: a locking controller and a
routing controller. The locking controller ensures that no two trains are in the same
section at once, while the routing controller uses Dijkstra’s shortest path algorithm
to find the shortest distance to a trains destination. The controllers are placed inside
the controller package inside the JMRI implementation. The controllers should work
interchangeably in the simulation and the JMRI client.

• The Simulation of the Hardware - The Simulation is the main aspect of the project,
which substitutes the hardware and the JMRI client for the controllers. The hardware

9

is simulated and outputs events that are converted into a format the controller can un-
derstand. The controller then sends events back to the hardware to control the trains,
the output of which is shown in the visualisation.

3.2 Model Railway Hardware

Figure 3.1: Event Generation Sequence

The SectctionChanged events are fired when trains move in and out of sections and
communicate with the JMRI client impacts the design of the simulation. A detailed example
of how this occurs in the hardware can now be discussed.

The diagram 3.1 shows the approximate sequence of events that occur when a train
changes section on the hardware and events fire, and how the controller responds. The hard-
ware sends a message through the JMRI LocnetListener Interface, then the ModelRailway
class converts this into an event to send to the controller (SectionChanged event). The
controller then decides whether a junction should be toggled to route the train where it
needs to go and sends an event back to the ModelRailway class. The model railway inter-
prets the event and calls the appropriate method on the JMRI interface to toggle the junction
on the hardware.

The Event.Listener interface is a key interface. The interface is used to pass the
events from the hardware to the controllers. This is where the hardware is abstracted away
and replaced with the simulation. The consequence is that the simulation must produce
identical events to that of the hardware to ensure controllers can be used for both platforms.
Following the event format is not too difficult, for example for a section changed event the

10

ID of the section is all that is required. However the exact time the hardware sends these
events is not known. The simulation assumes the event fires when half of the train is in the
next section, however, if needed this can be updated as the length of the train and the exact
location is known to the simulation.

3.3 The Simulation

The simulation is based on the hardware, therefore, the design of the simulation has to
model the constraints of the hardware. The simulation must also model real world factors
that impact the train and rolling stock behaviour. The hardware supports different track
types. The types modelled in the simulation are:

• Regular track - Contains a source and destination.

• Junction - A junction contains one source and two destinations, the destination for a
train depends on whether the junction is thrown or not.

• Buffer track - A buffer track is a track with a source but no destination.

These tracks are then combined into sections and given an ID identical to the hardware.
These tracks can be connected in many different configurations for different layouts.

The simulation models train with multiple attributes these include, acceleration, max
power, brake force, length, and weight. These attributes are important to the accuracy of the
simulation. Rolling stock requires the weight and the length to be known. Weight to impact
the speed of the train pulling it and length to model collisions. The train is connected to a
rolling stock by driving into it at a low speed. Alternatively, the stock can be connected to
the train on initial placement. The simulation also includes a basic physics engine that uses
the train attributes to calculate the speed acceleration and stopping time which allows for
more accurate location updates.

The simulation works in real time, an update method updates all the elements on railway
based on how much time has passed. This is separate from the update to the visualisation,
this is so the simulation can run without a user interface or visualisation. The purpose of
separation is that it enables automatic testing to be set up by using the update method.

The hardware sensors handle positions on a section by section basis. In contrast, the
simulation uses an absolute positioning system in order to detect collisions and produce
smooth movement along tracks. However from the perspective of the controller the location
is on a section by section basis identical to the hardware.

Supporting multiple controllers inside the simulation is key and considered in the de-
sign. A controller needs a register(Event.Listener listener) method which al-
lows the controller to send events back to the simulation using notify(Event e). The
controller also needs to implement Event.Listener to enable the simulation to send
events to the controller. To make this process even easier when using the user interface
a drop down menu lists the possible controllers.

3.4 Design Features

There are a number of key software design principles that were decided on at the beginning
and were followed throughout the project, separation of concerns being one of the top pri-
orities. The design of the project can be separated into four main parts: the simulation, the
user interface, the track builder, and controllers. Abiding by the principles of separation of

11

concerns in this way has a number of benefits. For example, when adding a new feature, the
part affected should have limited effect on other parts of the project. It will also assist when
testing, as separate units can be tested in isolation, making debugging much easier.

The control of communication of information between the controllers and the simulation
is important. The railway hardware passes limited information to the controller, therefore,
the simulation should send identical information. A controller that works on the simulation
must also be able to work on the hardware, this will not be the case if it received extra infor-
mation. e.g. the simulation knows of the speed of the trains and their X and Y coordinates.
The controller could, in theory, use this information for extra control by using the speed
data in calculations to make sure that the trains never collide. However, this information
is not available from the hardware. This means that if the simulation is substituted with
the hardware, the controller would not work. This is accomplished by using two interfaces:
The Event interface that specifies the format of events and the Event.Listener interface
that specifies a method to listen to events. The interfaces are the only way the simulation
communicates with the controller which is identical to the hardware. However, there is one
more concern, the input of starting state to the controller. The controller cannot use state
from the simulation as it would not have access to it on the hardware instead the controller
loads the configuration from a file.

Figure 3.2: Simulation Architecture, separated out into MVC components the model is the
Simulation the view is the visualisation and the controller the User Interface.

Extensibility was also a focus. With simulations, there is always the potential desire
to add additional features, so it is important for the project to be extensible. An example of
how extensibility was ensured with this project is exemplified by the ability to add new track
types. To add a new type of track, the DefaultTrack abstract class needs to be extended
and the relevant methods implemented, but no changes need to be made to the way the rest
of the system works. Another example of this is the user interface; it is separated from the
logic of the software, therefore an entirely different user interface could be added at will, or
the existing one could be extended with ease.

The architecture of the project 3.2 follows the Model/View/Controller design pattern.
The Model holds all the data about the trains and tracks and controls their movement and
logic (Simulation). The Controller is anything that the user interacts with, e.g. the toolbars

12

and menus, as well as the mouse and key listeners (User Interface). The View is the can-
vas that the trains and tracks are drawn on, and is updated by the model (Visualisation).
By following this architectural model, tests can be conducted on the simulator without the
user interface or visualisation needing to be run. Furthermore, a tick method can be called
to mimic the simulation running in real time. With this, tests that would otherwise take
a long time can be conducted quickly, easily, and automatically by setting the number of
updates, and certain conditions can be checked, such as making sure that the trains in the
system never collide. One more aspect to consider is the control of information between the
simulation and the controller.

3.4.1 User Interface Design

Figure 3.3: The Main Screen of the program that shows the created track layout and trains
in the current configuration.

The most important part of the project is the railway layout and the trains. This is re-
flected in the user interface design. The main control of the simulation is handled through
the buttons on the toolbar. See figure 3.4. This toolbar is aimed to be easy to use, so hovering
over a button provides the user with a tip indicating its function. The buttons not applicable
to the current mode are greyed out. Also, the buttons and interface of the program take up
very little space to allow the track to be as large as possible. See figure 3.3.

Figure 3.4: Toolbar

The controller button allows selection of one of the available controllers. The circle but-
ton is used to manually send events to trains on the track. The play, pause buttons are used

13

to suspend and resume updates and the stop button resets to the starting configuration.
There is an extra element that reduces the space the track has, which is the event log.

However, the user is able to minimise the log when its not needed. Furthermore, most of
the menus that the user interacts with are pop-up menus, which means that they are only
there when needed and hide themselves as soon as they are not. These pop-up menus are
used when the user wants to add a train to the track or send a speed event; for simpler
actions like toggling junctions, the mouse is used directly.

3.4.2 Track Builder

The track builder user interface is similar to the main screen; See figure 3.5. This is so that
the user encounters an easy learning curve. The main difference in this mode is the extra
available buttons. The buttons from the simulation mode are still shown but greyed out to
indicate that they cannot be used. The user can easily select a track from the example tracks
listed on the right side of the screen and dragged onto the canvas to place them. Tracks can
only be placed in valid locations - which is in the proximity of another track, or anywhere for
the starting track. To help the user with placement, when placing a track, it is highlighted
green or red to indicate valid or invalid placement respectively. There are also keyboard
shortcuts to make track selection more efficient: pressing R cycles through the available
tracks, and E changes the direction of the tracks.

Figure 3.5: Track Builder

14

Chapter 4

Implementation

This chapter covers implementation details of the Simulation, Track Builder, and controllers.

4.1 Modelling Physical Objects

There are three main objects from the physical railway that need to be simulated. These are
the tracks, trains and rolling stock. Objects that are simulated require fields such as their
location, weight, and shape.

4.1.1 Tracks and Sections

The hardware splits the railway into multiple sections. Each of these sections can contain
multiple tracks. The simulation implementation is similar, the Section class is used to
store an array of tracks and IDs for each section.

The tracks are split up into three different types: straight, curved, and junctions. The
simulation uses a two-dimensional plane for object locations, therefore the starting location
of a track piece can be represented by an x and y coordinate. All track types inherit from the
abstract class DefaultTrack. The common functionality across all track types is placed in
the abstraction to reduce code duplication see figure 4.1.

Figure 4.1: The Track hierarchy shows is a simplified version

To set the location of a track, it requires a track to connect to (unless it is a starting track).
If it is not a starting track, it will be placed based on where the track it comes from ends
using the setStart(DefaultTrack from) method. This ensures tracks are lined up

15

accurately and trains can move from one to another. It also simplifies specifying layouts,
instead of storing the x,y value of each track the ID of the track it originates from is stored.

Another implementation considered was allowing tracks to be placed anywhere and
having a system that checks if all the placements are valid afterwards, or even allowing an
incomplete track. However this would not be convenient for the user as they would have to
line up tracks perfectly on a user interface or specify exact (x,y) coordinates in a file.

Tracks know their own shape which means they can work out the trains next loca-
tion based on the train’s current location and speed. Tracks have two main methods used
by the simulation to move trains getNextPoint(..) to update the train’s location and
checkOnAfterUpdate(..) to check if the train will still be on the track after it moves.
The track needs to know the direction the train is moving (forwards or backwards) and the
orientation of the train relative to the natural direction of the track, this information is stored
as boolean values in the train object.

The train receives its next position by asking the current track where it would move
to next at a given speed. The track does not know inherently which direction the train is
coming from. Therefore the track also needs to know if the orientation of the train goes
along the direction of the track and if the train is moving forward or in reverse. Consider
the following example in 4.2:

Figure 4.2: Direction indicates track direction. The dots separate the individual tracks and
the triangles indicate the trains orientation.

The natural direction of the track the bottom train is on is right, while the natural di-
rection of the track at the top is left. When the track object checks where the bottom train
should go it knows to increase the x coordinate because the train is going forward along the
natural direction (right). The top tracks direction is left which means it knows to decrease
the x co-ordinate.

There are more cases to consider. Trains can be placed down in a different starting ori-
entation against the natural direction of the track. See figure 4.3

1. The first case shows the simple case where the train is moving forward along the track

16

Figure 4.3: Different track directions example

direction (train moves right).

2. In the second case the train was placed down against the orientation of the track, there-
fore the orientation inside the train is set to false. Note that both trains are moving for-
ward, however, for one the track has to increase the x co-ordinate the other decrease
it. (train moves left).

3. In the third example the train is going backwards and is placed against the direction
of the track (train moves right).

4. In the last example the train is going backwards but is placed with the direction of the
track (train moves left).

Junctions are a special track, they are used to diverge trains into different lanes. Unlike
a regular track, there are two exit points. This increases the use cases to consider. When the
train enters from one of the tracks exit points the above solution no longer works. Instead,
the track the train came from must be stored. Other use cases include, when the junction
is thrown, there are certain directions that trains cannot cross the junction on, as doing so
would lead to derailment. This was fixed by checking where the train originated from, to
work out which track of the junction it is on.

The implementation reused existing track classes and composed three of them into a
single junction piece. This meant that the junction class held three track objects - two curved
and one straight. In some ways, this did simplify things, as methods already existed for
moving the train along these simple tracks, along with methods for bounds checks, etc. The

17

downside was that somehow the junction needed to know which internal track the train is
on. Another side effect of this decision was that when the simulation would assign the next
track if it was a junction it had to also store the internal track of the junction.

4.1.2 Simulating Trains

There are two types of train object in the program: Train and DrawableTrain. A draw-
able train has the information required for it to be displayed in the visualisation and the
simulation, as well as attributes like its exact coordinates, current speed, and acceleration.
The standard train object only holds variables like its length, orientation, and direction. Ori-
entation describes whether or not the train goes along with the orientation of the track, and
direction describes whether it is moving forward or backwards.

The trains physical attributes can easily be adjusted while the simulation is running with
sliders. See Figure 4.4.

Figure 4.4: These sliders can modify train attributes that effect the physics calculations

Rolling stock is anything connected to a train. They are invisible to the hardware recall
section 2.2. A standard stock object has an ID, length, and weight. The length is important
for the controller to work out what a safe distance is behind a train with one or more rolling
stock connected. The weight is used in the physics calculations. If there are a large amount
of heavy rolling stock connected to a train, it would have an impact on its acceleration and
stopping time, so this has to be modelled for accuracy [7].

The drawable rolling stock object has some additional information. To the simulation, it
is perceived similar to a train. The way it updates its location and is drawn is the same as a
drawable train. The main difference is that, when connected to a train, it does not calculate
the distance it has to move - this is instead done by the train pulling or pushing it and the
information is passed to it.

In order to make the simulation more accurate, these objects need to have a sense of scale
compared to the real world. This is the ratio of distance in the real world and distance on
the screen. For example, if we decide one pixel on the screen should be equal to five metres
in the real word, then if the user creates a train 15 metres long in the new train menu, this
will be converted to 75 pixels. Using this conversion factor, speed in metres per second can
also be converted to distance in pixels over time changed, e.g. if 4 seconds have passed and

18

the train is moving at 10 metres per second, then we then know that it has moved 40 metres.
Converting that to pixels: 40 × 5 = 200pixels.

The actual size an object takes up on the screen may vary across devices. The scaling is
based on the number of pixels an object should be and does not consider the physical size
of these pixels. This could be changed in the future by considering the pixel density of the
screen, but it is not an issue since the objects on the screen are still to scale relative to each
other.

4.2 Collision Detection

Collision detection accuracy is important in the simulation, as a situation where the train
crashes in the real world but not in the simulation should not be able to occur. There are
multiple ways to do collision detection. The implementation that was chosen was a bound-
ing box around the trains and rolling stock. Points on the front and back of the train are then
checked if they are inside the bounding box of another train or rolling stock.

Creating a bounding box for a rectangle may seem simple at first, since you simply need
to take one of the corners and use the width and length to calculate if a point is within the
rectangle, but this only works if the rectangle never changes orientation (see figure 4.5). The
conservative approach would be to create a naive bounding box that uses the length of the
train to create a square bounding box around the train, but this would lead to false positives
in collision detection.

Figure 4.5: Naive Bounding Box

The naive bounding box was too inaccurate; it made trains going around curves next
to each other crash, despite them not touching. Therefore an alternative approach was
tried and successfully implemented. The simulation knows the centre point of the rect-
angle bounding box and the rotation of the train, so this means that the cross product and
magnitude can be used to work out the exact coordinates of the four corners of the rectangle.
After these four points have been calculated, the point that needs to be checked whether its
inside the rectangle is used along with the four points to create four triangles, as shown in
fig 4.6. The area of these triangles are calculated and added together then compared against
the area of the rectangle; if the resulting total area is greater than the rectangle, then it means
that the point being checked is not within the trains bounding box.

However, this calculation is relatively expensive and has to be computed every tick. An
optimisation that was made was to use do naive bounding box calculation first; then, if the
point is inside this naive bounding box, the more expensive calculation described above can
be done to make sure that the point is inside the actual bounding box.

19

Figure 4.6: Accurate Bounding Box

4.3 Physics Modelling

To more accurately simulate a railway track, physical modelling is performed. This is done
by a simple physics engine. This engine models a trains acceleration, weight, forces, and
friction on the track. The methods used are similar to that used in force directed layouts [8].
The formula used is:

f orce = mass × acceleration (4.1)

This is rearranged to find the acceleration:

acceleration = f orce/mass (4.2)

The force represents all of the forces acting on the train. The forces considered for this
simulation are the engine force applied in a direction (forward or reverse), the braking force
(applied to the opposite direction it is travelling), and the friction forces which essentially
makes it more difficult to move. The mass is based on the weight of the train and any
connected rolling stock. Acceleration is the change in speed over time measured in metres
per second per second. The formula used for force is:

Force = trainpower(f rictioncoe f f icient × (mass × gravity) (4.3)

A simplification was made with the weight. A train and its rolling stock are considered
to be one unit by the simulation, so the weight value is the total weight of the train and the
rolling stock together if it has any. This could mean something that is able to be pulled in
real life may not be able to in the simulation [7]. This is because, in reality, trains have a slack
between the rolling stock and the train, so only one is pulled at a time. However, this is a
minor detail that can be fixed by reducing the static friction to the kinetic friction coefficient.
The simulation uses the total weight of trains and rolling stock and applies static friction
when the train is not moving.

An interesting problem arose when trains were sent an event to change direction. With-
out physics modelling this procedure is trivial; the direction of the train is changed instan-
taneously, and the next update the train moves at the same speed it was going, but in the
opposite direction. However, with the simple physics engine engaged, the train is required
to brake to a stop with braking power and friction, then speed up again in the opposite direc-
tion. To make this realistic, instead of instantly changing direction, a boolean for changing

20

direction is set to true which causes braking to be applied until the trains speed reaches 0.
At this point, braking is turned off and the train begins acceleration in the new direction.

Another consideration was the power of the trains. The formula used to calculate the
acceleration of a train requires all the forces on the train to be calculated. The only impact-
ing force pushing the train forward is the engine force, so the amount of power the train
engine can create needs to be known. In the first implementation, trains had unlimited max
power, unlike the hardware which is capped. The simulation slowly increased the amount
of power output at every tick if the target acceleration had not been reached - similar to
slowly pushing down the gas pedal in a car. This implementation had many issues: it re-
quired a certain point to be reached to know that the amount of acceleration was enough,
so the train could stop increasing power. Also, when the target speed was reached it would
start decreasing power, but there was too much of a delay and this led to the train going
over the target speed. It would then re-adjust to below the target, and this cycle would
repeat until it finally narrowed in on the target speed.

The second implementation saw the creation of a helper function that calculated the ex-
act power required for a train to reach a certain acceleration by rearranging the acceleration
formula. The acceleration of one of the hardware trains was measured and it was approxi-
mately 7m/s2. This value was given to the function which uses the formula

f riction f orce = f rictioncoe f f icient × ((trainweight + rollingstockweight) ∗ gravity) (4.4)

power = targetacceleration × (trainweight + f riction f orce) (4.5)

The friction coefficient varies depending on if the train has already started moving or
not.

The power formula deliberately does not take into account the weight of the rolling
stock, as adding rolling stock should inherently decrease the acceleration of the train. This
assumes a train would apply the same power independent of whether or not a rolling stock
is connected.

4.4 Clock Tick

All updates in the software are based on a tick which, when called, records the time differ-
ence between the last time it was called. This difference can then be used to update every-
thing accurately according to how much real time has elapsed. For example, this is required
to update the location of a train accurately. A train has a speed in meters per second, and de-
pending on how much time has elapsed since the last tick, we can convert that difference to
the actual distance the train should move that tick. Once everything has updated, locations
and other details on the screen can be redrawn, showing the new positions. This ensures
that everything moves at expected rates regardless of the host CPU speed or frame rate.

Running the simulation with the visualisation uses the real world time as it is running.
However, when running the simulation on its own the time between updates needs to be set.
To enable this the setTestMode(true,tickTime) method needs to be called. Changing
the simulation to this mode applies the tick time to each update instead of using real time.

4.5 Generating track events

In the physical world, generating events is achieved partly with the hardware. When a train
arrives at a detection section, the hardware sends a signal stating that it has been triggered,

21

and in turn, an event is generated saying that the state of the section has changed. It does
not care what train triggers the event. It has no idea about any of the tracks around it,
nor its length or curve or slope, etc. Therefore, since this is part of modelling the physical
track, it would make sense to generate the events in the part of the program responsible for
modelling the hardware. The problem is knowing when the event should be sent. A train
that is in the simulation only knows of the track that it is currently on. In the implementation
of the train, there is no way of knowing where the train is relative to any one section of the
railway.

The way the program knows where a train is is by employing a two-dimensional abso-
lute positioning system. All objects with a position are given (x,y) coordinates specifying
their location on the plane.

These are used to draw all the elements on the screen and also to determine where the
train should move to next. The idea for this comes from the fact that, in the physical world,
the train is bound by the physical layout of the track. To model this, the track object works
out where the train should be. The track is able to do this given the current location of the
train and the speed at which the train is moving. This makes adding more types of track
easy as the new track is in charge of determining where the train goes next. No changes
need to be made to the train or any of the other tracks.

This implementation also allows for a simple way to check when a train has entered a
new section. Each piece of track knows its starting location, length, and shape, and can,
therefore, calculate its bounding box. Because the bounds of a track are known, the track
can work out if an update (the next tick) of a train at a certain speed will be outside these
bounds, and consequently on the next track. This means that we have a point where the
program knows an event should be generated. This is handled by checking if the train will
be in the same section each time it moves: if it is not in the same section, then update the
track and send an event to the modelled track with the ID of the section that has changed.
It can then send this on to the control software which only sees the section ID, but it can use
this to interpret which train has moved where based on previous state information.

Train movement accuracy is important. A point where this is important is when moving
the train from one track to another when a check is made to determine whether the train will
still be on the track if it moves. If this is not the case then it will be placed directly at the start
of the next track. This is not accurate because with one update it may need to be moved a
small amount further than the start of the next track. This problem is fixed by checking how
much distance is left to move after it moves to the end of the track. For example, if a train
moves 10 pixels in one update but there are only 5 pixels left on the track, the train will be
placed 5 pixels after the start of the next track.

This chosen design means that there is no extraneous information in the software con-
troller class, and there is still a separation between the visualisation and the model track.

Another benefit as the time could be input as a parameter per update to run the simula-
tion outside of real time constraints.

4.6 Rendering

The curved tracks support 90-degree turns. The implementation was based on the assump-
tion of only needing sections with 90-degree turns. With this, the only information required
is the previous piece of track and the direction of the track, and from that, it can figure out
where to place the next piece.

From the beginning, two different ways of implementing the rendering of tracks were
considered: either have only 90-degree curves - which is limiting but would still achieve the

22

initial goals - or allow tracks of any curvature. The decision to only allow 90-degree curves
was made, 90-degree tracks meet the specifications and also because the other option would
take up a lot of time that could be spent elsewhere. At first, implementation to allow tracks
with any curvature to be rendered was attempted, but it was taking too much time.

Drawing the train in the correct location is simple on straight tracks, as working out the
next location simply requires the train’s speed and orientation information and a conversion
of those values into pixels and a change in the X coordinate on horizontal tracks and Y on
vertical ones. Figuring out the next location on a curve requires a bit more work, but because
of the simplification of them always being 90 degrees, a couple of calculations are used to
work out the next location.

The train has a field which holds the number of degrees it has already moved through
a curve. Another field stores the amount to move in one update (speed). The train has to
rotate 90 degrees through a curved track, to calculate how much it should move each time
the degrees left to turn are used along with the potential number of updates to do it based
on its speed. For example, if a train has moved 45 degrees out of the 90 and every update
moves 5 pixels along the curve with a curve length of 100, this means that there are 10
more updates before the end of the track is reached. 45 degrees divided by 10 updates = 4.5
degrees per update. This formula has to be used at every update in case the train increases
in speed the next update, which is common due to acceleration. Another consideration is
changing direction while on the curved track, in which case the degrees completed will have
to be inverted.

4.7 Track Builder

Creating new railway configurations was slow and tedious. Each track had to be manually
specified along with the track it comes from and goes to. This process was also very error
prone. The solution for this was creating a track builder. The track builder provides an easy
way to create and save new tracks and configurations. Other than creating tracks, it also
allows the additions of trains and rolling stock to sections.

A helpful feature of the track builder is the ability to drag a track piece to the end of the
track you want to connect it to. In the initial implementation, clicking on one of the available
pieces would add it to the end of the previously placed track. This was fine when only one
circuit was being built, but the existence of junction tracks makes it ambiguous where you
want to add the next track. The ability to drag track pieces onto the design solves this issue
and allows for more complex tracks to be created.

To smooth out the process more for the user, the track builder also checks the location
you drag the piece to, to see if it is a valid placement. If it is valid, it highlights the track
green; if not, red. When the user releases the track in a valid location, it does not place
it where they released it exactly. Instead, it searches for the nearest track that it could fit
against and uses that piece to find the exact location to place the new track. This way, the
user does not have to spend time placing the track in a pixel-perfect spot; instead, it detects
if it is within a certain distance from a valid spot, and moves it to the perfect location when
the user releases the mouse so that the tracks line up properly.

There is another consideration when connecting the tracks together: see 4.7. Here, when
the final piece between the junctions is inserted, the junction on the left would be set as the
straight piece origin, however, the destination would not be set. The solution is to have
a final pass through of all the track pieces, and any track without a destination are then
checked to see if any other track can connect to it, and if so, it is set to its destination. But it
is also valid to have a track without a destination; these are buffer tracks.

23

Figure 4.7:

4.8 Saving and Loading

To help with the convenience of testing different train configurations, loading and saving
functionality was added. This way, if time is spent in the track editor creating a large track,
it can be saved and used it again at later. The same goes for custom trains with specific
weights and engine power values. Save files are in the form of JSON files, which have
an object oriented structure and support arrays. The main elements of a save file for this
software include arrays of sections and arrays of tracks for each of the sections. There are
also arrays for trains and rolling stock.

Saving with this structure makes it easy to load back in. Section objects have attributes
like the ID of the section and the section it comes from and goes to, as well as whether it
contains a junction section and whether it is the starting section of the track.

The tracks are saved with what type they are: a straight track or a curved one, as well
as what degree the curve is, if applicable. Also saved for each track is which track it comes
from and where it connects to. This could be multiple other tracks in the case of a junction
track. The saved data for a train includes whether it is a custom train or one of the default
trains; if it is custom, it will have several attributes, such as engine power, length, etc. If it is
one of the default trains, it will just have its name and the starting section of the train. The
save data for a rolling stock has a starting section and if it is connected to a train, and if so,
the ID of that train.

4.9 Controllers

The controller has to be completely separated out from the simulation. Although the sim-
ulation and the controller are essentially modelling the same domain, the data they have
access to is different. The controller only has data that comes from events and the ini-
tial configuration, which includes track layout and IDs and the starting locations of trains.
This meant that the same classes had to be created for the controller: ControllerTrain,
ControllerTrack, etc. The controllers implemented currently respond to the events gen-
erated by the physical track or simulation by implementing the controller interface which
had the method receiveSectionEvent with the ID of the section.

An abstraction was made for controllers by creating an abstract controller class. This
is because all controllers receive an event and have the same behaviour for determining
which train relates to the event and if it is a section entry or exit event. The two current
controllers that subclass the abstraction DefaultController are the locking controller
and the routing controller. The locking controller ensures that no two trains are in the same

24

section at the same time. The routing controller uses Dijkstras search algorithm to find the
shortest path to the destination; it creates a graph out of the sections and junctions and uses
the length of the tracks to determine the shortest route, automatically toggling the junctions
in the track so that trains will take this path.

4.9.1 Loading Configurations

The controller requires the track layout and the trains and their starting locations on start
up. There are two ways to load the information into the controller: the first is to pass in
an array of ControllerSections and a list of ControllerTrains. This is the method
used by the simulation. Converting the format of the simulation sections and trains into
controller sections and train is trivial and does not require saving and loading of files.

The second way is to create a configuration file with the layout and trains, and then
specify the file path inside the controller. The file can also be created by the simulation by
creating the layout in the track builder and saving the file. By creating a configuration file,
the simulation is not required at all, any many different configurations can be created and
saved without modifying the source code of the controller.

25

26

Chapter 5

Evaluation

This chapter is covered in two parts. The first part covers the process used to test the simu-
lator and the second part covers the experiments carried out to check that the requirements
of the projects are met.

5.1 Testing the Simulation

There are three main aspects to test. The first testing the simulation this was achieved with
JUnit unit tests and manual testing. The second testing the controllers created behave the
way they are supposed to this was done manually with the simulator. Finally testing the
simulation vs the hardware system.

5.1.1 Simulation testing Framework

Part of the design of the program was to make sure the GUI is separate from the model and
simulation. The reason for this is so you can run the simulation without the GUI. This was
done by separating out the updating of the program logic and the refreshing of the graphics.
Therefore the update method can be called from the testing framework without needing a
GUI following the Model View Controller (MVC) design pattern.

Initially, testing was done manually by creating the tracks in code and verifying correct
behaviour on the GUI. This was tedious and slow and did not provide consistency between
tests or a record of what was tested. Instead, it was decided to use JUnit, a unit testing
framework for Java. This provides a better way of testing. Unit tests are now used to create
easily runnable tests repeatedly without the need for a GUI or user input.

An example of a simple test that is run is creating an instance of a train and two simple
track pieces connected to each other. The train is then placed on the first track and the
update method is called while checking if the current track of the train updates to the next
one. Another test is concerned with attaching some rolling stock to a train. At slow speeds
when the back of a train collides with a rolling stock, it should connect. This is testable
by creating a train placing it on a section in front of a rolling stock and reversing it while
checking is the rolling stock becomes connected after a certain number of updates. Other
tests include having many trains on the track at once. Checking collisions detection tracks
entering junctions in different orientations and directions.

5.1.2 Controller Testing in Simulation

Before the controllers could be tested on the hardware they needed to function correctly
inside the simulation.

27

The first one created was a simple locking controller. The track is divided up into sections
and each controller can keep track of where the trains are by receiving a starting location of
the trains and updating this location by responding to events sent by the simulated track.
A locking controller ensures no two trains are in the same section at once. Before a train
moves onto the next section it tries to acquire a lock for that section. If it cannot, it stops, if
it can, it enters the sections and releases the lock from the previous section. This was tested
by creating two trains one faster than the other. The faster train was placed a few sections
behind the slow train. What should be observed is as the fast train approaches the section
the slow train is in, it should stop. Once the slow train is out of the section, the fast train
should then enter. This was the case. Unlike the simulation, the controller is not continually
updated. It only responds to events sent out by the model and bases it decisions on what
the event means to the state.

5.2 Controller Evaluation Experiment

Testing controllers on the simulator is relatively straightforward since many different sce-
narios can be created and automatically checked to meet certain conditions. In contrast,
testing on the hardware is time-consuming, tedious, and limited to the available hardware.
In order to run a test on the hardware, the trains need to be manually placed in the correct
sections, after which the software that interfaces with the hardware need to be started. For
every trial, this has to be repeated. The trains also tend to get stuck which means the trains
need to be reset. Another problem is tests have to be visual, a person must wait to observe
the result. In the simulator, a test can be set up and the simulation run without visual out-
put. The simulation does have known differences to the hardware that cannot be avoided.
Therefore, we can never be sure that a controller which worked on the simulator will defi-
nitely work on the hardware. But, still, the simulator is useful for catching problems as early
as possible.

Therefore the first use case for the simulator is to create a controller on the simulation
and test that it functions correctly and then transfer it over to the hardware. To test this
functionality, a case study was conducted to check if this can be done in practice. To achieve
this, different controllers were developed and tested in the simulation and then moved to
the physical system. The results of this case study will be discussed.

5.2.1 Setup

The controller created in the simulation has to be moved to the JMRI client. The client
already has interfaces for events and controllers. The interfaces in the simulation had to be
modified to match the client in order for a smooth substitution of the controller.

The way the events interface was implemented in the simulator was a bit different to the
physical system, therefore it took approximately a day of work to make it work identically
to the Model Railway. An adaptor was created between the two. The adaptor received the
events from the simulator interface and transforms the data into events that the physical
system can understand.

The controller requires the layout of the track and the train starting locations to be able
to manage them. When the controller is connected to the simulator it can receive this state
when the controller is constructed. However, this is not possible when the controller is
separated from the hardware. Therefore a class was created for the controller to load the
layout data from a JSON file. This data in the file can be added manually or the layout
created inside the track builder and saved. See figure 5.1.

After fixing these two issues, the controller test could begin.

28

Figure 5.1: The simulation creates a configuration file for the controller to load the railway
state.

5.2.2 Methodology

This use case consisted of transferring the locking controller that was created and tested on
the simulation onto the physical system and checking for identical behaviour.

The locking controllers stop two trains entering the same section, therefore the test aimed
at creating a condition where without a controller the trains do enter the same sections and
collide see figure 5.2.

The test setup started with placing two trains on the track, one section in front of the
other, followed by sending speed events to the trains. The train at the back needs to move
faster in order to try and cause a collision (i.e which the locking controller should prevent)
therefore, the speed is set to 100 percent, the one at the front set to 50 percent. See figure 5.3;
as it is, without intervention they would collide. The locking controller should lock the
section the front train is on and refuse entry to the train at the back. Once the front train
leaves the section it will release the lock to the previous section and the controller should
send an update speed event to the back train to start it now that the section is clear.

Setting up the test takes some time. First, the trains need to be placed on the track,
but the wheels are small and they are difficult to line up. They have to be placed in the
correct sections in order for the software to have the same starting state. The software that
connects to the hardware then needs to be started. The software that interfaces with the
hardware (Model Railway) already existed at the start of the project (recall section 2.3.1).
The controller should control the train, therefore, a method has been added to send all the
events to the controller. After sending the control command the locking controller will
start responding to events from the hardware.

5.2.3 Results

A problem was uncovered. An assumption that the IDs of the tracks would be the same
as outlined in the paper [1], i.e. that every detection section would be oddly numbered;

29

Figure 5.2: The trains on the model track one section behind the other. The locking controller
should prevent a collision.

Figure 5.3: Locking Test: the train at the back is set to a faster speed to cause a collision.

whereas in my implementation, the IDs are simply incremented. This meant the controller
representation of the track was incorrect causing the controller to become confused and lose
track of the trains position. This is easy to adjust for once noticed, and the simulation and
controllers now handle the IDs the same way as the hardware.

The controller now functioned as intentioned on the hardware. This was confirmed
visually by observing the train stopping as it approached the section the front train was in
and resumed when the train holding the lock left the section.

30

5.2.4 Discussion

Overall, after fixing minor issues the experiment was a success. It was indeed possible to
move a controller developed entirely on the simulator to the hardware.

5.3 Simulation Accuracy Experiment

An important consideration for any simulator is to understand how accurate it is compared
with the physical system being modelled. Accurately means that when the hardware and
the simulation have the same starting state and receive the same inputs, the outcome should
be the same. However, there will be differences in real vs simulated results which can be
measured. Observing the visualisation of the simulation and the hardware in real time, the
trains should be in the roughly the same location on the track and events sent to both should
have the similar effects. This means that the speed, acceleration, and stopping time of the
trains needs to be considered in the simulation. It also means that scale should be accurate
in the visualisation.

The first step to making the simulation match up with the hardware was running bench-
marks on the hardware. On the train side, the information that needed to be recorded was
acceleration, stopping time, and max speed. For the tracks, only the length was important.
The track length was also used to work out the max speed of a train.

The outcome of the experiment should be that the movement of trains and the scale of
the track is closer to that of the hardware by inputting the results into the simulation.

5.3.1 Methodology and Results

Average Speed To work out the average speed of the train the train on the track and set to
reach full speed using the hardware controller. Once it had done a couple of loops around
the track and was at full speed, a timer was started and recorded the time of each lap the
train did around the track for 5 laps. Next, the power of the train was set to 50 percent and
times recorded for 5 laps. This benchmark was repeated on the controller software on the
computer. This was then repeated for the second train.

At full speed there was a 0.2-second variance in lap time at full speed this increased to
1-second see A.1 and A.2.The total length of the tracks came to approximately four metres
and this number was then used to work out the max speed of the train: 368cm/14.3s =
25.7cm/s (approximately 920m an hour). This value could then be set as a target speed in
the simulation to match the hardware.

Stopping Time To work out the stopping time, the train was set to full speed and once it
had reached full speed and reached a marked point on the track, the controller was set to
start braking. The distance between the marked point where braking started and the end
point where the train came to a stop was measured. On average this distance was 45.8cm
over 5 trials, for full results see A.3.

Acceleration To calculate acceleration, the train was placed at a fixed point and the train
set to full speed, the time was measured when it got to full speed with the formula

acceleration = velocity − velocityInitial/time (5.1)

The average time over the five trials was 3.2 seconds. Substituting the results into the
equation gives 25cms − 0/3.2s = 7.8cms2 The full results can be found in the appendix see
A.4.

31

5.3.2 Discussion

After gathering the data required, it was then entered into the simulation. The target speed
was set to 25.7ms and the tracks set to the measures length. The experiment was then re-
peated on the simulation. At first, it was not accurate; there were some things to fix in the
simulation. The way the power was updated in the train was not fine enough, so the way
that worked had to be changed. That was the main issue. After fixing it, the benchmark
for checking the time it takes a train to complete a lap at full speed was repeated on the
simulation and was now within a second of the hardware.

The accuracy of the stopping time is not clear when the controller changed from the
forward setting to braking setting there seemed to be a delay before the brakes would be
applied. Also stopping the train by reducing the speed stop the train almost instantly. How-
ever as long as the simulation is accurate to the hardware the requirements are met, also the
train and track attributes can easily be changed in the simulation if needed, using the sliders
in the user interface.

The physics engine in the simulation models a lot of variables that would make it more
accurate when it comes to real trains, the model trains are at a smaller scale so these vari-
ables do not have as much effect. However modelling all these attributes means if different
weighted trains or different tracks were to be modelled the physics engine would be suit-
able, this would not be possible if only the acceleration and stopping time was hard-coded
into the simulation.

32

Chapter 6

Future Work and Conclusion

This chapter covers further projects made possible by the completion of this project, recom-
mended extensions to the simulation, and concluding remarks.

6.1 Future Work

The main opportunity the project has opened up is that of creating and testing more com-
plex controllers for routing trains. Before the project was completed, testing controllers was
difficult and slow, but now they can easily be added to the simulation and selected from a
drop down menu to use. The two controllers developed with this project are fairly simple,
but there are endless possibilities for controllers. For example, a controller could take stop-
ping time into account to make sure trains never collide, or could use A* heuristics for route
searching, or could even manage congestion by taking trains all over the railway system into
account. The length of the rolling stock could be considered along with the weight of the
rolling stock, which impacts the stopping time. Currently, the available controllers wait for
events to respond to however an interesting project would be to create real-time controllers.

There are a number of features I would add to the simulation. Improving the UI for
creating trains and allowing new trains with different parameters would be beneficial. Cur-
rently, it is easy to do this in code, but there should be improvements in the user interface to
make this process easier.

Another feature would be a better system for exporting or importing controllers. Cur-
rently, the controller needs to be developed inside the simulation program. Having a way to
specify where the controller is located and having the simulation check if it is valid before
using it would be very useful.

Changing the tracks system so that it supports curves of any angle would make more
track layouts possible and would make it easier to represent realistic tracks. Furthermore,
support for different types of tracks, such as a diamond track, and railway signals would be
great.

Random events to derail trains and see how other trains respond or allowing the user to
crash trains in incorrectly set routes.

6.2 Conclusion

Simulations are often used to model real world systems to reduce costs and mitigate the
safety issues that come with doing tests on the real system. Simulations are also useful
when the system has a broad range of variables, meaning that all inputs cannot be tested by

33

brute force. A railway is one of these kinds of complex systems, therefore a simulation was
created to simulate a model railway in order to assist with testing software controllers.

The benefit of the simulation comes from improved testing capability compared to the
physical system, as there are a number of factors that make testing controllers difficult.

Placing trains on the track takes time as they are difficult to line up. Instructions are
sent through the command line and anytime a different configuration needs to be tested,
the source code has to be modified and the program restarted - this includes any changes to
the controllers. Changing controllers requires the program to be closed down, a few lines
of code changed, and restarted. The trains also tend to get stuck on the track, which means
they have to be reset, and therefore the software has to be restarted. Doing this once only
takes a few minutes but the time spent resetting quickly adds up to significant amounts.
This is what occurred when trying to get the locking controller working for the first time,
which made it take a significantly longer time than it otherwise would have.

Testing different configuration is even more difficult. The hardware has to be physically
changed for different track layouts. This layout has to then be manually hard-coded into the
JMRI implementation. There is also the limitation the number of physical tracks and trains
and rolling stock that are owned.

The simulation has reduced these problems. In the simulation, placing trains can be done
quickly by double-clicking on a track and selecting one of the default trains, or creating a
custom train if desired. An even faster way to place a train is by loading a configuration
file which does it automatically. Resetting is also very easy; the stop button simply needs
to be pressed, and it resets all of the trains and junctions by storing which configuration is
being run. Starting the simulation with a controller means clicking the controller button and
selecting one. This can be changed later without having to restart the program. New layout
configurations can also be created using the track builder, and they can be saved to file. The
simulation also has a physics engine, therefore trains with different attributes can be tested
without having to purchase the physical trains. The simulation also provides a log of all
the events that occur when running, which is useful to see the sequence of events that have
happened, or work out where things went wrong.

The simulation is able to emulate important aspects of the hardware; it outputs the same
events and sends the same state to the controllers, which allows controllers to be tested
on the simulation and transferred over to the hardware system with the same result given
the same inputs on the simulation and the hardware. The simulation has a simple physics
engine for accuracy and supports trains and rolling stock. The simulation also contains two
controllers as examples. Along with a track builder to create and test new configurations,
the design is modular to allow future extensions.

34

Appendix A

Experiment results

Table A.1: Train lap time (s) at full speed
Light Blue Train

Controller PC
Lap Full Speed Half Speed Full Speed Half Speed
1 14.5 26.0 12.9 17.6
2 14.4 25.7 12.8 17.8
3 14.2 25.8 12.8 18.0
4 14.2 25.6 12.7 17.8
5 14.0 25.5 12.9 17.9

Table A.2: Dark Blue Train lap time (s) at full speed
Dark Blue Train

Controller PC
Lap Full Speed Half Speed Full Speed Half Speed
1 14.0 25.8 13.2 19.1
2 14.2 25.1 13.1 19.2
3 14.1 25.0 13.1 19.2
4 14.0 25.2 13.2 19.0
5 14.2 25.0 13.2 19.1

Table A.3: Distance it takes a train to stop travelling at full speed
Stopping Distance at full speed
Lap Distance (cm)
1 44
2 45
3 47
4 46
5 47
Average 45.8

35

Table A.4: Time it takes a train to accelerate at full speed
Acceleration

Trial Time (s)
1 2.6
2 3.2
3 3.2
4 3.2
5 3.2
Average 3.08

36

Bibliography

[1] D. J. Pearce, A Model Railway for Investigating Safety Critical Software. 2016.

[2] Alstom, Rail interlocking: how does it work? 2013.

[3] I. Mitsuru, “Railway simulators: tools for novel railway research.”
http://www.railjournal.com/index.php/rolling-stock/
railway-simulators-tools-for-novel-railway-research.html, 2016.

[4] O. Rails, “Open rails - discover - open rails.” http://openrails.org/discover/
open-rails/, 2016.

[5] J. M. R. Interface. http://jmri.org/, 2016.

[6] Oracle. http://docs.oracle.com/javase/8/javafx/
get-started-tutorial/jfx-overview.htm#JFXST784.

[7] R. Allain, “How do you get a train moving?,” 2014.

[8] K. Roman, An Empirical Evaluation of Force-Directed Graph Layout. PhD thesis, Victoria
University of Wellington, 2014.

37

