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Abstract 

This document contains a full report on the Profiling Collections in Java project. The project focuses 
on the development of a tool that profiles the use of different implementations of the Collection 
interface in Java and allows us to analyse their use with regards to efficiency. It is our hypothesis that 
the efficiency, and therefore performance, of software may suffer as a result of poor decisions made 
by the developer when choosing which Collection implementations to use in their code. Our 
profiling tool will allow us to determine whether or not this is true. 
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Chapter 1  
Introduction 

1.1 Motivation 
Almost every piece of software that is written today incorporates the use of structures that represent 
collections of data. Sets, lists, queues, stacks and maps are all examples of such structures. In Java, all 
of these data structures fall under the common interface of Collection. There are a number of 
implementations of these data structures available to software developers in common libraries for 
most popular languages. The availability of these implementations saves the developer a lot of time 
but does not remove them from the process entirely. They must still choose which implementation to 
use and this choice can have severe effects on the performance of the software. 

1.2 Example 
Let us consider the two different add methods in the List interface in Java. The first method, 
List.add(<E>), is inherited from the Collection interface. It takes a single argument – the item 
to add to the list – and inserts this item at the end of the List. The following diagram illustrates the 
process for the ArrayList and LinkedList implementations: 

 

As the diagram shows, List.add(‘A’) has a complexity of O(1) for both ArrayList and 
LinkedList. Occasionally ArrayList will incur a larger cost for this operation. This is the case 
when the array fills up and it must copy its contents to a new, larger array. In the average case though, 
the complexity is O(1). We can see quite clearly that the performance characteristics for this operation 
will be about the same, whichever implementation is chosen. 

The second add method is specific to the List interface and takes two arguments in the form of 
List.add(x, <E>). The extra argument in this version specifies the point in the List at which the 
new item is to be inserted. Again, processes for each implementation are illustrated below: 
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When we consider the List.add(x, ‘A’) method as shown above, a gap appears in the 
performance of the different implementations. LinkedList retains its O(1) complexity while 
ArrayList degrades to O(n). The reason that ArrayList becomes so much more expensive is that 
it stores its data elements in a contiguous linear space. Every time it tries to add an element at a 
position that is not the end of the list, it must first shift every successive element one position to the 
right. 

LinkedList does not suffer from the same problem as ArrayList. Rather than using a contiguous 
linear space to store data elements, it uses random free memory spaces and can therefore create new 
space without having to rearrange anything. To place the new element in the list, pointers from each 
of its new neighbours are simply redirected to point at the new element. This does, however, introduce 
a new cost – finding the neighbours. To find position x in a LinkedList you must first find position 
x-1. This means that finding the place at which you want to insert the element becomes O(n). While 
this can add to the cost in some situations, there are other situations where it is not a problem.  

For example, consider the case of a bulk insertion of items at specific points in a List. Using an 
ArrayList implementation the complexity is O(kn). This is because for each of the k items being 
added, there is a cost of n involved in moving down the successive items to make room. The code for 
achieving this bulk insertion may take the form: 

for(int i = 0; i < items.length; i++){ 
 list.add(positions[i], items[i]); 
} 

In the example above, the ‘positions’ array contains integers representing the positions in the List 
where we want to add the items. The ‘items’ array contains the items themselves. These two arrays 
are related in such a way the positions[i] is the position at which items[i] is to be added. 

If a LinkedList implementation is used, the complexity falls to O(k+n). This is because 
LinkedList does not have to shift existing items every time it wants to add a new one. It can use the 
ListIterator class to its benefit so that it searches the list at most once to find insertion points. It can 
then use the ListIterator.add(<E>) method to insert the desired item at the current point. This code 
may take the form: 

ListIterator<E> itr = list.listIterator(); 
for(int i = 0, j = 0; i < items.length; i++){ 

while(j < positions[i]){ 
  itr.next(); 
  j++; 
 } 
 itr.add(items[i]); 
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} 

There are some scenarios where finding a position in a LinkedList is not a complex operation. 
These include the case where the List is being added to at the very beginning, and the case where the 
List is being iterated over anyway. Neither have any added cost in finding the position at which to 
insert the new element. They may sound like isolated and unlikely scenarios, but there are several 
imaginable situations in which they might occur. 

The point is that operations have differing costs associated with them which are defined by the 
specific implementation chosen by the developer. If we can identify operations that have 
implementation-dependent complexities and monitor their usage, we may be able to help developers 
to make the best decisions with their choice of implementation. 

1.3 Hypothesis 
It was our hypothesis that developers do not always make the best decisions with their choice of 
Collection implementation. This may be for a number of reasons: 

• The developer uses one type of implementation all of the time, out of habit. 
• Little or nothing is known about the performance characteristics of different Collection 

implementations by the developer. 
• The developer is not sure exactly how the program is going to use the Collection. A 

common example of this is the development of libraries. If the developer is creating a library 
to be used by other developers, he or she cannot possibly predict exactly how that library will 
be used. 

Through this project, we hoped to test whether this hypothesis is true or not. 

1.4 The Java Collection Profiler 
To test our hypothesis we decided to develop a tool for monitoring the usage of Collection objects 
within Java programs. This tool should be able to assess the usage of Collection objects within 
Java programs without the need to modify the source code of that program. It should be easy to use 
and provide an output that allows developers to easily see which points in their code have potential for 
performance gains through Collection implementation selection. 

The tool that we developed is called the Java Collection Profiler. It is designed to be easy to modify to 
allow for developers to monitor exactly what they want in their programs. It is implemented in 
AspectJ and Java and has been tested to work perfectly with a number of Java programs. The results 
produced by the tool are informative and clear, and we have managed to achieve significant 
performance enhancements in some programs as a direct result of using the tool. 

What follows is a description of the development of the tool; along with examples of the results it has 
produces and an analysis of its effectiveness. 
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Chapter 2  
Implementation 

2.1 Methods of Interest 
Choosing which methods our profiler was to intercept required a degree of thought and consideration. 
An obvious approach would be to simply intercept all Collection interface method calls. This 
approach has a number of drawbacks: 

• The more methods we intercept, the more overhead there is associated with our profiler. 
• For every method we intercept, there is another piece of data that must be displayed in the 

output of the profiler. This can lead to clutter and make the results difficult to interpret and 
understand. 

• Not all methods are relevant to our goal of performance improvements. 

The first two points are relatively straight forward – it takes more effort to gather and understand 
more points of information. This holds true for a great number of scenarios, outside of profiling and 
outside of computer science. 

The final point is quite specific to our task. While all methods incur a cost in performance, not all 
have costs that differ with implementation. We are interested in comparing the performance of 
different implementations so only methods that differ in cost with implementation are of interest to us. 

To give an example of the distinction between ‘interesting’ methods and irrelevant ones, let us again 
consider the List interface in Java. There are three main implementations of the List interface 
provided in the common Java library – ArrayList, LinkedList, and Vector. ArrayList and 
Vector have very similar performance characteristics and so Vector is largely ignored throughout 
this project. LinkedList, however, uses a completely different underlying data structure. Because of 
this, there are a number of methods that differ in performance when compared to those in the 
ArrayList implementation. 

We have already seen how a LinkedList implementation can perform better than an ArrayList in 
some situations. Conversely, the List.get(x) method is a much cheaper method when an 
ArrayList is used over a LinkedList. This method retrieves an item from a specific point in a 
List. The associated complexities are O(1) and O(n) respectively. Because both of these methods have 
performance differences that relate to the implementation chosen by the developer, both are 
monitored by our profiler. 

Other Collection methods are not so interesting. For example, the Collection.size() method 
has a complexity of O(1) which is common across all implementations. Since profiling methods like 
this would offer no benefit to the developer in choosing the best implementation to use, they are not 
profiled by our tool. 

The complete set of methods that we have identified as interesting, and included in our profiler for 
monitoring, is: 

• Collection.add(<E>) 

• Collection.remove(<E>) 

• List.add(x, <E>) 

• List.get(x) 
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• List.remove(x) 

• List.set(x, <E>) 

• ListIterator.add(<E>) 

• ListIterator.remove() 

• Set.contains(Object) 

All of these methods have potentially different performance characteristics for each of the standard 
implementations provided by the Java framework. Furthermore, our profiler is designed in such a way 
that monitoring extra methods can be achieved with very little modification to the source code. This 
helps to cover the possibility that there exist other methods of interest not currently monitored by our 
profiler. It also caters for future developments to the Collection interface and other interfaces that 
inherit Collection which may produce more methods of interest. 

2.2 Intercepting Method Calls 
For our profiler to work it must be able to recognise points in the target program where there are calls 
to methods of interest. It must then be able to intercept the target program at these points and execute 
our own profiling code. Object-Oriented programming languages do not provide an easy way for us to 
achieve this so we must look elsewhere. The solution we chose was to make use of an Aspect-
Oriented programming (AOP) language [9]. The specific AOP language we chose was AspectJ. 

2.2.1 AspectJ 

AspectJ is a popular AOP language designed for Java (see e.g. [7,8] for more on AspectJ). It was 
chosen very early on in the project as the programming language to implement our tool in. It 
effectively allows us to automatically place code of our own throughout any Java program, as long as 
we have its source code. To achieve this interleaving of code using simply Java itself would be an 
incredibly difficult and tedious task. For example, using AspectJ we are able to intercept a program 
every time any Collection method is called and print out a line of text to the system console. The 
code to achieve this could take the form: 
before() : call(* Collection+.*){ 
 System.out.println(“Collection method called!”); 
} 

Every time a call is made to any method defined in the Collection interface, the message will be 
printed to the system console. In the definition, call(* Collection+.*) the ‘+’ indicates that all 
calls to methods defined in subtypes of the Collection interface will also be caught. For example, 
ArrayList is a subtype of Collection. Therefore, all calls to methods in the ArrayList class will 
be caught. 

To achieve this goal without using an AOP language we would have to search by hand through the 
entire source code of the target program, inserting print commands at each point where a 
Collection method call is found. We would then have to recompile the program. Once finished 
with the profiling, we would have to reverse this in an equally tedious fashion. 

The way to intercept Java code with AspectJ is to use pointcuts. Pointcuts effectively define places at 
which you wish to insert code in the target program. Since our tool is intended to monitor the use of 
Collection objects, we created pointcuts for a number of Collection methods. Examples of these 
pointcuts are: 
pointcut colAdd() : call(* Collection+.add(..)) && !within(jcp.*); 
pointcut colRemove() : call(* Collection+.remove(..)) && !within(jcp.*); 
pointcut listGet() : call(* List+.get(..)) && !within(jcp.*); 
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pointcut listSet() : call(* List+.set(..)) && !within(jcp.*); 

Again, we make use of the ‘+’ character to make our pointcuts apply to all subtypes of the 
Collection (or List) interface. The ‘(..)’ indicates that methods with any number and type of 
arguments will be intercepted. To avoid monitoring method calls from our own code, we used the 
‘!within(...)’ statement. This statement allows us to exclude our own package from being 
intercepted by the pointcut. 

Once we had defined our pointcuts we were able to add advice to them. Advice is code that is run 
when the pointcut is triggered. Advice can include any AspectJ specific code, as well as standard Java 
code. In the following sections we discuss what the advice in our profiler actually does. 

2.3 Identifying Objects 
When a method call is identified and intercepted by our profiler, there is a great deal of information 
that is available to us courtesy of AspectJ. This information can provide us with details about the 
arguments being passed to the method, objects that are being returned by the method, and information 
about the point in the code at which the interception occurred. 

Ideally we want to provide the developer with an analysis of their program which tells them “here is a 
point in your code that may be using a sub-optimal Collection implementation”. This is not quite 
as straight forward a task as it sounds. Most of the interceptions that are done by our profiler are at 
points in the code where methods are called on Collection objects. An example of these 
interception points follows: 

...

if (count > 0) {

list.add(robots.get(0));

for (int i = 1; i < count; i++) {

list.add((int) (Math.random() * i + 0.5), robots.get(i));

}

}

...  

In the above example, suppose we intercepted the highlighted method calls using AspectJ. Then, we 
would know the position in the source file where the method call occurred. However, this does not tell 
us where in the program the object which is being called upon was originally created. The developer 
really needs to know the location in their code where the Collection object was created because 
this is the point at which the Collection implementation is chosen. 

In order to provide the developer with this information, we need some way of identifying the creation 
of Collection objects and keeping track of their usage throughout the program execution. Our 
solution to this uses the following steps for each Collection object created in the developer’s code: 

1. Intercept the program when a Collection object is created. 
2. Place an entry in a codePosition Map that ties the unique identifier of the newly created object 

(effectively its memory address) to the program point at which it was created. 
3. Intercept method call of interest. 
4. Match the unique identifier of the object to a code position in the codePosition Map. 
5. Update a running total of usage statistics for that code position. 
6. Repeat from step 3 until program terminates. 

The following diagram illustrates this process in action:  
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The creation of a Collection object adds a link from the object ID to the code position in the 
codePosition Map. Later on, when the object is used, the codePosition map is referenced so that the 
running total for the appropriate code position can be updated. 

The ‘unique identifier’ referenced above is acquired via the System.IdentityHashCode(Object) 
method that is provided by Java. This method returns an integer that is unique to the object and 
remains so throughout the entire lifetime of that object. But what happens if an object’s lifetime ends 
and another object is created with, quite by chance, the same IdentityHashCode? Does this distort 
our statistics? As it turns out, no, it does not. When you consider the previously mentioned sequence 
of operations you notice that one of the first steps is to place an entry in a Map linking the object to the 
point at which it was created in the code. This means that if an object assumes the identity of an 
extinct object it must also update the Map to point to the new code position at which it was created. 
Since statistics are paired with code positions, and not object identifiers, there is no risk of 
contaminating the results with statistics from objects created at another code position. 

To provide out profiler with the ability to identify objects and match them up to the position at which 
they were created in the code we have made use of a couple of Maps. Because Map implements the 
Collection interface, and our profiler intercepts method calls to objects implementing the 
Collection interface, we can run into problems with self-accounting and, possibly, infinite loops. 
To avoid this problem we make use of the AspectJ keyword within. While defining our pointcuts 
(see section 2.2.1) we insert this keyword along with a negation symbol and our package name to 
exclude code in our profiler from being intercepted. E.g. !within(jcp.*) 

2.4 Sampling 
Profiling method calls is not a free operation. Our tool incurs overhead in the system when it is run. 
Because our tool is only intended to be used during the development of software this should not be an 
issue. However, for our tool to be truly appreciated by developers it should introduce as little cost as 
possible in the software development process. 

There may also be situations where extra overhead must be minimised in order for the program to run 
correctly. For example, if the program that is to be monitored is highly time dependent then 
introducing large amounts of extra delay with our profiler might cause the program to function 
incorrectly or fail completely. For our profiler to be as universal as possible we need to minimise the 
delay that it might introduce in programs. 

To reduce the overhead introduced to the program by our profiler, we used a sampling approach. By 
sampling a small ratio of the method calls that the program makes, we are able to dramatically reduce 
the overhead incurred by our profiler. Sampling has been used in many statistical applications to give 
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a relatively accurate view of the population. It is, however, simply a view. If care is not taken, there 
may be situations where results are not a fair representation of actuality because poor samples have 
been taken. 

Before we developed a technique for sampling in our tool, we needed to decide exactly what we 
wanted to sample. There were a couple of obvious choices: 

• Object creation: When Collection objects are created, we could sample which ones we 
took notice of. We would then follow the sampled objects through their entire lifetime and 
take notice of all calls to methods of interest on them. 

• Method calls: Take a note of every Collection object that is created. Then sample the calls 
to methods of interest across all Collection objects. 

Sampling ‘object creation’ would likely not return the same performance benefit as sampling ‘method 
calls’ in AspectJ. This is because every time a method call was picked up, it would have to have its 
object ID checked back against the codePosition map to determine if it should be sampled or not. We 
chose to sample ‘method calls’ instead, to gain the greatest benefit in performance. 

The benefit of choosing the ‘method calls’ approach is that we are far more likely to gather 
information on all code positions in the program. If we sample ‘object creation’ then it is entirely 
possible that some code positions will slip through the profiler without being sampled at all. This is 
especially likely for positions in the code that only ever create an object once. Simply because they 
are only created once does not mean they are not heavily used in the program and therefore very 
important that we monitor. 

For our sampling technique we considered a number of approaches: 

• Purely random sampling: for each member of the population, generate a random number and 
if that number is over a given threshold include the member in the sample group. 

• Time based sampling: use a timer that works off the system clock and samples every method 
call that directly follows the expiration of the timer. 

• Framed sampling: take the first method call in every frame of n method calls as a sample. 
• Frame bounded random sampling: for every given frame of n method calls, select one 

method call at random to sample. 

The technique we ended up using was the final one – frame bounded random sampling. This 
technique has a number of benefits in our situation: 

• Samples are dispersed throughout the entire program. With purely random sampling it is 
quite possible that large portions of the program will go unsampled while others may be 
oversampled. Framing our random selection helps to dramatically reduce this issue. 

• The sample rate is not defined by program performance. Time based sampling lead to a 
different number of samples being taken on machines that differ in performance. The slower 
the machine, the more samples will be taken. Since more samples leads to poorer system 
performance, a time based sampling approach may well lead to a snowballing effect in this 
regard. Since we are basing our selection on the occurrence of method calls, and not an 
unrelated clock, we avoid this issue. 

• Cycles in the program are unlikely to skew results. If a plain framed sampling approach is 
used we face the possibility of inaccurate results in the case of program loops that match our 
frame size. Assume we are sampling every fiftieth method call. If the program we are 
monitoring contains a main loop with fifty calls to methods of interest then, with simple 
framed sampling, we are going to be sampling the exact same method call every time around 
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the loop. This could lead to a highly distorted result set which would be of little use to 
developers. By randomising the one method that we select from every frame, the chance of 
this sort of distortion occurring is highly unlikely. 

In Figure 1 we can see a visualisation of how our chosen technique – frame bounded random 
sampling – works. The program is effectively divided up into even frames of n calls to methods of 
interest. Within each of these frames, a random method call is chosen and sampled. We tested the 
accuracy of this sampling technique by running it over a number of benchmark programs and 
comparing the results produced to those of a non-sampled run. We found that the difference between 
the results of the two was minimal and did not change the implications of the results. 

 
Figure 1 – Frame bounded random sampling 

In order to cater for programs of all sizes, and target machines of varying levels of performance, the 
size of the frame can be easily changed to suit. It can also be reduced to ‘1’ so that every method of 
interest is sampled. 

2.5 Timing 
For developers wishing to improve the performance of their programs, simple measures like counting 
method calls are not overly useful. It would be far more useful to be able to see which methods were 
consuming the most time for each Collection object. For this reason, we designed our profiler to 
base its statistics gathering on the time spent executing each method. To achieve this measure of 
timing, we must intercept the program before the method is called and start a timer. We must then 
leave the program to complete its method, and finally jump back in and stop our timer. Only once we 
have done all of this can we add the measured time to the appropriate total in our statistics. 

If we consider again the example from above we can visualise how this measure of timing might be 
achieved: 

 

Using the around advice in AspectJ, we are able to place our own code on either side of an 
intercepted method call. Before the method proceeds we take the current time from the 
System.nanoTime() method that is provided by Java and store it in a variable. This method 



13 

 

provides us with the current system time at a high resolution. Since some methods execute very 
quickly, using a millisecond degree of accuracy would not be sufficient in all cases. We then allow the 
method to execute by using the proceed() call. Finally, once the method has completed, we can 
once again make use of System.nanoTime() to get the finish time of the method and calculate the 
time spent executing it. The measured time is then added to our statistics. All of this happens within 
the around advice in our profiler code. 

One issue that must be considered when using this approach is the issue of multithreaded programs. A 
method call may be intercepted and then lose its time slice just after our timer starts. Since our timer 
relies on the system time for its measurement, every unit of time spent waiting for the thread to re-
enter execution will be included in our measurement. This is, potentially, quite a large problem and 
may need to be addressed in future work. In our testing we included multithreaded software and did 
not observe any obvious inaccuracies, but acknowledge the fact that they may well exist. 
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Chapter 3  
Experimental Results 

After implementing our profiler it was necessary to gain a real world view of how well it might 
achieve its goal – to help developers make the best decisions with Collection implementations. The 
best way to do this was to find some real world programs and run our profiler over them. We did this, 
and then analysed the results to assess if Collection implementations had been chosen wisely by 
the developer(s). If we found decisions that our profiler suggested might be poor, we recompiled the 
program using the better implementation and measured any performance benefits. 

3.1 System 
For the vast majority of testing and benchmarking we used just one system configuration. We ran tests 
of our tool on other system configurations to ensure portability but the results presented are all from a 
common system. That system is: 

Make Toshiba 
Model Portege R100 (PPR10A-04M8ZP) 
CPU Intel Pentium M (Banias), 1GHz, 400MHz FSB, 1MB L2 Cache 
Chipset Intel i855GM 
Memory 1280MB, 266MHz 
HDD Toshiba MK6006GAH, 60GB, 4200RPM, 2MB Cache 
OS Microsoft Windows XP Professional, Service Pack 2 
JRE 1.6.0_07-b06 
AspectJ 1.5.1 

 

3.2 Displaying Results 
Having developed a tool that could gather usage statistics for the use of Collection objects we were 
faced with another challenge – how to present the results. Most of the benchmarks that we used to test 
our profiler produced amounts of data that were just not practical to try to analyse as raw numbers. 
For data to be useful it should be in a form that is easy to interpret and analyse, and in many cases the 
best way to achieve this is through visual representation. A chart of some description seemed like the 
best candidate for visual representation in our case. We considered a number of styles of chart, 
examples of which are presented below: 
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Brief descriptions of the methods are given in the legend at the bottom of the chart. A more 
substantial description is given below: 

Legend Label Included Methods 
Add at End Collection+.add(<E>) 

Add in Middle List+.add(x, <E>) 

Remove Collection+.remove(<E>), List+.remove(x) 
Get List+.get(x) 

Set List+.set(x) 

Contains Set+.contains(Object) 

Iterator Modify ListIterator+.add(<E>), ListIterator+.remove() 

 

3.4 RoboCode 
RoboCode is an open source, educational Java game in which user-created simulated robotic tanks 
fight each other in a 2D space. The purpose of the game is to help teach people how to program in 
Java and develops ideas of Artificial Intelligence [1,2,3,4]. All of the tanks in the game are 
‘physically’ identical but differ in the way developers program them. The tanks can shoot at each 
other, move around, scan for each other and bump into walls and other tanks. The program is 
designed in such a way that it is not difficult at all to program a robot but programming a really good 
one is quite a challenge. This provides a learning curve for new Java developers that allows their 
robots to get better as their programming knowledge and technique improves. 

3.4.1 Procedure 

The version of RoboCode used throughout the development of our profiler was 1.6.0 Beta 2. 
Although a beta release, we found it to perform perfectly with no stability issues at all. 

We ran our profiler over the program a number of times, using different game parameters each time. 
The different combinations we used are described in the following table: 

Parameter Configuration 1 Configuration 2 Configuration 3 Configuration 4 
Robots 5 10 5 5 
Rounds 10 10 20 10 
Playing Field 800x600 800x600 800x600 1600x1200 

We used Configuration 1 as a ‘base’ configuration. For Configurations 2 – 4 we changed a single 
parameter from that of the base configuration. The reason for this was that we wanted to see how the 
use of Collection objects changed within the program when the input variables changed. 
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3.4.3 Discussion 

The results from RoboCode show heavy use of the ArrayList List implementation throughout the 
program (see Figure 2 through Figure 5). This implementation is favoured for operations like 
List.get(x) and List.set(x,<E>). We can see from the results that all four configurations of 
RoboCode make use of the List.get(x) method quite extensively at a number of code points in the 
program. In these cases, where List.get(x) and sometimes List.add(<E>) are used, 
ArrayList is the best choice of List implementation. This is because it has complexity of O(1) for 
both of these operations. 

If, however, we look at the code position ‘Battle.java:576’, we can see that the overwhelming 
majority of the execution time is spent in the List.add(x,<E>) method. As discussed earlier in this 
report, this method can yield performance benefits when implemented with a LinkedList. This 
assessment is not conclusive, as the performance characteristics depend on how the program is using 
the method. Only in certain situations will a LinkedList benefit program performance. 
Nevertheless, this is a point in the program that should be examined because it shows potential for 
improvement. 

We examined the code in the ‘Battle.java’ file of RoboCode at and around line 576 and found the 
following: 

private List<RobotPeer> getRobotsAtRandom() { 
int count = robots.size(); 

 List<RobotPeer> list = new ArrayList<RobotPeer>(count); 
 if (count > 0) { 
  list.add(robots.get(0)); 
  for (int i = 1; i < count; i++) { 
   list.add((int) (Math.random() * i + 0.5), robots.get(i)); 
  } 
 } 
 return list; 
} 

The List.add(x,<E>) method is being called inside a loop which explains its large presence in the 
results. When we look at where exactly the items are being added to the list (the ‘x’ value) we see that 
a random number method is being used to determine position. In order to gain performance benefits 
from a LinkedList we either need to have the items being added consistently at the beginning of the 
List, or be in a situation where the list is being iterated over anyway. In this case neither applies. 
Since the position at which the new item is being added is being determined at random, we cannot 
expect to gain any benefits in performance from a LinkedList implementation. 

However, if we look beyond what the code says and assess what is actually achieves we can see room 
for improvement. The point of the code is to create a randomised copy of the ‘robots’ List. As the 
code stands, it is an expensive operation. For every item in the ‘robots’ List, a List.add(x,<E>) 
operation is being performed on the new List. This results in a complexity of O(n2). Instead, we 
could start by performing an initial copy of the ‘robots’ List which has complexity O(n). We could 
then use the Collections.shuffle() method to randomise this new List. 
Collections.shuffle() is based on an algorithm developed by Donalth Knuth [10] and also has 
complexity of O(n). Using this approach means that we are able to reduce an O(n2) complexity 
operation into a much more efficient O(n) complexity operation. 
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It is important to note that this performance improvement is not related to implementation choice but 
rather algorithm efficiency. However, it was because of our profiler that this code point came to our 
attention. This demonstrates the flexibility of our tool in being able to help developers to improve 
efficiency in their code. 

Observant readers will note that the list that is created in the above example is returned at method 
completion. This means that there may be code elsewhere that performs List.add(x,<E>) 
operations on the object. Such code could potentially lend itself towards a LinkedList 
implementation. This is a valid argument, but upon searching for calls to the 
getRobotsAtRandom() method within the program we found no such code. 

While this code position turned out to be using the most appropriate List implementation, it shows 
up another point of interest in our results. This is that the configuration of a program can indeed have 
an effect on how the program uses its Collection objects. If we consider the same code point across 
all four figures, we see that Figure 3 has a noticeable difference in its ratio of calls to 
List.add(<E>) and List.add(x,<E>). While not being applicable in this case, it is important to 
note that a specific implementation may not be the best choice for all configurations of the program. 
This point will be revisited later in Section 5.1. 

Another code position that illustrates the effect that program runtime configuration can have on its use 
of Collection objects is in the file ‘EventManager.java’ at line 103. Objects created at this code 
position exhibit similar patterns of use when run with Configurations 1 through 3 (see Figure 2 
through Figure 4). That pattern is a split of approximately 70% (Add at End), 15% (Remove), 15% 
(Get). When we look at the results from Configuration 4 (Figure 5) this pattern shifts dramatically. In 
this configuration we see a split that is close to 30% (Add at End), 10% (Remove), 60% (Get). 

It is clear from the results that the two code positions described above have patterns of use that vary 
with the runtime configuration. It is interesting to note that individual parts of the configuration can be 
linked to usage patterns at specific positions in the code. Consideration should therefore be taken to 
profile the program with as many different configurations as possible. This will help to achieve the 
most accurate view of the use of Collection objects in the program. 

3.5 JGraph 
JGraph is a freely available, open source graph component library for Java [11]. It integrates into the 
popular Swing framework [12] to provide developers with easy-to-use visual graphing components 
for their software. 

3.5.1 Procedure 

Since JGraph is a component library, not an executable program, it cannot be profiled. There are, 
however, a number of example programs that are packaged with the distribution we obtained (5.9.2.1) 
that integrate components from the library. One of the example programs is called FastGraph. This 
program has the ability to produce fully connected graphs of any size. For profiling, we used this 
program to generate and display a fully connected k64 graph. 
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size() method has O(1) complexity for both LinkedList and ArrayList. The get(x) method, 
however, has O(n) for LinkedList and O(1) for ArrayList. We would expect to see a benefit from 
changing to an ArrayList implementation in this case. As it happens, the LinkedList at this point 
of Hospital is actually implementing the Queue interface, not the List interface. Since ArrayList 
does not implement the Queue interface, it cannot be used in place of a LinkedList. 

The second code point in our results also shows an interesting mix of characteristics and 
implementation choice. An ArrayList had been chosen when the only point of significance is a 
large number of calls to the ListIterator methods we are monitoring. These methods lend 
themselves to the LinkedList implementation by turning operations like add and remove into O(1) 
complexity operations. They remain O(n) complexity in the case of an ArrayList implementation. It 
seems pretty clear cut in this case that a LinkedList should have been used instead of an 
ArrayList. To validate this claim, however, some real world testing is required. 

To test the prediction that changing the ArrayList creation in Hospital to use a LinkedList 
implementation will benefit performance, we ran Hospital a number of times with a number of 
different configuration variables. We then ran the same simulations with the source code modified to 
use a LinkedList, and the program recompiled. As mentioned earlier, Hospital already includes 
mechanisms for timing executions of the simulation and these were used to produce a measure of 
performance that we could analyse. 

Our results were conclusive. In all of the configurations that we tested, the build of Hospital that used 
a LinkedList performed at least as well as the original ArrayList build. Most cases showed a 
significant performance advantage to the LinkedList build. Some cases showed as much a 40% 
increase in performance with the LinkedList build. These results are very pleasing as they 
demonstrate the potential for our tool to be incredibly beneficial to the world of software 
development. 

3.8 SimpleLISP 
LISP is one of the oldest high-level programming languages in use today. SimpleLISP is an 
interpreter for this language that has been developed in Java by Dr. David J. Pearce. It provides an 
editor in which LISP programs can be created, edited, loaded and saved, as well as the interpreter 
which executes the code. 

3.8.1 Procedure 

The SimpleLISP distribution comes bundled with a few example LISP programs. We made use of the 
‘Fibonacci’ example to run through the interpreter and profile the program with. ‘Fibonacci’ is a basic 
LISP program that takes one user defined integer input, and calculates a Fibonacci sequence with 
length equal to the user input. We kept the sequence length relatively low (< 40) in order to keep 
execution time reasonable, and implemented a simple timing mechanism for measuring performance 
using the System.currentTimeMillis() method. 
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Chapter 4  
Related Work 

Little work is known to us in the specific area of profiling Collection objects to benefit 
implementation selection. There has been, however, a reasonable amount of work done in the general 
area of profiling. Some of these works are described briefly in this chapter. 

4.1 DJProf 
DJProf is a tool that is designed to profile four elements of Java programs [5]. These elements are: 

• Heap usage 
• Object lifetime 
• Wasted time 
• Time-spent 

At the time of its creation, there were a number of other tools that could profile these same elements 
in Java programs and were readily available. The reason that the tool was developed was not simply 
to add to the collection, but rather to explore whether or not it would be possible to efficiently achieve 
this task using an aspect oriented programming language (AspectJ). 

The development and testing of DJProf sought to answer questions at two levels. The base question 
was whether or not AspectJ provided sufficient functionality to carry out profiling tasks for the Java 
program elements mentioned above. The second level of investigation was whether or not this could 
be achieved efficiently. As the paper shows, profiling the above program elements is indeed possible 
and in most cases reasonably efficient at doing so. It does, however, highlight some limitations with 
AspectJ as a language for profiling. 

DJProf was very useful as a proof-of-concept for our project and provided a solid foundation to build 
upon. 

4.2 Absolute Timing vs. Sampling Time Profiling 
To determine the ratio of time that an object spends executing one method as compared to another, 
our tool uses an absolute timing approach. This sort of approach involves measuring the entire time 
from entering a method to method completion. Once all measurements have been made, the totals for 
each method are compared to determine the ratio between them. 

An alternative approach to time profiling is known as time sampling. Rather than measuring the 
absolute time spent in each method, it periodically records the currently executing method. This 
builds up counts for each method type which are then compared to determine the ratio of time spent in 
each. There benefit of a time sampling approach is that it has a much lower overhead than absolute 
timing. The downside is that it is not nearly as accurate as absolute timing. 

Further discussion of the two timing approaches can be found in [5] and [14]. 

4.3 Profiling Allocation Behaviour 
Other profiling work has been done in the area of performance costs associated with the garbage 
collection (GC) of unreferenced objects in a running program [6]. Many popular programming 
languages do not support the notion of GC. C and C++ are examples of such languages. Java, 
however, does include automatic GC. 
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There have been arguments made for and against the use of automatic GCs in programming 
languages. The main benefit of GC is that is helps to reduce memory leaks in programs that can cause 
poor performance and sometimes complete failure of the program. Unfortunately, like any piece of 
code, automatic GC has a performance cost associated with it. 

The work detailed in [6] focuses on tuning GC in Java to optimise its performance for a given Java 
program. In order to optimise GC for the program, the program itself must first be analysed to see 
how its memory is allocated and used. In this case, profiling is achieved by taking a trace from the 
program and running it through a simulation environment where measurements are made. 

This sort of approach seems to work for its intended purpose which involves assessing memory use. It 
is not, however, a viable solution for our purpose as we are concerned with live timing information. It 
would seem optimistic at best to assume that any simulation would accurately reflect the timing 
characteristics of the live execution of the program. 
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Chapter 5  
Conclusion 

Every day, developers find themselves faced with decisions about which Collection 
implementations they should use to represent their data structures. These decisions have the potential 
to drastically alter the performance characteristics of the programs in which they are used. We 
hypothesised that developers do not always make the best decisions with Collection 
implementations and envisioned that a tool that could help make the best decisions would be very 
valuable. Having developed such a tool, we proceeded to test its usefulness. We found out tool to 
provide useful information for Collection implementation decision making and proved our 
hypothesis to be true by analysing a number of real world benchmarks. 

5.1 Future Work 
This project has illustrated the value that lies in making the best decisions when selecting 
Collection implementations in software development. There are a number of directions that work 
could continue in this area of research. Some examples of these are briefly discussed in the following 
sections. 

5.1.1 Hybrid Implementations 

Our Java Collection Profiler has shown to illustrate the ways in which Collection objects are used 
quite effectively. It has been shown to be very useful in making the best decisions when selecting 
specific Collection implementations. The value of the tool doesn’t stop there though. Because 
results are displayed in a form which shows all interesting aspects of the use of Collection objects, 
they are able to highlight situations where no available Collection implementation is perfect for the 
task at hand. It could prove to be useful in realising potential for completely new Collection 
implementations. Such implementations may be tailored to provide optimal performance for situations 
where the currently available implementations are less than ideal. 

Another direction of work in this area would be to investigate the viability of self-managing 
Collection implementations. These could be designed in such a way that they are able to monitor 
their own use and adjust their underlying implementation to best suit their operating environment. 
This would likely be an interesting area of study as achieving such an implementation would remove 
the need for the developer to make any decision at all. Careful consideration would need to be given 
to the overhead associated with the self-management and whether or not this overhead negates the 
performance improvements. 

5.1.2 Profiling Other Collection Types 

Our main focus throughout the project has been in the List interface. This is just one of the subtypes 
of the Collection interface in the Java language. Other subtypes include: 

• BlockingQueue 

• Queue 

• Set 

• SortedSet 

There are also interfaces such as Map in the Java language that do not implement the Collection 
interface but do represent data structures. 
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Each of these types has its own unique methods and implementations. If work is put into profiling 
these unique methods, and comparing the results with the performance characteristics of each 
implementation, further benefits to developers may be achievable. 

5.1.3 Alternatives to Aspect Oriented Approach 

Earlier in this paper we discussed the benefits in using an AOP language for profiling over modifying 
source code by hand. Using an AOP language is not the only way to avoid this tedious task though. 
Another way might be to implement profiling wrapper classes for the existing Collection 
implementations and then change the class loader to a customised version. This custom class loader 
could effectively replace all implementations of one sort with the profiling wrapper associated with it. 
No source code modification would be necessary in the target program and these wrapper classes 
would appear transparent it. 

There are pros and cons to a solution like this. One of the benefits is that code position lookups and 
object identity methods would not be necessary as the wrapper class could hold local variables to 
store the timing information for method calls. Sampling could also be easily achieved by building it in 
to the class loader so that not every Collection object is replaced with one that is encased in the 
associated customised wrapper class. 

Perhaps the biggest problem with taking an approach like this to profiling is that any program that 
relies on an object being an instance of a specific class, rather than simply behaving like one, will 
break. An example of when this might occur is in code that makes us of the instanceof statement. 
This boolean statement will only return true if the object that it is assessing is an instance of the exact 
class that is specified. Therefore any sort of class substitution, no matter how similar it is to the 
original, will cause the statement to return false every time. 
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