

The Java Collections Profiler

Simon John Hibbard

Supervisor: Dr David J. Pearce

Submitted in partial fulfilment of the requirements for

Bachelor of Information Technology.

Abstract

This document contains a full report on the Profiling Collections in Java project. The project focuses
on the development of a tool that profiles the use of different implementations of the Collection
interface in Java and allows us to analyse their use with regards to efficiency. It is our hypothesis that
the efficiency, and therefore performance, of software may suffer as a result of poor decisions made
by the developer when choosing which Collection implementations to use in their code. Our
profiling tool will allow us to determine whether or not this is true.

2

Contents

Contents .. 2

Chapter 1 Introduction ... 4

1.1 Motivation ... 4

1.2 Example .. 4

1.3 Hypothesis ... 6

1.4 The Java Collection Profiler ... 6

Chapter 2 Implementation ... 7

2.1 Methods of Interest ... 7

2.2 Intercepting Method Calls ... 8

2.2.1 AspectJ .. 8

2.3 Identifying Objects .. 9

2.4 Sampling ... 10

2.5 Timing ... 12

Chapter 3 Experimental Results .. 14

3.1 System ... 14

3.2 Displaying Results .. 14

3.3 Charts .. 16

3.4 RoboCode ... 17

3.4.1 Procedure .. 17

3.4.2 Data ... 18

3.4.3 Discussion ... 20

3.5 JGraph ... 21

3.5.1 Procedure .. 21

3.5.2 Results ... 22

3.5.3 Discussion ... 22

3.6 JavaC ... 22

3.6.1 Procedure .. 22

3.6.2 Results ... 23

3.6.3 Discussion ... 23

3.7 Hospital ... 24

3.7.1 Procedure .. 24

3.7.2 Results ... 24

3

3.7.3 Discussion ... 24

3.8 SimpleLISP ... 25

3.8.1 Procedure .. 25

3.8.2 Results ... 26

3.8.3 Discussion ... 26

Chapter 4 Related Work .. 27

4.1 DJProf ... 27

4.2 Absolute Timing vs. Sampling Time Profiling ... 27

4.3 Profiling Allocation Behaviour ... 27

Chapter 5 Conclusion .. 29

5.1 Future Work .. 29

5.1.1 Hybrid Implementations ... 29

5.1.2 Profiling Other Collection Types .. 29

5.1.3 Alternatives to Aspect Oriented Approach ... 30

Chapter 6 References ... 31

4

Chapter 1
Introduction

1.1 Motivation
Almost every piece of software that is written today incorporates the use of structures that represent
collections of data. Sets, lists, queues, stacks and maps are all examples of such structures. In Java, all
of these data structures fall under the common interface of Collection. There are a number of
implementations of these data structures available to software developers in common libraries for
most popular languages. The availability of these implementations saves the developer a lot of time
but does not remove them from the process entirely. They must still choose which implementation to
use and this choice can have severe effects on the performance of the software.

1.2 Example
Let us consider the two different add methods in the List interface in Java. The first method,
List.add(<E>), is inherited from the Collection interface. It takes a single argument – the item
to add to the list – and inserts this item at the end of the List. The following diagram illustrates the
process for the ArrayList and LinkedList implementations:

As the diagram shows, List.add(‘A’) has a complexity of O(1) for both ArrayList and
LinkedList. Occasionally ArrayList will incur a larger cost for this operation. This is the case
when the array fills up and it must copy its contents to a new, larger array. In the average case though,
the complexity is O(1). We can see quite clearly that the performance characteristics for this operation
will be about the same, whichever implementation is chosen.

The second add method is specific to the List interface and takes two arguments in the form of
List.add(x, <E>). The extra argument in this version specifies the point in the List at which the
new item is to be inserted. Again, processes for each implementation are illustrated below:

5

When we consider the List.add(x, ‘A’) method as shown above, a gap appears in the
performance of the different implementations. LinkedList retains its O(1) complexity while
ArrayList degrades to O(n). The reason that ArrayList becomes so much more expensive is that
it stores its data elements in a contiguous linear space. Every time it tries to add an element at a
position that is not the end of the list, it must first shift every successive element one position to the
right.

LinkedList does not suffer from the same problem as ArrayList. Rather than using a contiguous
linear space to store data elements, it uses random free memory spaces and can therefore create new
space without having to rearrange anything. To place the new element in the list, pointers from each
of its new neighbours are simply redirected to point at the new element. This does, however, introduce
a new cost – finding the neighbours. To find position x in a LinkedList you must first find position
x-1. This means that finding the place at which you want to insert the element becomes O(n). While
this can add to the cost in some situations, there are other situations where it is not a problem.

For example, consider the case of a bulk insertion of items at specific points in a List. Using an
ArrayList implementation the complexity is O(kn). This is because for each of the k items being
added, there is a cost of n involved in moving down the successive items to make room. The code for
achieving this bulk insertion may take the form:

for(int i = 0; i < items.length; i++){
 list.add(positions[i], items[i]);
}

In the example above, the ‘positions’ array contains integers representing the positions in the List
where we want to add the items. The ‘items’ array contains the items themselves. These two arrays
are related in such a way the positions[i] is the position at which items[i] is to be added.

If a LinkedList implementation is used, the complexity falls to O(k+n). This is because
LinkedList does not have to shift existing items every time it wants to add a new one. It can use the
ListIterator class to its benefit so that it searches the list at most once to find insertion points. It can
then use the ListIterator.add(<E>) method to insert the desired item at the current point. This code
may take the form:

ListIterator<E> itr = list.listIterator();
for(int i = 0, j = 0; i < items.length; i++){

while(j < positions[i]){
 itr.next();
 j++;
 }
 itr.add(items[i]);

6

}

There are some scenarios where finding a position in a LinkedList is not a complex operation.
These include the case where the List is being added to at the very beginning, and the case where the
List is being iterated over anyway. Neither have any added cost in finding the position at which to
insert the new element. They may sound like isolated and unlikely scenarios, but there are several
imaginable situations in which they might occur.

The point is that operations have differing costs associated with them which are defined by the
specific implementation chosen by the developer. If we can identify operations that have
implementation-dependent complexities and monitor their usage, we may be able to help developers
to make the best decisions with their choice of implementation.

1.3 Hypothesis
It was our hypothesis that developers do not always make the best decisions with their choice of
Collection implementation. This may be for a number of reasons:

• The developer uses one type of implementation all of the time, out of habit.
• Little or nothing is known about the performance characteristics of different Collection

implementations by the developer.
• The developer is not sure exactly how the program is going to use the Collection. A

common example of this is the development of libraries. If the developer is creating a library
to be used by other developers, he or she cannot possibly predict exactly how that library will
be used.

Through this project, we hoped to test whether this hypothesis is true or not.

1.4 The Java Collection Profiler
To test our hypothesis we decided to develop a tool for monitoring the usage of Collection objects
within Java programs. This tool should be able to assess the usage of Collection objects within
Java programs without the need to modify the source code of that program. It should be easy to use
and provide an output that allows developers to easily see which points in their code have potential for
performance gains through Collection implementation selection.

The tool that we developed is called the Java Collection Profiler. It is designed to be easy to modify to
allow for developers to monitor exactly what they want in their programs. It is implemented in
AspectJ and Java and has been tested to work perfectly with a number of Java programs. The results
produced by the tool are informative and clear, and we have managed to achieve significant
performance enhancements in some programs as a direct result of using the tool.

What follows is a description of the development of the tool; along with examples of the results it has
produces and an analysis of its effectiveness.

7

Chapter 2
Implementation

2.1 Methods of Interest
Choosing which methods our profiler was to intercept required a degree of thought and consideration.
An obvious approach would be to simply intercept all Collection interface method calls. This
approach has a number of drawbacks:

• The more methods we intercept, the more overhead there is associated with our profiler.
• For every method we intercept, there is another piece of data that must be displayed in the

output of the profiler. This can lead to clutter and make the results difficult to interpret and
understand.

• Not all methods are relevant to our goal of performance improvements.

The first two points are relatively straight forward – it takes more effort to gather and understand
more points of information. This holds true for a great number of scenarios, outside of profiling and
outside of computer science.

The final point is quite specific to our task. While all methods incur a cost in performance, not all
have costs that differ with implementation. We are interested in comparing the performance of
different implementations so only methods that differ in cost with implementation are of interest to us.

To give an example of the distinction between ‘interesting’ methods and irrelevant ones, let us again
consider the List interface in Java. There are three main implementations of the List interface
provided in the common Java library – ArrayList, LinkedList, and Vector. ArrayList and
Vector have very similar performance characteristics and so Vector is largely ignored throughout
this project. LinkedList, however, uses a completely different underlying data structure. Because of
this, there are a number of methods that differ in performance when compared to those in the
ArrayList implementation.

We have already seen how a LinkedList implementation can perform better than an ArrayList in
some situations. Conversely, the List.get(x) method is a much cheaper method when an
ArrayList is used over a LinkedList. This method retrieves an item from a specific point in a
List. The associated complexities are O(1) and O(n) respectively. Because both of these methods have
performance differences that relate to the implementation chosen by the developer, both are
monitored by our profiler.

Other Collection methods are not so interesting. For example, the Collection.size() method
has a complexity of O(1) which is common across all implementations. Since profiling methods like
this would offer no benefit to the developer in choosing the best implementation to use, they are not
profiled by our tool.

The complete set of methods that we have identified as interesting, and included in our profiler for
monitoring, is:

• Collection.add(<E>)

• Collection.remove(<E>)

• List.add(x, <E>)

• List.get(x)

8

• List.remove(x)

• List.set(x, <E>)

• ListIterator.add(<E>)

• ListIterator.remove()

• Set.contains(Object)

All of these methods have potentially different performance characteristics for each of the standard
implementations provided by the Java framework. Furthermore, our profiler is designed in such a way
that monitoring extra methods can be achieved with very little modification to the source code. This
helps to cover the possibility that there exist other methods of interest not currently monitored by our
profiler. It also caters for future developments to the Collection interface and other interfaces that
inherit Collection which may produce more methods of interest.

2.2 Intercepting Method Calls
For our profiler to work it must be able to recognise points in the target program where there are calls
to methods of interest. It must then be able to intercept the target program at these points and execute
our own profiling code. Object-Oriented programming languages do not provide an easy way for us to
achieve this so we must look elsewhere. The solution we chose was to make use of an Aspect-
Oriented programming (AOP) language [9]. The specific AOP language we chose was AspectJ.

2.2.1 AspectJ

AspectJ is a popular AOP language designed for Java (see e.g. [7,8] for more on AspectJ). It was
chosen very early on in the project as the programming language to implement our tool in. It
effectively allows us to automatically place code of our own throughout any Java program, as long as
we have its source code. To achieve this interleaving of code using simply Java itself would be an
incredibly difficult and tedious task. For example, using AspectJ we are able to intercept a program
every time any Collection method is called and print out a line of text to the system console. The
code to achieve this could take the form:
before() : call(* Collection+.*){
 System.out.println(“Collection method called!”);
}

Every time a call is made to any method defined in the Collection interface, the message will be
printed to the system console. In the definition, call(* Collection+.*) the ‘+’ indicates that all
calls to methods defined in subtypes of the Collection interface will also be caught. For example,
ArrayList is a subtype of Collection. Therefore, all calls to methods in the ArrayList class will
be caught.

To achieve this goal without using an AOP language we would have to search by hand through the
entire source code of the target program, inserting print commands at each point where a
Collection method call is found. We would then have to recompile the program. Once finished
with the profiling, we would have to reverse this in an equally tedious fashion.

The way to intercept Java code with AspectJ is to use pointcuts. Pointcuts effectively define places at
which you wish to insert code in the target program. Since our tool is intended to monitor the use of
Collection objects, we created pointcuts for a number of Collection methods. Examples of these
pointcuts are:
pointcut colAdd() : call(* Collection+.add(..)) && !within(jcp.*);
pointcut colRemove() : call(* Collection+.remove(..)) && !within(jcp.*);
pointcut listGet() : call(* List+.get(..)) && !within(jcp.*);

9

pointcut listSet() : call(* List+.set(..)) && !within(jcp.*);

Again, we make use of the ‘+’ character to make our pointcuts apply to all subtypes of the
Collection (or List) interface. The ‘(..)’ indicates that methods with any number and type of
arguments will be intercepted. To avoid monitoring method calls from our own code, we used the
‘!within(...)’ statement. This statement allows us to exclude our own package from being
intercepted by the pointcut.

Once we had defined our pointcuts we were able to add advice to them. Advice is code that is run
when the pointcut is triggered. Advice can include any AspectJ specific code, as well as standard Java
code. In the following sections we discuss what the advice in our profiler actually does.

2.3 Identifying Objects
When a method call is identified and intercepted by our profiler, there is a great deal of information
that is available to us courtesy of AspectJ. This information can provide us with details about the
arguments being passed to the method, objects that are being returned by the method, and information
about the point in the code at which the interception occurred.

Ideally we want to provide the developer with an analysis of their program which tells them “here is a
point in your code that may be using a sub-optimal Collection implementation”. This is not quite
as straight forward a task as it sounds. Most of the interceptions that are done by our profiler are at
points in the code where methods are called on Collection objects. An example of these
interception points follows:

...

if (count > 0) {

list.add(robots.get(0));

for (int i = 1; i < count; i++) {

list.add((int) (Math.random() * i + 0.5), robots.get(i));

}

}

...

In the above example, suppose we intercepted the highlighted method calls using AspectJ. Then, we
would know the position in the source file where the method call occurred. However, this does not tell
us where in the program the object which is being called upon was originally created. The developer
really needs to know the location in their code where the Collection object was created because
this is the point at which the Collection implementation is chosen.

In order to provide the developer with this information, we need some way of identifying the creation
of Collection objects and keeping track of their usage throughout the program execution. Our
solution to this uses the following steps for each Collection object created in the developer’s code:

1. Intercept the program when a Collection object is created.
2. Place an entry in a codePosition Map that ties the unique identifier of the newly created object

(effectively its memory address) to the program point at which it was created.
3. Intercept method call of interest.
4. Match the unique identifier of the object to a code position in the codePosition Map.
5. Update a running total of usage statistics for that code position.
6. Repeat from step 3 until program terminates.

The following diagram illustrates this process in action:

10

The creation of a Collection object adds a link from the object ID to the code position in the
codePosition Map. Later on, when the object is used, the codePosition map is referenced so that the
running total for the appropriate code position can be updated.

The ‘unique identifier’ referenced above is acquired via the System.IdentityHashCode(Object)
method that is provided by Java. This method returns an integer that is unique to the object and
remains so throughout the entire lifetime of that object. But what happens if an object’s lifetime ends
and another object is created with, quite by chance, the same IdentityHashCode? Does this distort
our statistics? As it turns out, no, it does not. When you consider the previously mentioned sequence
of operations you notice that one of the first steps is to place an entry in a Map linking the object to the
point at which it was created in the code. This means that if an object assumes the identity of an
extinct object it must also update the Map to point to the new code position at which it was created.
Since statistics are paired with code positions, and not object identifiers, there is no risk of
contaminating the results with statistics from objects created at another code position.

To provide out profiler with the ability to identify objects and match them up to the position at which
they were created in the code we have made use of a couple of Maps. Because Map implements the
Collection interface, and our profiler intercepts method calls to objects implementing the
Collection interface, we can run into problems with self-accounting and, possibly, infinite loops.
To avoid this problem we make use of the AspectJ keyword within. While defining our pointcuts
(see section 2.2.1) we insert this keyword along with a negation symbol and our package name to
exclude code in our profiler from being intercepted. E.g. !within(jcp.*)

2.4 Sampling
Profiling method calls is not a free operation. Our tool incurs overhead in the system when it is run.
Because our tool is only intended to be used during the development of software this should not be an
issue. However, for our tool to be truly appreciated by developers it should introduce as little cost as
possible in the software development process.

There may also be situations where extra overhead must be minimised in order for the program to run
correctly. For example, if the program that is to be monitored is highly time dependent then
introducing large amounts of extra delay with our profiler might cause the program to function
incorrectly or fail completely. For our profiler to be as universal as possible we need to minimise the
delay that it might introduce in programs.

To reduce the overhead introduced to the program by our profiler, we used a sampling approach. By
sampling a small ratio of the method calls that the program makes, we are able to dramatically reduce
the overhead incurred by our profiler. Sampling has been used in many statistical applications to give

11

a relatively accurate view of the population. It is, however, simply a view. If care is not taken, there
may be situations where results are not a fair representation of actuality because poor samples have
been taken.

Before we developed a technique for sampling in our tool, we needed to decide exactly what we
wanted to sample. There were a couple of obvious choices:

• Object creation: When Collection objects are created, we could sample which ones we
took notice of. We would then follow the sampled objects through their entire lifetime and
take notice of all calls to methods of interest on them.

• Method calls: Take a note of every Collection object that is created. Then sample the calls
to methods of interest across all Collection objects.

Sampling ‘object creation’ would likely not return the same performance benefit as sampling ‘method
calls’ in AspectJ. This is because every time a method call was picked up, it would have to have its
object ID checked back against the codePosition map to determine if it should be sampled or not. We
chose to sample ‘method calls’ instead, to gain the greatest benefit in performance.

The benefit of choosing the ‘method calls’ approach is that we are far more likely to gather
information on all code positions in the program. If we sample ‘object creation’ then it is entirely
possible that some code positions will slip through the profiler without being sampled at all. This is
especially likely for positions in the code that only ever create an object once. Simply because they
are only created once does not mean they are not heavily used in the program and therefore very
important that we monitor.

For our sampling technique we considered a number of approaches:

• Purely random sampling: for each member of the population, generate a random number and
if that number is over a given threshold include the member in the sample group.

• Time based sampling: use a timer that works off the system clock and samples every method
call that directly follows the expiration of the timer.

• Framed sampling: take the first method call in every frame of n method calls as a sample.
• Frame bounded random sampling: for every given frame of n method calls, select one

method call at random to sample.

The technique we ended up using was the final one – frame bounded random sampling. This
technique has a number of benefits in our situation:

• Samples are dispersed throughout the entire program. With purely random sampling it is
quite possible that large portions of the program will go unsampled while others may be
oversampled. Framing our random selection helps to dramatically reduce this issue.

• The sample rate is not defined by program performance. Time based sampling lead to a
different number of samples being taken on machines that differ in performance. The slower
the machine, the more samples will be taken. Since more samples leads to poorer system
performance, a time based sampling approach may well lead to a snowballing effect in this
regard. Since we are basing our selection on the occurrence of method calls, and not an
unrelated clock, we avoid this issue.

• Cycles in the program are unlikely to skew results. If a plain framed sampling approach is
used we face the possibility of inaccurate results in the case of program loops that match our
frame size. Assume we are sampling every fiftieth method call. If the program we are
monitoring contains a main loop with fifty calls to methods of interest then, with simple
framed sampling, we are going to be sampling the exact same method call every time around

12

the loop. This could lead to a highly distorted result set which would be of little use to
developers. By randomising the one method that we select from every frame, the chance of
this sort of distortion occurring is highly unlikely.

In Figure 1 we can see a visualisation of how our chosen technique – frame bounded random
sampling – works. The program is effectively divided up into even frames of n calls to methods of
interest. Within each of these frames, a random method call is chosen and sampled. We tested the
accuracy of this sampling technique by running it over a number of benchmark programs and
comparing the results produced to those of a non-sampled run. We found that the difference between
the results of the two was minimal and did not change the implications of the results.

Figure 1 – Frame bounded random sampling

In order to cater for programs of all sizes, and target machines of varying levels of performance, the
size of the frame can be easily changed to suit. It can also be reduced to ‘1’ so that every method of
interest is sampled.

2.5 Timing
For developers wishing to improve the performance of their programs, simple measures like counting
method calls are not overly useful. It would be far more useful to be able to see which methods were
consuming the most time for each Collection object. For this reason, we designed our profiler to
base its statistics gathering on the time spent executing each method. To achieve this measure of
timing, we must intercept the program before the method is called and start a timer. We must then
leave the program to complete its method, and finally jump back in and stop our timer. Only once we
have done all of this can we add the measured time to the appropriate total in our statistics.

If we consider again the example from above we can visualise how this measure of timing might be
achieved:

Using the around advice in AspectJ, we are able to place our own code on either side of an
intercepted method call. Before the method proceeds we take the current time from the
System.nanoTime() method that is provided by Java and store it in a variable. This method

13

provides us with the current system time at a high resolution. Since some methods execute very
quickly, using a millisecond degree of accuracy would not be sufficient in all cases. We then allow the
method to execute by using the proceed() call. Finally, once the method has completed, we can
once again make use of System.nanoTime() to get the finish time of the method and calculate the
time spent executing it. The measured time is then added to our statistics. All of this happens within
the around advice in our profiler code.

One issue that must be considered when using this approach is the issue of multithreaded programs. A
method call may be intercepted and then lose its time slice just after our timer starts. Since our timer
relies on the system time for its measurement, every unit of time spent waiting for the thread to re-
enter execution will be included in our measurement. This is, potentially, quite a large problem and
may need to be addressed in future work. In our testing we included multithreaded software and did
not observe any obvious inaccuracies, but acknowledge the fact that they may well exist.

14

Chapter 3
Experimental Results

After implementing our profiler it was necessary to gain a real world view of how well it might
achieve its goal – to help developers make the best decisions with Collection implementations. The
best way to do this was to find some real world programs and run our profiler over them. We did this,
and then analysed the results to assess if Collection implementations had been chosen wisely by
the developer(s). If we found decisions that our profiler suggested might be poor, we recompiled the
program using the better implementation and measured any performance benefits.

3.1 System
For the vast majority of testing and benchmarking we used just one system configuration. We ran tests
of our tool on other system configurations to ensure portability but the results presented are all from a
common system. That system is:

Make Toshiba
Model Portege R100 (PPR10A-04M8ZP)
CPU Intel Pentium M (Banias), 1GHz, 400MHz FSB, 1MB L2 Cache
Chipset Intel i855GM
Memory 1280MB, 266MHz
HDD Toshiba MK6006GAH, 60GB, 4200RPM, 2MB Cache
OS Microsoft Windows XP Professional, Service Pack 2
JRE 1.6.0_07-b06
AspectJ 1.5.1

3.2 Displaying Results
Having developed a tool that could gather usage statistics for the use of Collection objects we were
faced with another challenge – how to present the results. Most of the benchmarks that we used to test
our profiler produced amounts of data that were just not practical to try to analyse as raw numbers.
For data to be useful it should be in a form that is easy to interpret and analyse, and in many cases the
best way to achieve this is through visual representation. A chart of some description seemed like the
best candidate for visual representation in our case. We considered a number of styles of chart,
examples of which are presented below:

From th

a)
b)
c)
d)
e)
f)

We iden
objects
used obj
may be t
will hav

e above diag

Columns
Normalised
3D Columns
Normalised
Stacked Bar
Normalised

ntified probl
into practica
jects are not
true, but we

ve the greates

gram, the cha

Columns
s
3D Columns

rs
Stacked Bar

lems with ea
al non-existe
t very impor
would like o

st effect.

art types are

s

rs

ach of the a
ence. It may
rtant because
our tool to be

15

as follows:

above chart t
be argued t

e they have
enefit all are

types. (a), (c
that the perf
little effect o
as of develop

c), and (e) a
formance cha
on the progr
pers’ softwa

all dwarf les
aracteristics
ram as a wh
are, not just t

sser used
of lesser
ole. This
hose that

To ensu
shown in
could se
normalis
width ba
develope
time exe

We wou
descripti
label an
expected
at each c

3.3 C
The type
For an u

Each ba
specific
axis. Fro
number
Using th
final pa
represen
position
sampled

As ment
code pos
selection
measure

Within e
These ba
of each
relative
executin
displaye
executin
bars may

ure that all of
n (b), (d), an
ee the data
sed charts to
ar for each p
er to quickly
ecuting.

uld later add
ions. A furth

nd sort the r
d improveme
code position

Charts

e of chart w
understanding

ar is represen
position in

om the exam
14. Followin

he same exa
rt of the Y

ntative of the
. The last nu

d methods, as

tioned earlie
sition can be
n might bene
e of how ofte

each bar the
ars have bee
‘chunk’ of
measuremen

ng other me
ed with a hal
ng each assoc
y represent a

f the results
nd (f). This m
stretched alo

o interpret w
program poin
y and easily d

d program p
her enhancem
results accor
ents in perfo
n. It effective

we use is a N
g of how we

ntative of th
the code. Th

mple: ‘Test.
ng this in the

ample, ‘(Has
axis label r

e number of m
umber (in ou
s measured b

er, providing
e very helpfu
efit the perf

en methods fr

colours repr
en ‘normalise

each bar do
nt of time s
thods on ob
lf in one col
ciated metho
a different ov

are visible to
meant that fo
ong the full

was (f), the N
nt, and splits
determine wh

point labels
ment was to
rding to this
ormance asso
ely gives all

Normalised S
use this cha

he performan
hat code pos
.java:14’
e label is the
shSet)’ iden
related to ou
method calls
ur example ‘
by our profile

g information
ul. It allows d
formance of
from each cod

resent the di
ed’ to each sp
oes not repr
spent perform
bjects create
lour and a ha
od. Comparis
verall executi

16

o the develop
r each progr
length of th

Normalised S
 that bar up
hich methods

to the Y ax
add the tota
value. This

ociated with
of the fixed

tacked Bar C
rt type, cons

nce characte
sition is disp
identifies th

e type of obj
ntifies that a
ur statistics.
s that were sa
‘40603’) is t
er.

n about the
developers to
their progra
de position a

fferent meth
pan the entir
resent an ab
ming the ass
ed at the sam
alf in anothe
sons can onl
ion time.

per we inves
ram point tha
he chart. We

Stacked Bars
into method
s each Colle

xis, and a le
al time spen
s value aids
using the be
width bars a

Chart and is
ider the follo

eristics of Co
played at the
e code posit
ect being cre
a new HashS

The first n
ampled from
the total time

total time sp
o estimate ho

am. The coun
are being use

hods that hav
re width of th
bsolute meas
sociated met
me code po
er, then it ha
y be made w

stigated norm
at produced d
e found that
 style. This

d types by co
ection obje

egend to map
t in all meas
the develop

est Collect
‘size’ relativ

described b
owing examp

ollection
 beginning o
tion in the fi
eated at that
Set object i

number (in o
m objects crea

e spent in th

pent executin
ow much a b
nt is also im

ed in the prog

ve been meas
he chart. Bec
surement. In
thod as com
sition. For e

as spent an e
within the sam

malising the
data in our re
t the simple
style uses a

olour. This al
ect spends m

p colours to
sured metho
per in estima
tion implem
ve to each ot

briefly in Sec
ple:

objects crea
of the label o
ile ‘Test.java
position in t

is being crea
our example
ated at the gi
he execution

ng methods
better implem
mportant as i
gram.

sured by our
cause of this

nstead it repr
mpared to tim
example, if
equal amoun
me bar becau

charts as
esults we
st of the
standard

llows the
most of its

o method
ds to the
ating the

mentation
ther.

ction 3.2.

ated at a
on the Y
a’ at line
the code.
ated. The
 ‘20’) is
ven code

n of these

for each
mentation
t gives a

r profiler.
, the size
resents a
me spent
a bar is

nt of time
use other

17

Brief descriptions of the methods are given in the legend at the bottom of the chart. A more
substantial description is given below:

Legend Label Included Methods
Add at End Collection+.add(<E>)

Add in Middle List+.add(x, <E>)

Remove Collection+.remove(<E>), List+.remove(x)
Get List+.get(x)

Set List+.set(x)

Contains Set+.contains(Object)

Iterator Modify ListIterator+.add(<E>), ListIterator+.remove()

3.4 RoboCode
RoboCode is an open source, educational Java game in which user-created simulated robotic tanks
fight each other in a 2D space. The purpose of the game is to help teach people how to program in
Java and develops ideas of Artificial Intelligence [1,2,3,4]. All of the tanks in the game are
‘physically’ identical but differ in the way developers program them. The tanks can shoot at each
other, move around, scan for each other and bump into walls and other tanks. The program is
designed in such a way that it is not difficult at all to program a robot but programming a really good
one is quite a challenge. This provides a learning curve for new Java developers that allows their
robots to get better as their programming knowledge and technique improves.

3.4.1 Procedure

The version of RoboCode used throughout the development of our profiler was 1.6.0 Beta 2.
Although a beta release, we found it to perform perfectly with no stability issues at all.

We ran our profiler over the program a number of times, using different game parameters each time.
The different combinations we used are described in the following table:

Parameter Configuration 1 Configuration 2 Configuration 3 Configuration 4
Robots 5 10 5 5
Rounds 10 10 20 10
Playing Field 800x600 800x600 800x600 1600x1200

We used Configuration 1 as a ‘base’ configuration. For Configurations 2 – 4 we changed a single
parameter from that of the base configuration. The reason for this was that we wanted to see how the
use of Collection objects changed within the program when the input variables changed.

3.4.2

Figure 2 -

Figure 3 -

Data

- RoboCode re

- RoboCode re

esults - Configu

esults - Configu

uration 1

uration 2

18

Figure 4 -

Figure 5 -

- RoboCode re

- RoboCode re

esults - Configu

esults - Configu

uration 3

uration 4

19

20

3.4.3 Discussion

The results from RoboCode show heavy use of the ArrayList List implementation throughout the
program (see Figure 2 through Figure 5). This implementation is favoured for operations like
List.get(x) and List.set(x,<E>). We can see from the results that all four configurations of
RoboCode make use of the List.get(x) method quite extensively at a number of code points in the
program. In these cases, where List.get(x) and sometimes List.add(<E>) are used,
ArrayList is the best choice of List implementation. This is because it has complexity of O(1) for
both of these operations.

If, however, we look at the code position ‘Battle.java:576’, we can see that the overwhelming
majority of the execution time is spent in the List.add(x,<E>) method. As discussed earlier in this
report, this method can yield performance benefits when implemented with a LinkedList. This
assessment is not conclusive, as the performance characteristics depend on how the program is using
the method. Only in certain situations will a LinkedList benefit program performance.
Nevertheless, this is a point in the program that should be examined because it shows potential for
improvement.

We examined the code in the ‘Battle.java’ file of RoboCode at and around line 576 and found the
following:

private List<RobotPeer> getRobotsAtRandom() {
int count = robots.size();

 List<RobotPeer> list = new ArrayList<RobotPeer>(count);
 if (count > 0) {
 list.add(robots.get(0));
 for (int i = 1; i < count; i++) {
 list.add((int) (Math.random() * i + 0.5), robots.get(i));
 }
 }
 return list;
}

The List.add(x,<E>) method is being called inside a loop which explains its large presence in the
results. When we look at where exactly the items are being added to the list (the ‘x’ value) we see that
a random number method is being used to determine position. In order to gain performance benefits
from a LinkedList we either need to have the items being added consistently at the beginning of the
List, or be in a situation where the list is being iterated over anyway. In this case neither applies.
Since the position at which the new item is being added is being determined at random, we cannot
expect to gain any benefits in performance from a LinkedList implementation.

However, if we look beyond what the code says and assess what is actually achieves we can see room
for improvement. The point of the code is to create a randomised copy of the ‘robots’ List. As the
code stands, it is an expensive operation. For every item in the ‘robots’ List, a List.add(x,<E>)
operation is being performed on the new List. This results in a complexity of O(n2). Instead, we
could start by performing an initial copy of the ‘robots’ List which has complexity O(n). We could
then use the Collections.shuffle() method to randomise this new List.
Collections.shuffle() is based on an algorithm developed by Donalth Knuth [10] and also has
complexity of O(n). Using this approach means that we are able to reduce an O(n2) complexity
operation into a much more efficient O(n) complexity operation.

21

It is important to note that this performance improvement is not related to implementation choice but
rather algorithm efficiency. However, it was because of our profiler that this code point came to our
attention. This demonstrates the flexibility of our tool in being able to help developers to improve
efficiency in their code.

Observant readers will note that the list that is created in the above example is returned at method
completion. This means that there may be code elsewhere that performs List.add(x,<E>)
operations on the object. Such code could potentially lend itself towards a LinkedList
implementation. This is a valid argument, but upon searching for calls to the
getRobotsAtRandom() method within the program we found no such code.

While this code position turned out to be using the most appropriate List implementation, it shows
up another point of interest in our results. This is that the configuration of a program can indeed have
an effect on how the program uses its Collection objects. If we consider the same code point across
all four figures, we see that Figure 3 has a noticeable difference in its ratio of calls to
List.add(<E>) and List.add(x,<E>). While not being applicable in this case, it is important to
note that a specific implementation may not be the best choice for all configurations of the program.
This point will be revisited later in Section 5.1.

Another code position that illustrates the effect that program runtime configuration can have on its use
of Collection objects is in the file ‘EventManager.java’ at line 103. Objects created at this code
position exhibit similar patterns of use when run with Configurations 1 through 3 (see Figure 2
through Figure 4). That pattern is a split of approximately 70% (Add at End), 15% (Remove), 15%
(Get). When we look at the results from Configuration 4 (Figure 5) this pattern shifts dramatically. In
this configuration we see a split that is close to 30% (Add at End), 10% (Remove), 60% (Get).

It is clear from the results that the two code positions described above have patterns of use that vary
with the runtime configuration. It is interesting to note that individual parts of the configuration can be
linked to usage patterns at specific positions in the code. Consideration should therefore be taken to
profile the program with as many different configurations as possible. This will help to achieve the
most accurate view of the use of Collection objects in the program.

3.5 JGraph
JGraph is a freely available, open source graph component library for Java [11]. It integrates into the
popular Swing framework [12] to provide developers with easy-to-use visual graphing components
for their software.

3.5.1 Procedure

Since JGraph is a component library, not an executable program, it cannot be profiled. There are,
however, a number of example programs that are packaged with the distribution we obtained (5.9.2.1)
that integrate components from the library. One of the example programs is called FastGraph. This
program has the ability to produce fully connected graphs of any size. For profiling, we used this
program to generate and display a fully connected k64 graph.

3.5.2

Figure 6 -

3.5.3

From Fi
program
items to
would b
have bee
calls bei
our prof
interesti

The one
line 115
List.g

ArrayL

the best

3.6 Ja
JavaC is
Microsy
JavaC u
which m

3.6.1

The vers
program
itself. Th
broad ex

Results

- JGraph (k64)

Discussion

igure 6 we c
m. Just six cre

the Collec
be to add item
en added, wh
ing performe
filer isn’t pic
ng (as menti

e code positi
. Objects cre
get(x) and
ist implem
decision has

avaC

s a popular
ystems [13].
uses a numbe
makes it an id

Procedure

sion of JavaC
m we used the

his included
xecution path

) results

n

can see that
eation code p
ction. It wou
ms. After all
hy bother ad
ed on the Co
cking them u
ioned in Sect

on that does
eated at this p
List.set(

mentation. As
s been made.

Java compi
As an input
er of Colle
deal benchma

C that we us
e source cod

d a number o
h for the prog

Collectio

points are mo
uld seem pec
, if the progr

dding them at
ollection o
up is that the
tion 2.1).

s show some
point are obs
(x) method
s we can see

iler that is i
it takes Jav

ection obje
ark for our p

ed was from
de of the prog
of Java sourc
gram to be p

22

on objects ar
onitored and
culiar that th
ram is not g
t all? In actu
objects being

ey are likely

e variation in
served to spe
ds. These m
e, the develo

ncluded in t
a source cod

ects and has
rofiler.

m version 1.6
gram itself. W
ce code files
rofiled on.

re not widely
d all but one
he only metho
oing to do a

uality, there a
g created at
methods tha

n its use is in
end a conside
ethods will

oper has used

the Java De
de, and produ
no user inte

 of Sun Micr
We were the
s, which we

y used throu
of these are
od calls on a

anything with
are almost ce
these code p

at we have d

n the file ‘Fa
erable amoun
tend to per

d an ArrayL

evelopment K
uces Java by
eraction thro

rosystems’ J
erefore profil

felt were su

ughout the F
observed to

a Collectio
h the items o
ertainly other
positions. Th

determined to

astEdgeView
nt of time pe
rform best u
List, so in

Kit (JDK) fr
ytecode as an
oughout its e

JDK. As inpu
ling JavaC c
ufficient to p

astGraph
only add
on object
once they
r method

he reason
o be non-

w.java’ at
erforming
under an
this case

from Sun
n output.

execution

ut for the
ompiling
provide a

3.6.2

Figure 7 -

3.6.3

The resu
JavaC. H
a few A
impleme
operatio
get).

Interesti
Java lib
number
Due to t
This ma
class. Th

After in
that the
is descri
we shou
than an A

We inve
method
remove

Results

- JavaC self-co

Discussion

ults shown i
HashSet is t
ArrayList
entations see

ons (add, rem

ingly, anothe
braries. This

of places in
the naming o
ay not be the
he original d

nvestigating t
class is inde
ibed as “A c
uld expect th
ArrayList on

estigated rem
was only eve
the very firs

ompilation resu

n

in Figure 7
the most com
implementa

em to match
move, and c

er prevalent
custom Co
the program

of the class,
e case thoug

developer wo

the code and
ed closely re

class for cons
hat there is po
ne in certain

move calls o
er called with
st item in the

ults

illustrate the
mmon standa
ations show
h their use w
ontains), a

implementat
ollection

m and spends
we would e

gh, and to un
uld, presuma

d comments
elated to the
structing list
otential for a
circumstance

on ListBuf
hin the List

e underlying

23

e extent to w
ard Collect

wn. The perf
well. HashSe
as does Arra

tion in the re
implementat

s a great dea
xpect it to b

nderstand ex
ably, already

contained in
List interfa
ts by append
a LinkedLi
es.

ffer objects
tBuffer cla
List. This

which Coll
tion implem
formance ch
et has comp
ayList for i

esults is one
tion (ListB

al of its time
be related in
xactly how it
y have this kn

n the ListB
ace. From the
ding element
st style of i

 throughout
ass itself. Fur
is an ideal s

ection obj
mentation us
haracteristics
plexity of O
its measured

that is not f
Buffer) see

performing
some way to

t is used we
nowledge.

uffer class
e comments
s”. Because
implementat

the program
rthermore, it
ituation in w

jects are use
ed, but there
s for these

O(1) for its m
d operations (

found in the
ems to be u

the remove
o the List i
must invest

s, it became
in the code,
of its List-

tion to perfor

m and found
is only ever

which a Link

ed within
e are also
standard

measured
(add and

standard
used at a
 method.
interface.
tigate the

apparent
the class

-like use,
rm better

that this
called to
kedList

can per
Linked

3.7 H
Hospital
Welling
hospital
Victoria
it attract

•
•
•

Hospital
shall see

3.7.1

Hospital
‘Numbe
program
chart in
effect on

Once we
This wa
measure
impleme

3.7.2

Figure 8 -

3.7.3

Althoug
make fo
objects
impleme

The firs
suit an A

rform well,
dList style u

Hospital

l is a simpl
ton. It mode
. It was used

a University o
tive to us as a

It was not w
It was not in
It has timing
(or losses) w

l is not a ver
e it makes fo

Procedure

l takes two in
er of Patient
m are measur

the results fo
n the ratios o

e had compl
s for the ben

ements from
entations.

Results

- Hospital resu

Discussion

gh somewhat
or some inte
that were la
entation.

t code point
ArrayList

as the com
underlying Li

le program
els a scenar
d in the Com
of Wellingto
a benchmark

written to be a
ntentionally w
g mechanism
we might ach

ry complex p
r some very

nput parame
ts’ and ‘Num
red from run
or Hospital b
of time spent

eted profilin
nefit of meas
m the inbui

ults

n

brief, the re
eresting anal
ater monitor

t shows a Li
– the overw

mplexity for
ist implem

used in a f
io of patien
mputer Scien
on. There are
k:

an example f
written to be

ms built in wh
hieve by selec

program, and
interesting a

ters that mus
mber of Prio
ntime parame
because in th

in each meth

ng, we ran th
suring perfor
ilt timing

esults that we
lysis. Both o
red seem to

inkedList

whelming ma

24

the remov
mentation has

first year pro
nts queuing t
nce paper C

e a number o

for this proje
inefficient.

hich provide
cting differen

d does not ma
analysis.

st be defined
orities’. The
eters of 10,0
is case, chan
hod.

e program a
rmance impro
mechanism

e gained from
of the point
show usage

implementat
ajority of me

ve method i
indeed been

ogramming
to be admitt

COMP103 in
f reasons pro

ct.

a means of m
nt Collecti

ake use of m

d by the user
e results we
00 and 50 re

nging the par

number of t
ovements. W

and use t

m testing the
s in the pro
e characteris

tion with ch
ethod calls a

is just O(1)
n used, so per

paper at Vi
ted in the em

the second
operties of th

measuring an
ion impleme

many Collecti

at runtime. T
present for

espectively.
rameters did

times with a
We were able

them for c

e Hospital pr
ogram that c
stics that are

aracteristics
are to size(

). As it hap
rformance is

ictoria Univ
mergency w
trimester of

he program th

ny performan
entations.

ion objects, b

Those param
the profilin

We only pre
not seem to

range of par
e to extract th
comparison

rogram (see F
created Coll
e not suited

that appear
() and get(

ppens, a
 optimal.

versity of
ward of a
f 2005 at
hat made

nce gains

but as we

meters are
ng of the
esent one
have any

rameters.
he timing

between

Figure 8)
lection
d to their

to better
(x). The

25

size() method has O(1) complexity for both LinkedList and ArrayList. The get(x) method,
however, has O(n) for LinkedList and O(1) for ArrayList. We would expect to see a benefit from
changing to an ArrayList implementation in this case. As it happens, the LinkedList at this point
of Hospital is actually implementing the Queue interface, not the List interface. Since ArrayList
does not implement the Queue interface, it cannot be used in place of a LinkedList.

The second code point in our results also shows an interesting mix of characteristics and
implementation choice. An ArrayList had been chosen when the only point of significance is a
large number of calls to the ListIterator methods we are monitoring. These methods lend
themselves to the LinkedList implementation by turning operations like add and remove into O(1)
complexity operations. They remain O(n) complexity in the case of an ArrayList implementation. It
seems pretty clear cut in this case that a LinkedList should have been used instead of an
ArrayList. To validate this claim, however, some real world testing is required.

To test the prediction that changing the ArrayList creation in Hospital to use a LinkedList
implementation will benefit performance, we ran Hospital a number of times with a number of
different configuration variables. We then ran the same simulations with the source code modified to
use a LinkedList, and the program recompiled. As mentioned earlier, Hospital already includes
mechanisms for timing executions of the simulation and these were used to produce a measure of
performance that we could analyse.

Our results were conclusive. In all of the configurations that we tested, the build of Hospital that used
a LinkedList performed at least as well as the original ArrayList build. Most cases showed a
significant performance advantage to the LinkedList build. Some cases showed as much a 40%
increase in performance with the LinkedList build. These results are very pleasing as they
demonstrate the potential for our tool to be incredibly beneficial to the world of software
development.

3.8 SimpleLISP
LISP is one of the oldest high-level programming languages in use today. SimpleLISP is an
interpreter for this language that has been developed in Java by Dr. David J. Pearce. It provides an
editor in which LISP programs can be created, edited, loaded and saved, as well as the interpreter
which executes the code.

3.8.1 Procedure

The SimpleLISP distribution comes bundled with a few example LISP programs. We made use of the
‘Fibonacci’ example to run through the interpreter and profile the program with. ‘Fibonacci’ is a basic
LISP program that takes one user defined integer input, and calculates a Fibonacci sequence with
length equal to the user input. We kept the sequence length relatively low (< 40) in order to keep
execution time reasonable, and implemented a simple timing mechanism for measuring performance
using the System.currentTimeMillis() method.

3.8.2

Figure 9 -

3.8.3

Our resu
Collectio
the code
position
impleme
task. Th
method,

To test w
around
method
executio
number
recompi
executio

What w
the Arra
relativel
measure

•

•

•

Neverth

Results

- SimpleLISP (

Discussion

ults for Sim
on objects th
e at which w
 is in the file
ent the List
his is becaus
 which has c

whether an A
the executio
offers millis

on time was
of different

iled SimpleL
ons of ‘Fibon

e found was
ayList imple
ly constant a
ed performan

Access to C
execution of
The position
List.
The List mig

eless, a certa

(Fibonacci seq

n

mpleLISP, dis
hat we monit
we might be
e ‘LispList.ja
interface, bu
e the List ha

complexity o

ArrayList wo
on of the LI
second resol
over 300ms.
t input valu
LISP with
nacci’.

s a little surp
ementation,
across execu
nce improvem

Collection obj
f the entire p
n in the List

ght only ever

ain performa

quence) results

splayed in F
tor are create
able to impr
ava’ at line 2
ut the results
as been mea
f O(1) for A

ould improve
ISP program
lution, which
. We then ra

ues and reco
the origina

prising. Whil
this improv

utions with a
ment might h

jects at this
rogram.
that is bein

r contain a v

nce improve

26

Figure 9, sho
ed. These res
rove perform
29. At this po
s indicate tha
asured to spe
rrayList and

 performanc
m using the
h was adequ
an the ‘Fibon
orded the m
al LinkedLis

le there was
vement was
all input valu
have stayed q

point might

ng accessed m

ery small nu

ement was ac

ow only four
sults indicate

mance throug
oint in the co
at an ArrayL
end a great d
O(n) for Lin

e in this case
System.time

uate for our
nacci’ LISP p

measured tim
st implemen

a measured
only about

ues. There a
quite low:

account for

might consis

umber of item

chieved.

r positions i
e that there is
gh implement
ode, a Linked
List might be
deal of its ti
nkedList.

e, we implem
eInMillis() m

purposes gi
program in t

me spent in
ntation and

performance
2%. This p

are a number

only a very

stently be at

ms.

in the code
s only one po
tation select
dList is being
e better suite
me in the L

mented a sim
method in Ja
iven that the
the interprete
execution. W
repeated th

e improveme
percentage r
r of reasons

small amou

the beginnin

at which
osition in
ion. This
g used to
ed to the
ist.get(x)

mple timer
ava. This
e shortest
er with a
We then
he same

ent using
remained
why the

unt of the

ng of the

27

Chapter 4
Related Work

Little work is known to us in the specific area of profiling Collection objects to benefit
implementation selection. There has been, however, a reasonable amount of work done in the general
area of profiling. Some of these works are described briefly in this chapter.

4.1 DJProf
DJProf is a tool that is designed to profile four elements of Java programs [5]. These elements are:

• Heap usage
• Object lifetime
• Wasted time
• Time-spent

At the time of its creation, there were a number of other tools that could profile these same elements
in Java programs and were readily available. The reason that the tool was developed was not simply
to add to the collection, but rather to explore whether or not it would be possible to efficiently achieve
this task using an aspect oriented programming language (AspectJ).

The development and testing of DJProf sought to answer questions at two levels. The base question
was whether or not AspectJ provided sufficient functionality to carry out profiling tasks for the Java
program elements mentioned above. The second level of investigation was whether or not this could
be achieved efficiently. As the paper shows, profiling the above program elements is indeed possible
and in most cases reasonably efficient at doing so. It does, however, highlight some limitations with
AspectJ as a language for profiling.

DJProf was very useful as a proof-of-concept for our project and provided a solid foundation to build
upon.

4.2 Absolute Timing vs. Sampling Time Profiling
To determine the ratio of time that an object spends executing one method as compared to another,
our tool uses an absolute timing approach. This sort of approach involves measuring the entire time
from entering a method to method completion. Once all measurements have been made, the totals for
each method are compared to determine the ratio between them.

An alternative approach to time profiling is known as time sampling. Rather than measuring the
absolute time spent in each method, it periodically records the currently executing method. This
builds up counts for each method type which are then compared to determine the ratio of time spent in
each. There benefit of a time sampling approach is that it has a much lower overhead than absolute
timing. The downside is that it is not nearly as accurate as absolute timing.

Further discussion of the two timing approaches can be found in [5] and [14].

4.3 Profiling Allocation Behaviour
Other profiling work has been done in the area of performance costs associated with the garbage
collection (GC) of unreferenced objects in a running program [6]. Many popular programming
languages do not support the notion of GC. C and C++ are examples of such languages. Java,
however, does include automatic GC.

28

There have been arguments made for and against the use of automatic GCs in programming
languages. The main benefit of GC is that is helps to reduce memory leaks in programs that can cause
poor performance and sometimes complete failure of the program. Unfortunately, like any piece of
code, automatic GC has a performance cost associated with it.

The work detailed in [6] focuses on tuning GC in Java to optimise its performance for a given Java
program. In order to optimise GC for the program, the program itself must first be analysed to see
how its memory is allocated and used. In this case, profiling is achieved by taking a trace from the
program and running it through a simulation environment where measurements are made.

This sort of approach seems to work for its intended purpose which involves assessing memory use. It
is not, however, a viable solution for our purpose as we are concerned with live timing information. It
would seem optimistic at best to assume that any simulation would accurately reflect the timing
characteristics of the live execution of the program.

29

Chapter 5
Conclusion

Every day, developers find themselves faced with decisions about which Collection
implementations they should use to represent their data structures. These decisions have the potential
to drastically alter the performance characteristics of the programs in which they are used. We
hypothesised that developers do not always make the best decisions with Collection
implementations and envisioned that a tool that could help make the best decisions would be very
valuable. Having developed such a tool, we proceeded to test its usefulness. We found out tool to
provide useful information for Collection implementation decision making and proved our
hypothesis to be true by analysing a number of real world benchmarks.

5.1 Future Work
This project has illustrated the value that lies in making the best decisions when selecting
Collection implementations in software development. There are a number of directions that work
could continue in this area of research. Some examples of these are briefly discussed in the following
sections.

5.1.1 Hybrid Implementations

Our Java Collection Profiler has shown to illustrate the ways in which Collection objects are used
quite effectively. It has been shown to be very useful in making the best decisions when selecting
specific Collection implementations. The value of the tool doesn’t stop there though. Because
results are displayed in a form which shows all interesting aspects of the use of Collection objects,
they are able to highlight situations where no available Collection implementation is perfect for the
task at hand. It could prove to be useful in realising potential for completely new Collection
implementations. Such implementations may be tailored to provide optimal performance for situations
where the currently available implementations are less than ideal.

Another direction of work in this area would be to investigate the viability of self-managing
Collection implementations. These could be designed in such a way that they are able to monitor
their own use and adjust their underlying implementation to best suit their operating environment.
This would likely be an interesting area of study as achieving such an implementation would remove
the need for the developer to make any decision at all. Careful consideration would need to be given
to the overhead associated with the self-management and whether or not this overhead negates the
performance improvements.

5.1.2 Profiling Other Collection Types

Our main focus throughout the project has been in the List interface. This is just one of the subtypes
of the Collection interface in the Java language. Other subtypes include:

• BlockingQueue

• Queue

• Set

• SortedSet

There are also interfaces such as Map in the Java language that do not implement the Collection
interface but do represent data structures.

30

Each of these types has its own unique methods and implementations. If work is put into profiling
these unique methods, and comparing the results with the performance characteristics of each
implementation, further benefits to developers may be achievable.

5.1.3 Alternatives to Aspect Oriented Approach

Earlier in this paper we discussed the benefits in using an AOP language for profiling over modifying
source code by hand. Using an AOP language is not the only way to avoid this tedious task though.
Another way might be to implement profiling wrapper classes for the existing Collection
implementations and then change the class loader to a customised version. This custom class loader
could effectively replace all implementations of one sort with the profiling wrapper associated with it.
No source code modification would be necessary in the target program and these wrapper classes
would appear transparent it.

There are pros and cons to a solution like this. One of the benefits is that code position lookups and
object identity methods would not be necessary as the wrapper class could hold local variables to
store the timing information for method calls. Sampling could also be easily achieved by building it in
to the class loader so that not every Collection object is replaced with one that is encased in the
associated customised wrapper class.

Perhaps the biggest problem with taking an approach like this to profiling is that any program that
relies on an object being an instance of a specific class, rather than simply behaving like one, will
break. An example of when this might occur is in code that makes us of the instanceof statement.
This boolean statement will only return true if the object that it is assessing is an instance of the exact
class that is specified. Therefore any sort of class substitution, no matter how similar it is to the
original, will cause the statement to return false every time.

31

Chapter 6
References

1. Ken Hartness. Robocode: using games to teach artificial intelligence. J. Comput. Small Coll.,
19(4):287–291, 2004.

2. Jin-Hyuk Hong and Sung-Bae Cho. Evolution of emergent behaviors for shooting game
characters in robocode. In Proceedings of the 2004 IEEE Congress on Evolutionary
Computation, pages 634–638. IEEE Press, 2004.

3. Mathew Nelson. Robocode, http://robocode.sourceforge.net, 2008.
4. Jackie O’Kelly and J. Paul Gibson. Robocode& problem-based learning: a non-prescriptive

approach to teaching programming. In Proceedings of the SIGCSE conference on Innovation
and technology in computer science education, pages 217–221, New York, NY, USA, 2006.
ACM.

5. David J. Pearce, Matthew Webster, Robert Berry and Paul H. J. Kelly. Profiling with AspectJ.
In Software – Practice and Experience, pages 747–777. Wiley InterScience, 2006.

6. Sylvia Dieckmann and Urs Hölzle. A Study of the Allocation Behavior of the SPECjvm98
Java Benchmarks. University of California, CA: Department of Computer Science. Retrieved
Oct 11, 2008, from: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.58.9704

7. J. D. Gradecki and N. Lesiecki. Mastering AspectJ : Aspect-Oriented Programming in Java.
Wiley, 2003.

8. R. Laddad. AspectJ in Action. Manning Publications Co., Grennwich, Conn., 2003.
9. G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J. Loingtier, and J. Irwin.

Aspect-oriented programming. In Proceedings of the European Conference on Object-
Oriented Programming, pages 220–242. Springer-Verlag, 1997.

10. Donald E. Knuth. The Art of Computer Programming. Retrieved Oct 11, 2008, from:
http://www-cs-faculty.stanford.edu/~uno/taocp.html

11. JGraph - The Java Open Source Graph Drawing Component. Retreived Oct 11, 2008, from:
http://www.jgraph.com/jgraph.html

12. Marc Loy, Robert Eckstein, Dave Wood, James Elliott, and Brian Cole. Java Swing.
O’Reilly, 2003.

13. javac - Java Programming Language Compiler. Retreived Oct 11, 2008, from:
http://java.sun.com/javase/6/docs/technotes/tools/windows/javac.html

14. Sheng Liang and Deepa Viswanathan. Comprehensive Profiling Support in the Java Virtual
Machine. Retrieved Oct 11, 2008, from:
http://www.usenix.org/events/coots99/full_papers/liang/liang.pdf

