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Abstract

This document contains a full report on the Profiling Collections in Java project. The project focuses
on the development of a tool that profiles the use of different implementations of the Col lection
interface in Java and allows us to analyse their use with regards to efficiency. It is our hypothesis that
the efficiency, and therefore performance, of software may suffer as a result of poor decisions made
by the developer when choosing which Collection implementations to use in their code. Our
profiling tool will allow us to determine whether or not this is true.
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Chapter 1
Introduction

1.1 Motivation

Almost every piece of software that is written today incorporates the use of structures that represent
collections of data. Sets, lists, queues, stacks and maps are all examples of such structures. In Java, all
of these data structures fall under the common interface of Col lection. There are a number of
implementations of these data structures available to software developers in common libraries for
most popular languages. The availability of these implementations saves the developer a lot of time
but does not remove them from the process entirely. They must still choose which implementation to
use and this choice can have severe effects on the performance of the software.

1.2 Example

Let us consider the two different add methods in the List interface in Java. The first method,
List.add(<E>), is inherited from the Collection interface. It takes a single argument — the item
to add to the list — and inserts this item at the end of the List. The following diagram illustrates the
process for the ArrayList and LinkedList implementations:
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ArrayList.add(‘A’) ArrayList.add(‘A’)
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LinkedList.add(‘A’) LinkedList.add(‘A’)

As the diagram shows, List.add(“A”) has a complexity of O(1) for both ArrayList and
LinkedList. Occasionally ArrayList will incur a larger cost for this operation. This is the case
when the array fills up and it must copy its contents to a new, larger array. In the average case though,
the complexity is O(1). We can see quite clearly that the performance characteristics for this operation
will be about the same, whichever implementation is chosen.

The second add method is specific to the List interface and takes two arguments in the form of
List.add(x, <E>). The extra argument in this version specifies the point in the List at which the
new item is to be inserted. Again, processes for each implementation are illustrated below:
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LinkedList.add(0, ‘A’) LinkedList.add(0, ‘A’)

When we consider the List.add(x, <“A”) method as shown above, a gap appears in the
performance of the different implementations. LinkedList retains its O(1) complexity while
ArrayList degrades to O(n). The reason that ArrayList becomes so much more expensive is that
it stores its data elements in a contiguous linear space. Every time it tries to add an element at a
position that is not the end of the list, it must first shift every successive element one position to the
right.

LinkedList does not suffer from the same problem as ArrayList. Rather than using a contiguous
linear space to store data elements, it uses random free memory spaces and can therefore create new
space without having to rearrange anything. To place the new element in the list, pointers from each
of its new neighbours are simply redirected to point at the new element. This does, however, introduce
a new cost — finding the neighbours. To find position x in a LinkedList you must first find position
x-1. This means that finding the place at which you want to insert the element becomes O(n). While
this can add to the cost in some situations, there are other situations where it is not a problem.

For example, consider the case of a bulk insertion of items at specific points in a List. Using an
ArrayList implementation the complexity is O(kn). This is because for each of the k items being
added, there is a cost of n involved in moving down the successive items to make room. The code for
achieving this bulk insertion may take the form:
for(int 1 = 0; 1 < items.length; i++){

list.add(positions[i], items[i]);
}

In the example above, the ‘positions’ array contains integers representing the positions in the List
where we want to add the items. The ‘items’ array contains the items themselves. These two arrays
are related in such a way the positions[i] is the position at which items[i] is to be added.

If a LinkedList implementation is used, the complexity falls to O(k+n). This is because
LinkedList does not have to shift existing items every time it wants to add a new one. It can use the
Listlterator class to its benefit so that it searches the list at most once to find insertion points. It can
then use the Listlterator.add(<E>) method to insert the desired item at the current point. This code
may take the form:

Listlterator<kE> itr = list.listlterator();
for(int 1 = 0, J = 0; i < items.length; i++){
while( < positions[i]){
itr.next();
3+
}
itr.add(items[i]);



}

There are some scenarios where finding a position in a LinkedList is not a complex operation.
These include the case where the List is being added to at the very beginning, and the case where the
List is being iterated over anyway. Neither have any added cost in finding the position at which to
insert the new element. They may sound like isolated and unlikely scenarios, but there are several
imaginable situations in which they might occur.

The point is that operations have differing costs associated with them which are defined by the
specific implementation chosen by the developer. If we can identify operations that have
implementation-dependent complexities and monitor their usage, we may be able to help developers
to make the best decisions with their choice of implementation.

1.3 Hypothesis

It was our hypothesis that developers do not always make the best decisions with their choice of
Collection implementation. This may be for a number of reasons:

e The developer uses one type of implementation all of the time, out of habit.

e Little or nothing is known about the performance characteristics of different Collection
implementations by the developer.

o The developer is not sure exactly how the program is going to use the Collection. A
common example of this is the development of libraries. If the developer is creating a library

to be used by other developers, he or she cannot possibly predict exactly how that library will
be used.

Through this project, we hoped to test whether this hypothesis is true or not.

1.4 The Java Collection Profiler

To test our hypothesis we decided to develop a tool for monitoring the usage of Col lection objects
within Java programs. This tool should be able to assess the usage of Collection objects within
Java programs without the need to modify the source code of that program. It should be easy to use
and provide an output that allows developers to easily see which points in their code have potential for
performance gains through Col lection implementation selection.

The tool that we developed is called the Java Collection Profiler. It is designed to be easy to modify to
allow for developers to monitor exactly what they want in their programs. It is implemented in
Aspect] and Java and has been tested to work perfectly with a number of Java programs. The results
produced by the tool are informative and clear, and we have managed to achieve significant
performance enhancements in some programs as a direct result of using the tool.

What follows is a description of the development of the tool; along with examples of the results it has
produces and an analysis of its effectiveness.



Chapter 2
Implementation

2.1 Methods of Interest

Choosing which methods our profiler was to intercept required a degree of thought and consideration.
An obvious approach would be to simply intercept all Collection interface method calls. This
approach has a number of drawbacks:

e The more methods we intercept, the more overhead there is associated with our profiler.

e For every method we intercept, there is another piece of data that must be displayed in the
output of the profiler. This can lead to clutter and make the results difficult to interpret and
understand.

o Not all methods are relevant to our goal of performance improvements.

The first two points are relatively straight forward — it takes more effort to gather and understand
more points of information. This holds true for a great number of scenarios, outside of profiling and
outside of computer science.

The final point is quite specific to our task. While all methods incur a cost in performance, not all
have costs that differ with implementation. We are interested in comparing the performance of
different implementations so only methods that differ in cost with implementation are of interest to us.

To give an example of the distinction between ‘interesting’ methods and irrelevant ones, let us again
consider the List interface in Java. There are three main implementations of the List interface
provided in the common Java library — ArrayList, LinkedList, and Vector. ArrayList and
Vector have very similar performance characteristics and so Vector is largely ignored throughout
this project. LinkedList, however, uses a completely different underlying data structure. Because of
this, there are a number of methods that differ in performance when compared to those in the
ArrayList implementation.

We have already seen how a LinkedList implementation can perform better than an ArrayList in
some situations. Conversely, the List.get(x) method is a much cheaper method when an
ArrayList is used over a LinkedList. This method retrieves an item from a specific point in a
List. The associated complexities are O(1) and O(n) respectively. Because both of these methods have
performance differences that relate to the implementation chosen by the developer, both are
monitored by our profiler.

Other Collection methods are not so interesting. For example, the Collection.size() method
has a complexity of O(1) which is common across all implementations. Since profiling methods like
this would offer no benefit to the developer in choosing the best implementation to use, they are not
profiled by our tool.

The complete set of methods that we have identified as interesting, and included in our profiler for
monitoring, is:

e Collection.add(<E>)

e Collection.remove(<E>)
e List.add(x, <E>)

e List.get(X)



e List.remove(x)

e List.set(x, <E>)

e Listlterator.add(<E>)
e Listlterator.remove()
e Set.contains(Object)

All of these methods have potentially different performance characteristics for each of the standard
implementations provided by the Java framework. Furthermore, our profiler is designed in such a way
that monitoring extra methods can be achieved with very little modification to the source code. This
helps to cover the possibility that there exist other methods of interest not currently monitored by our
profiler. It also caters for future developments to the Col lection interface and other interfaces that
inherit Col lection which may produce more methods of interest.

2.2 Intercepting Method Calls

For our profiler to work it must be able to recognise points in the target program where there are calls
to methods of interest. It must then be able to intercept the target program at these points and execute
our own profiling code. Object-Oriented programming languages do not provide an easy way for us to
achieve this so we must look elsewhere. The solution we chose was to make use of an Aspect-
Oriented programming (AOP) language [9]. The specific AOP language we chose was AspectJ.

2.2.1 Aspect]

Aspect] is a popular AOP language designed for Java (see e.g. [7,8] for more on Aspect]). It was
chosen very early on in the project as the programming language to implement our tool in. It
effectively allows us to automatically place code of our own throughout any Java program, as long as
we have its source code. To achieve this interleaving of code using simply Java itself would be an
incredibly difficult and tedious task. For example, using Aspect] we are able to intercept a program
every time any Col lection method is called and print out a line of text to the system console. The
code to achieve this could take the form:

before() : call(* Collection+.*){
System.out.printIn(“Collection method called!”);

}

Every time a call is made to any method defined in the Col lection interface, the message will be
printed to the system console. In the definition, cal 1 (* Collection+.*) the ‘+’ indicates that all
calls to methods defined in subtypes of the Col lection interface will also be caught. For example,
ArrayList is a subtype of Col lection. Therefore, all calls to methods in the ArrayList class will
be caught.

To achieve this goal without using an AOP language we would have to search by hand through the
entire source code of the target program, inserting print commands at each point where a
Collection method call is found. We would then have to recompile the program. Once finished
with the profiling, we would have to reverse this in an equally tedious fashion.

The way to intercept Java code with AspectJ is to use pointcuts. Pointcuts effectively define places at
which you wish to insert code in the target program. Since our tool is intended to monitor the use of
Collection objects, we created pointcuts for a number of Col lection methods. Examples of these
pointcuts are:

pointcut colAdd() : call(* Collection+.add(..)) && within(jcp-*);
pointcut colRemove() : call(* Collection+.remove(..)) && 'within(Jcp-*);
pointcut listGet() : call(* List+.get(..)) && lwithin(Jcp-*);



pointcut listSet() : call(* List+.set(..)) && lwithin(Jcp.-*);

Again, we make use of the ‘+’ character to make our pointcuts apply to all subtypes of the
Collection (or List) interface. The *(..)’ indicates that methods with any number and type of
arguments will be intercepted. To avoid monitoring method calls from our own code, we used the
‘“twithin(...)” statement. This statement allows us to exclude our own package from being
intercepted by the pointcut.

Once we had defined our pointcuts we were able to add advice to them. Advice is code that is run
when the pointcut is triggered. Advice can include any AspectJ specific code, as well as standard Java
code. In the following sections we discuss what the advice in our profiler actually does.

2.3 Identifying Objects

When a method call is identified and intercepted by our profiler, there is a great deal of information
that is available to us courtesy of Aspect]. This information can provide us with details about the
arguments being passed to the method, objects that are being returned by the method, and information
about the point in the code at which the interception occurred.

Ideally we want to provide the developer with an analysis of their program which tells them “here is a
point in your code that may be using a sub-optimal Col lection implementation”. This is not quite
as straight forward a task as it sounds. Most of the interceptions that are done by our profiler are at
points in the code where methods are called on Collection objects. An example of these
interception points follows:

if (count > 0) {

list.add(robots.get(0));

for (int i = 1; i < count; i++) {

[SEEEE((int) (Math.random() * i + 0.5), [FOBGESHGEE(i));
}

In the above example, suppose we intercepted the highlighted method calls using Aspect]. Then, we
would know the position in the source file where the method call occurred. However, this does not tell
us where in the program the object which is being called upon was originally created. The developer
really needs to know the location in their code where the Col lection object was created because
this is the point at which the Col lection implementation is chosen.

In order to provide the developer with this information, we need some way of identifying the creation
of Collection objects and keeping track of their usage throughout the program execution. Our
solution to this uses the following steps for each Col lection object created in the developer’s code:

1. Intercept the program when a Col lection object is created.

2. Place an entry in a codePosition Map that ties the unique identifier of the newly created object
(effectively its memory address) to the program point at which it was created.

Intercept method call of interest.

Match the unique identifier of the object to a code position in the codePosition Map.

Update a running total of usage statistics for that code position.

6. Repeat from step 3 until program terminates.

ok~ w

The following diagram illustrates this process in action:



Update running total
for codePosition

SIS (int) (Math.random() * i + 0.5), robots.get(i));

return list;

}

The creation of a Collection object adds a link from the object ID to the code position in the
codePosition Map. Later on, when the object is used, the codePosition map is referenced so that the
running total for the appropriate code position can be updated.

The “unique identifier’ referenced above is acquired via the System. IdentityHashCode(Object)
method that is provided by Java. This method returns an integer that is unique to the object and
remains so throughout the entire lifetime of that object. But what happens if an object’s lifetime ends
and another object is created with, quite by chance, the same IdentityHashCode? Does this distort
our statistics? As it turns out, no, it does not. When you consider the previously mentioned sequence
of operations you notice that one of the first steps is to place an entry in a Map linking the object to the
point at which it was created in the code. This means that if an object assumes the identity of an
extinct object it must also update the Map to point to the new code position at which it was created.
Since statistics are paired with code positions, and not object identifiers, there is no risk of
contaminating the results with statistics from objects created at another code position.

To provide out profiler with the ability to identify objects and match them up to the position at which
they were created in the code we have made use of a couple of Maps. Because Map implements the
Collection interface, and our profiler intercepts method calls to objects implementing the
Collection interface, we can run into problems with self-accounting and, possibly, infinite loops.
To avoid this problem we make use of the Aspect) keyword within. While defining our pointcuts
(see section 2.2.1) we insert this keyword along with a negation symbol and our package name to
exclude code in our profiler from being intercepted. E.g. 'within(Jcp.*)

2.4 Sampling

Profiling method calls is not a free operation. Our tool incurs overhead in the system when it is run.
Because our tool is only intended to be used during the development of software this should not be an
issue. However, for our tool to be truly appreciated by developers it should introduce as little cost as
possible in the software development process.

There may also be situations where extra overhead must be minimised in order for the program to run
correctly. For example, if the program that is to be monitored is highly time dependent then
introducing large amounts of extra delay with our profiler might cause the program to function
incorrectly or fail completely. For our profiler to be as universal as possible we need to minimise the
delay that it might introduce in programs.

To reduce the overhead introduced to the program by our profiler, we used a sampling approach. By
sampling a small ratio of the method calls that the program makes, we are able to dramatically reduce
the overhead incurred by our profiler. Sampling has been used in many statistical applications to give
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a relatively accurate view of the population. It is, however, simply a view. If care is not taken, there
may be situations where results are not a fair representation of actuality because poor samples have
been taken.

Before we developed a technique for sampling in our tool, we needed to decide exactly what we
wanted to sample. There were a couple of obvious choices:

e Object creation: When Collection objects are created, we could sample which ones we
took notice of. We would then follow the sampled objects through their entire lifetime and
take notice of all calls to methods of interest on them.

o Method calls: Take a note of every Col lection object that is created. Then sample the calls
to methods of interest across all Col lection objects.

Sampling ‘object creation’ would likely not return the same performance benefit as sampling ‘method
calls’ in AspectJ. This is because every time a method call was picked up, it would have to have its
object ID checked back against the codePosition map to determine if it should be sampled or not. We
chose to sample ‘method calls’ instead, to gain the greatest benefit in performance.

The benefit of choosing the ‘method calls’ approach is that we are far more likely to gather
information on all code positions in the program. If we sample ‘object creation’ then it is entirely
possible that some code positions will slip through the profiler without being sampled at all. This is
especially likely for positions in the code that only ever create an object once. Simply because they
are only created once does not mean they are not heavily used in the program and therefore very
important that we monitor.

For our sampling technique we considered a number of approaches:

e Purely random sampling: for each member of the population, generate a random number and
if that number is over a given threshold include the member in the sample group.

o Time based sampling: use a timer that works off the system clock and samples every method
call that directly follows the expiration of the timer.

e Framed sampling: take the first method call in every frame of n method calls as a sample.

e Frame bounded random sampling: for every given frame of n method calls, select one
method call at random to sample.

The technique we ended up using was the final one — frame bounded random sampling. This
technique has a number of benefits in our situation:

o Samples are dispersed throughout the entire program. With purely random sampling it is
quite possible that large portions of the program will go unsampled while others may be
oversampled. Framing our random selection helps to dramatically reduce this issue.

e The sample rate is not defined by program performance. Time based sampling lead to a
different number of samples being taken on machines that differ in performance. The slower
the machine, the more samples will be taken. Since more samples leads to poorer system
performance, a time based sampling approach may well lead to a snowballing effect in this
regard. Since we are basing our selection on the occurrence of method calls, and not an
unrelated clock, we avoid this issue.

e Cycles in the program are unlikely to skew results. If a plain framed sampling approach is
used we face the possibility of inaccurate results in the case of program loops that match our
frame size. Assume we are sampling every fiftieth method call. If the program we are
monitoring contains a main loop with fifty calls to methods of interest then, with simple
framed sampling, we are going to be sampling the exact same method call every time around
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the loop. This could lead to a highly distorted result set which would be of little use to
developers. By randomising the one method that we select from every frame, the chance of
this sort of distortion occurring is highly unlikely.

In Figure 1 we can see a visualisation of how our chosen technique — frame bounded random
sampling — works. The program is effectively divided up into even frames of n calls to methods of
interest. Within each of these frames, a random method call is chosen and sampled. We tested the
accuracy of this sampling technique by running it over a number of benchmark programs and
comparing the results produced to those of a non-sampled run. We found that the difference between
the results of the two was minimal and did not change the implications of the results.

ﬁingﬁ%ngbhingﬁ
| | | |

Samples

Figure 1 — Frame bounded random sampling

In order to cater for programs of all sizes, and target machines of varying levels of performance, the
size of the frame can be easily changed to suit. It can also be reduced to ‘1’ so that every method of
interest is sampled.

2.5 Timing

For developers wishing to improve the performance of their programs, simple measures like counting
method calls are not overly useful. It would be far more useful to be able to see which methods were
consuming the most time for each Col lection object. For this reason, we designed our profiler to
base its statistics gathering on the time spent executing each method. To achieve this measure of
timing, we must intercept the program before the method is called and start a timer. We must then
leave the program to complete its method, and finally jump back in and stop our timer. Only once we
have done all of this can we add the measured time to the appropriate total in our statistics.

If we consider again the example from above we can visualise how this measure of timing might be
achieved:

int count = robots.size();
List<RobotPeer> list

Stop timer
| Update running total for
codePosition

get (1))

}
}

return list;

}

Using the around advice in Aspect), we are able to place our own code on either side of an
intercepted method call. Before the method proceeds we take the current time from the
System._nanoTime() method that is provided by Java and store it in a variable. This method

12



provides us with the current system time at a high resolution. Since some methods execute very
quickly, using a millisecond degree of accuracy would not be sufficient in all cases. We then allow the
method to execute by using the proceed() call. Finally, once the method has completed, we can
once again make use of System._nanoTime() to get the finish time of the method and calculate the
time spent executing it. The measured time is then added to our statistics. All of this happens within
the around advice in our profiler code.

One issue that must be considered when using this approach is the issue of multithreaded programs. A
method call may be intercepted and then lose its time slice just after our timer starts. Since our timer
relies on the system time for its measurement, every unit of time spent waiting for the thread to re-
enter execution will be included in our measurement. This is, potentially, quite a large problem and
may need to be addressed in future work. In our testing we included multithreaded software and did
not observe any obvious inaccuracies, but acknowledge the fact that they may well exist.

13



Chapter 3
Experimental Results

After implementing our profiler it was necessary to gain a real world view of how well it might
achieve its goal — to help developers make the best decisions with Col lection implementations. The
best way to do this was to find some real world programs and run our profiler over them. We did this,
and then analysed the results to assess if Col lection implementations had been chosen wisely by
the developer(s). If we found decisions that our profiler suggested might be poor, we recompiled the
program using the better implementation and measured any performance benefits.

3.1 System

For the vast majority of testing and benchmarking we used just one system configuration. We ran tests
of our tool on other system configurations to ensure portability but the results presented are all from a
common system. That system is:

Make Toshiba

Model Portege R100 (PPR10A-04M8ZP)

CPU Intel Pentium M (Banias), 1GHz, 400MHz FSB, 1MB L2 Cache
Chipset Intel i855GM

Memory 1280MB, 266MHz

HDD Toshiba MK6006GAH, 60GB, 4200RPM, 2MB Cache

oS Microsoft Windows XP Professional, Service Pack 2

JRE 1.6.0_07-b06

Aspect] 151

3.2 Displaying Results

Having developed a tool that could gather usage statistics for the use of Col lection objects we were
faced with another challenge — how to present the results. Most of the benchmarks that we used to test
our profiler produced amounts of data that were just not practical to try to analyse as raw numbers.
For data to be useful it should be in a form that is easy to interpret and analyse, and in many cases the
best way to achieve this is through visual representation. A chart of some description seemed like the
best candidate for visual representation in our case. We considered a number of styles of chart,
examples of which are presented below:

14
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From the above diagram, the chart types are as follows:

a) Columns

b) Normalised Columns

c) 3D Columns

d) Normalised 3D Columns
e) Stacked Bars

f) Normalised Stacked Bars

We identified problems with each of the above chart types. (2), (c), and (e) all dwarf lesser used
objects into practical non-existence. It may be argued that the performance characteristics of lesser
used objects are not very important because they have little effect on the program as a whole. This
may be true, but we would like our tool to benefit all areas of developers’ software, not just those that
will have the greatest effect.
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To ensure that all of the results are visible to the developer we investigated normalising the charts as
shown in (b), (d), and (f). This meant that for each program point that produced data in our results we
could see the data stretched along the full length of the chart. We found that the simplest of the
normalised charts to interpret was (f), the Normalised Stacked Bars style. This style uses a standard
width bar for each program point, and splits that bar up into method types by colour. This allows the
developer to quickly and easily determine which methods each Col lection object spends most of its
time executing.

We would later add program point labels to the Y axis, and a legend to map colours to method
descriptions. A further enhancement was to add the total time spent in all measured methods to the
label and sort the results according to this value. This value aids the developer in estimating the
expected improvements in performance associated with using the best Col lection implementation
at each code position. It effectively gives all of the fixed width bars a ‘size’ relative to each other.

3.3 Charts

The type of chart we use is a Normalised Stacked Bar Chart and is described briefly in Section 3.2.
For an understanding of how we use this chart type, consider the following example:

Togh oo 1A Lo cbeot | an. Anens
Test.java:14 (HashSet) - 20: 46603

Test.java:10 [ArrayList] - 50: 750096

o= A
= AT

Each bar is representative of the performance characteristics of Collection objects created at a
specific position in the code. That code position is displayed at the beginning of the label on the Y
axis. From the example: ‘Test. java:14’ identifies the code position in the file ‘Test.java’ at line
number 14. Following this in the label is the type of object being created at that position in the code.
Using the same example, ‘(HashSet)’ identifies that a new HashSet object is being created. The
final part of the Y axis label related to our statistics. The first number (in our example 20°) is
representative of the number of method calls that were sampled from objects created at the given code
position. The last number (in our example ‘40603") is the total time spent in the execution of these
sampled methods, as measured by our profiler.

As mentioned earlier, providing information about the total time spent executing methods for each
code position can be very helpful. It allows developers to estimate how much a better implementation
selection might benefit the performance of their program. The count is also important as it gives a
measure of how often methods from each code position are being used in the program.

Within each bar the colours represent the different methods that have been measured by our profiler.
These bars have been ‘normalised’ to each span the entire width of the chart. Because of this, the size
of each ‘chunk’ of each bar does not represent an absolute measurement. Instead it represents a
relative measurement of time spent performing the associated method as compared to time spent
executing other methods on objects created at the same code position. For example, if a bar is
displayed with a half in one colour and a half in another, then it has spent an equal amount of time
executing each associated method. Comparisons can only be made within the same bar because other
bars may represent a different overall execution time.
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Brief descriptions of the methods are given in the legend at the bottom of the chart. A more
substantial description is given below:

Legend Label Included Methods
Add at End Collection+.add(<E>)

Add in Middle List+.add(x, <E>)

Collection+.remove(<E>), List+.remove(x)
List+.get(x)

List+.set()

Set+.contains(Object)
Listlterator+.add(<E>), Listlterator+.remove()

3.4 RoboCode

RoboCode is an open source, educational Java game in which user-created simulated robotic tanks
fight each other in a 2D space. The purpose of the game is to help teach people how to program in
Java and develops ideas of Artificial Intelligence [1,2,3,4]. All of the tanks in the game are
‘physically’ identical but differ in the way developers program them. The tanks can shoot at each
other, move around, scan for each other and bump into walls and other tanks. The program is
designed in such a way that it is not difficult at all to program a robot but programming a really good
one is quite a challenge. This provides a learning curve for new Java developers that allows their
robots to get better as their programming knowledge and technique improves.

3.4.1 Procedure

The version of RoboCode used throughout the development of our profiler was 1.6.0 Beta 2.
Although a beta release, we found it to perform perfectly with no stability issues at all.

We ran our profiler over the program a number of times, using different game parameters each time.
The different combinations we used are described in the following table:

Parameter Configuration 1 Configuration 2 Configuration 3 Configuration 4
Robots 5 10 5 5

Rounds 10 10 20 10

Playing Field 800x600 800x600 800x600 1600x1200

We used Configuration 1 as a ‘base’ configuration. For Configurations 2 — 4 we changed a single
parameter from that of the base configuration. The reason for this was that we wanted to see how the
use of Col lection objects changed within the program when the input variables changed.
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3.4.2 Data

RobocodeSecurityPolicy java:44 (Arraylist] - 7 : 3397357

RobocodeProperties.java:1070 (Vector) - 18 : 56991

RoboCoder ies.java:Z0o iist) -4 : 02020

EventManager.java:B4 (CopyOnWriteArraylist) - 47614 : 248499901
ClassAnalyzer.java:85 (Arraylist) - 154 : 541129

CiassAnaiyzer java:83 (Arraylist] - 150 : 405365
BattleResultsTableModel.java:132 (Arraylist) - 2580 : 5652684

BattleManager java:99 (Arraylist) - 1: 26819

Battle java:194 (CopyOnWriteArraylist) - 10: 119291
Battle_java:193 (CopyOnWriteArrayList) - 965574 : 1511157728

AvailableRobotcPanel java:52

M Add at End [OJAdd in Middie BRemove MEGet [OSet MContains MBiterator Modify

Figure 3 - RoboCode results - Configuration 2
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ImageManager.java:97 (ArrayList) - 88 : 670759

imagehianager.java:92 {Arrayli

CopyOnWriteArraylist) - 45 -

AvailableRobotsPanel.java:52 [CopyOnWriteArraylist) - 42 : 2232
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FileSpecificationDatabase.java:121 (Arraylist) - 20 : 67603

EventManager_java:103 (EventQueue) - 550568 : 1150587820

BattleResultsTableModel.java:132 (ArrayList) - 16704 : 39021794
BattleManager.java:99 (Arraylist) - 1: 25143
Battle java:576 (Arraylist) - 135745 : 221786640

Battle.java:195 (CopyOnWriteArrayList) - 1358 : 11537521

AvailableRobotsPanel.java:54 (CopyOnWriteArrayList] - 45 : 263161
AvailableRobotsPanel.java:52 (CopyOnWriteArraylist] - 42 : 245842

Figure 5 - RoboCode results - Configuration 4
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3.4.3 Discussion

The results from RoboCode show heavy use of the ArrayList List implementation throughout the
program (see Figure 2 through Figure 5). This implementation is favoured for operations like
List.get(x) and List.set(x,<E>). We can see from the results that all four configurations of
RoboCode make use of the List.get(x) method quite extensively at a number of code points in the
program. In these cases, where List.get(x) and sometimes List.add(<E>) are used,
ArrayList is the best choice of List implementation. This is because it has complexity of O(1) for
both of these operations.

If, however, we look at the code position ‘Battle.java:576’, we can see that the overwhelming
majority of the execution time is spent in the List.add(x,<E>) method. As discussed earlier in this
report, this method can yield performance benefits when implemented with a LinkedList. This
assessment is not conclusive, as the performance characteristics depend on how the program is using
the method. Only in certain situations will a LinkedList benefit program performance.
Nevertheless, this is a point in the program that should be examined because it shows potential for
improvement.

We examined the code in the ‘Battle.java’ file of RoboCode at and around line 576 and found the
following:

private List<RobotPeer> getRobotsAtRandom() {
int count = robots.size();
List<RobotPeer> list = new ArraylList<RobotPeer>(count);
if (count > 0) {
list_add(robots.get(0));
for (int i = 1; 1 < count; i++) {
list.add((int) (Math.random() * i + 0.5), robots.get(i));

}
}

return list;

}

The List.add(x,<E>) method is being called inside a loop which explains its large presence in the
results. When we look at where exactly the items are being added to the list (the ‘X’ value) we see that
a random number method is being used to determine position. In order to gain performance benefits
from a LinkedList we either need to have the items being added consistently at the beginning of the
List, or be in a situation where the list is being iterated over anyway. In this case neither applies.
Since the position at which the new item is being added is being determined at random, we cannot
expect to gain any benefits in performance from a LinkedList implementation.

However, if we look beyond what the code says and assess what is actually achieves we can see room
for improvement. The point of the code is to create a randomised copy of the ‘robots’ List. As the
code stands, it is an expensive operation. For every item in the ‘robots’ List, a List.add(x,<E>)
operation is being performed on the new List. This results in a complexity of O(n?). Instead, we
could start by performing an initial copy of the ‘robots’ List which has complexity O(n). We could
then use the Collections.shuffle() method to randomise this new List.
Collections.shuffle() is based on an algorithm developed by Donalth Knuth [10] and also has
complexity of O(n). Using this approach means that we are able to reduce an O(n®) complexity
operation into a much more efficient O(n) complexity operation.
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It is important to note that this performance improvement is not related to implementation choice but
rather algorithm efficiency. However, it was because of our profiler that this code point came to our
attention. This demonstrates the flexibility of our tool in being able to help developers to improve
efficiency in their code.

Observant readers will note that the list that is created in the above example is returned at method
completion. This means that there may be code elsewhere that performs List.add(x,<E>)
operations on the object. Such code could potentially lend itself towards a LinkedList
implementation. This is a valid argument, but wupon searching for calls to the
getRobotsAtRandom() method within the program we found no such code.

While this code position turned out to be using the most appropriate List implementation, it shows
up another point of interest in our results. This is that the configuration of a program can indeed have
an effect on how the program uses its Col lection objects. If we consider the same code point across
all four figures, we see that Figure 3 has a noticeable difference in its ratio of calls to
List.add(<E>) and List.add(x,<E>). While not being applicable in this case, it is important to
note that a specific implementation may not be the best choice for all configurations of the program.
This point will be revisited later in Section 5.1.

Another code position that illustrates the effect that program runtime configuration can have on its use
of Collection objects is in the file ‘EventManager.java’ at line 103. Objects created at this code
position exhibit similar patterns of use when run with Configurations 1 through 3 (see Figure 2
through Figure 4). That pattern is a split of approximately 70% (Add at End), 15% (Remove), 15%
(Get). When we look at the results from Configuration 4 (Figure 5) this pattern shifts dramatically. In
this configuration we see a split that is close to 30% (Add at End), 10% (Remove), 60% (Get).

It is clear from the results that the two code positions described above have patterns of use that vary
with the runtime configuration. It is interesting to note that individual parts of the configuration can be
linked to usage patterns at specific positions in the code. Consideration should therefore be taken to
profile the program with as many different configurations as possible. This will help to achieve the
most accurate view of the use of Col lection objects in the program.

3.5 JGraph

JGraph is a freely available, open source graph component library for Java [11]. It integrates into the
popular Swing framework [12] to provide developers with easy-to-use visual graphing components
for their software.

3.5.1 Procedure

Since JGraph is a component library, not an executable program, it cannot be profiled. There are,
however, a number of example programs that are packaged with the distribution we obtained (5.9.2.1)
that integrate components from the library. One of the example programs is called FastGraph. This
program has the ability to produce fully connected graphs of any size. For profiling, we used this
program to generate and display a fully connected k64 graph.
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3.5.2 Results

GraphiayoutCache.java: 701 {Arraylistj - 2080 : 4145755

GraphiayouiCache.java:389 {ArrayList) - 64 : 147504

DefaultGraphModel.java: 1730 (LinkedList) - 6432 : 10947177
DefaultGraphModel.java:1727 (Stack) - 6432 : 13676619

DefaultGraphModel.java:93 [ArrayList) - 2080 : 852119¢

&
ay

1]
o
Q.
[#]

Figure 6 - JGraph (k64) results
3.5.3 Discussion

From Figure 6 we can see that Col lection objects are not widely used throughout the FastGraph
program. Just six creation code points are monitored and all but one of these are observed to only add
items to the Collection. It would seem peculiar that the only method calls on a Col lection object
would be to add items. After all, if the program is not going to do anything with the items once they
have been added, why bother adding them at all? In actuality, there are almost certainly other method
calls being performed on the Col lection objects being created at these code positions. The reason
our profiler isn’t picking them up is that they are likely methods that we have determined to be non-
interesting (as mentioned in Section 2.1).

The one code position that does show some variation in its use is in the file ‘FastEdgeView.java’ at
line 115. Objects created at this point are observed to spend a considerable amount of time performing
List.get(x) and List.set(x) methods. These methods will tend to perform best under an
ArrayList implementation. As we can see, the developer has used an ArrayList, so in this case
the best decision has been made.

3.6 JavaC

JavaC is a popular Java compiler that is included in the Java Development Kit (JDK) from Sun
Microsystems [13]. As an input it takes Java source code, and produces Java bytecode as an output.
JavaC uses a number of Collection objects and has no user interaction throughout its execution
which makes it an ideal benchmark for our profiler.

3.6.1 Procedure

The version of JavaC that we used was from version 1.6 of Sun Microsystems’ JDK. As input for the
program we used the source code of the program itself. We were therefore profiling JavaC compiling
itself. This included a number of Java source code files, which we felt were sufficient to provide a
broad execution path for the program to be profiled on.
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3.6.2 Results

Types.java: 1052 {HashSetj - 528 : 208.
Types.java:365 (HashSet) - 17752 : 11622
Paths.java:484 (PathsSPath) - 3 : 5.
- 11:12

3
03
3
0

CiassiWriter_java:831 [Hasnset] 13171 : 102351102
Check java:1788 (HashSet) - 40 : 148903

Figure 7 - JavaC self-compilation results

3.6.3 Discussion

The results shown in Figure 7 illustrate the extent to which Collection objects are used within
JavaC. HashSet is the most common standard Col lection implementation used, but there are also
a few ArrayList implementations shown. The performance characteristics for these standard
implementations seem to match their use well. HashSet has complexity of O(1) for its measured
operations (add, remove, and contains), as does ArrayList for its measured operations (add and
get).

Interestingly, another prevalent implementation in the results is one that is not found in the standard
Java libraries. This custom Collection implementation (ListBuffer) seems to be used at a
number of places in the program and spends a great deal of its time performing the remove method.
Due to the naming of the class, we would expect it to be related in some way to the List interface.

This may not be the case though, and to understand exactly how it is used we must investigate the
class. The original developer would, presumably, already have this knowledge.

After investigating the code and comments contained in the ListBuffer class, it became apparent
that the class is indeed closely related to the List interface. From the comments in the code, the class
is described as “A class for constructing lists by appending elements”. Because of its List-like use,
we should expect that there is potential for a LinkedList style of implementation to perform better
than an ArrayList one in certain circumstances.

We investigated remove calls on ListBuffer objects throughout the program and found that this
method was only ever called within the ListBuffer class itself. Furthermore, it is only ever called to
remove the very first item in the underlying List. This is an ideal situation in which a LinkedList
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can perform well, as the complexity for the remove method is just O(1). As it happens, a
LinkedList style underlying List implementation has indeed been used, so performance is optimal.

3.7 Hospital

Hospital is a simple program used in a first year programming paper at Victoria University of
Wellington. It models a scenario of patients queuing to be admitted in the emergency ward of a
hospital. It was used in the Computer Science paper COMP103 in the second trimester of 2005 at
Victoria University of Wellington. There are a number of reasons properties of the program that made
it attractive to us as a benchmark:

e [t was not written to be an example for this project.

e It was not intentionally written to be inefficient.

e It has timing mechanisms built in which provide a means of measuring any performance gains
(or losses) we might achieve by selecting different Col lection implementations.

Hospital is not a very complex program, and does not make use of many Collection objects, but as we
shall see it makes for some very interesting analysis.

3.7.1 Procedure

Hospital takes two input parameters that must be defined by the user at runtime. Those parameters are
‘Number of Patients’ and ‘Number of Priorities’. The results we present for the profiling of the
program are measured from runtime parameters of 10,000 and 50 respectively. We only present one
chart in the results for Hospital because in this case, changing the parameters did not seem to have any
effect on the ratios of time spent in each method.

Once we had completed profiling, we ran the program a number of times with a range of parameters.
This was for the benefit of measuring performance improvements. We were able to extract the timing
measurements from the inbuilt timing mechanism and use them for comparison between
implementations.

3.7.2 Results

Ward.java:43 [ciass java.util.ArrayList) - 440000 : 858045297

SortedListPriorityQuevelmpl.iava: 15 (class java.util.LinkedList) - 25243541 : 235253654650

MAdd atEnd OAddin Middle BRemove MEGet [OSet MBContains M Iterator Modify

Figure 8 - Hospital results

3.7.3 Discussion

Although somewhat brief, the results that we gained from testing the Hospital program (see Figure 8)
make for some interesting analysis. Both of the points in the program that created Collection
objects that were later monitored seem to show usage characteristics that are not suited to their
implementation.

The first code point shows a LinkedList implementation with characteristics that appear to better
suit an ArrayList — the overwhelming majority of method calls are to size() and get(x). The
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size() method has O(1) complexity for both LinkedList and ArrayList. The get(x) method,
however, has O(n) for LinkedList and O(1) for ArrayList. We would expect to see a benefit from
changing to an ArrayList implementation in this case. As it happens, the LinkedList at this point
of Hospital is actually implementing the Queue interface, not the List interface. Since ArrayList
does not implement the Queue interface, it cannot be used in place of a LinkedList.

The second code point in our results also shows an interesting mix of characteristics and
implementation choice. An ArrayList had been chosen when the only point of significance is a
large number of calls to the Listlterator methods we are monitoring. These methods lend
themselves to the LinkedList implementation by turning operations like add and remove into O(1)
complexity operations. They remain O(n) complexity in the case of an ArrayList implementation. It
seems pretty clear cut in this case that a LinkedList should have been used instead of an
ArrayList. To validate this claim, however, some real world testing is required.

To test the prediction that changing the ArrayList creation in Hospital to use a LinkedList
implementation will benefit performance, we ran Hospital a number of times with a number of
different configuration variables. We then ran the same simulations with the source code modified to
use a LinkedList, and the program recompiled. As mentioned earlier, Hospital already includes
mechanisms for timing executions of the simulation and these were used to produce a measure of
performance that we could analyse.

Our results were conclusive. In all of the configurations that we tested, the build of Hospital that used
a LinkedList performed at least as well as the original ArrayList build. Most cases showed a
significant performance advantage to the LinkedList build. Some cases showed as much a 40%
increase in performance with the LinkedList build. These results are very pleasing as they
demonstrate the potential for our tool to be incredibly beneficial to the world of software
development.

3.8 SimpleLISP

LISP is one of the oldest high-level programming languages in use today. SimpleLISP is an
interpreter for this language that has been developed in Java by Dr. David J. Pearce. It provides an
editor in which LISP programs can be created, edited, loaded and saved, as well as the interpreter
which executes the code.

3.8.1 Procedure

The SimpleLISP distribution comes bundled with a few example LISP programs. We made use of the
‘Fibonacci’ example to run through the interpreter and profile the program with. ‘Fibonacci’ is a basic
LISP program that takes one user defined integer input, and calculates a Fibonacci sequence with
length equal to the user input. We kept the sequence length relatively low (< 40) in order to keep
execution time reasonable, and implemented a simple timing mechanism for measuring performance
using the System.currentTimeMillis() method.
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3.8.2 Results

Lispiist.java:Z3 {Linkedlst) - 478332 : 772711558
Lexer.java:38 [Arraylist) - 22632 : 162713692
InternalFunctions.java:292 (Arraylist) - 5: 11454

InternalFunctions.java:291 (ArrayList) - 2 : 16762

Figure 9 - SimpleLISP (Fibonacci sequence) results
3.8.3 Discussion

Our results for SimpleLISP, displayed in Figure 9, show only four positions in the code at which
Collection objects that we monitor are created. These results indicate that there is only one position in
the code at which we might be able to improve performance through implementation selection. This
position is in the file ‘LispList.java’ at line 29. At this point in the code, a LinkedList is being used to
implement the List interface, but the results indicate that an ArrayList might be better suited to the
task. This is because the List has been measured to spend a great deal of its time in the List.get(x)
method, which has complexity of O(1) for ArrayList and O(n) for LinkedList.

To test whether an ArrayList would improve performance in this case, we implemented a simple timer
around the execution of the LISP program using the System.timelnMillis() method in Java. This
method offers millisecond resolution, which was adequate for our purposes given that the shortest
execution time was over 300ms. We then ran the ‘Fibonacci’ LISP program in the interpreter with a
number of different input values and recorded the measured time spent in execution. We then
recompiled SimpleLISP with the original LinkedList implementation and repeated the same
executions of ‘Fibonacci’.

What we found was a little surprising. While there was a measured performance improvement using
the ArrayList implementation, this improvement was only about 2%. This percentage remained
relatively constant across executions with all input values. There are a number of reasons why the
measured performance improvement might have stayed quite low:

e Access to Collection objects at this point might account for only a very small amount of the
execution of the entire program.

e The position in the List that is being accessed might consistently be at the beginning of the
List.

e The List might only ever contain a very small number of items.

Nevertheless, a certain performance improvement was achieved.
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Chapter 4
Related Work

Little work is known to us in the specific area of profiling Collection objects to benefit
implementation selection. There has been, however, a reasonable amount of work done in the general
area of profiling. Some of these works are described briefly in this chapter.

4.1 DJProf
DJProf is a tool that is designed to profile four elements of Java programs [5]. These elements are:

e Heap usage

e Object lifetime
e \Wasted time

e Time-spent

At the time of its creation, there were a number of other tools that could profile these same elements
in Java programs and were readily available. The reason that the tool was developed was not simply
to add to the collection, but rather to explore whether or not it would be possible to efficiently achieve
this task using an aspect oriented programming language (AspectJ).

The development and testing of DJProf sought to answer questions at two levels. The base gquestion
was whether or not Aspect] provided sufficient functionality to carry out profiling tasks for the Java
program elements mentioned above. The second level of investigation was whether or not this could
be achieved efficiently. As the paper shows, profiling the above program elements is indeed possible
and in most cases reasonably efficient at doing so. It does, however, highlight some limitations with
Aspect] as a language for profiling.

DJProf was very useful as a proof-of-concept for our project and provided a solid foundation to build
upon.

4.2 Absolute Timing vs. Sampling Time Profiling

To determine the ratio of time that an object spends executing one method as compared to another,
our tool uses an absolute timing approach. This sort of approach involves measuring the entire time
from entering a method to method completion. Once all measurements have been made, the totals for
each method are compared to determine the ratio between them.

An alternative approach to time profiling is known as time sampling. Rather than measuring the
absolute time spent in each method, it periodically records the currently executing method. This
builds up counts for each method type which are then compared to determine the ratio of time spent in
each. There benefit of a time sampling approach is that it has a much lower overhead than absolute
timing. The downside is that it is not nearly as accurate as absolute timing.

Further discussion of the two timing approaches can be found in [5] and [14].

4.3 Profiling Allocation Behaviour

Other profiling work has been done in the area of performance costs associated with the garbage
collection (GC) of unreferenced objects in a running program [6]. Many popular programming
languages do not support the notion of GC. C and C++ are examples of such languages. Java,
however, does include automatic GC.
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There have been arguments made for and against the use of automatic GCs in programming
languages. The main benefit of GC is that is helps to reduce memory leaks in programs that can cause
poor performance and sometimes complete failure of the program. Unfortunately, like any piece of
code, automatic GC has a performance cost associated with it.

The work detailed in [6] focuses on tuning GC in Java to optimise its performance for a given Java
program. In order to optimise GC for the program, the program itself must first be analysed to see
how its memory is allocated and used. In this case, profiling is achieved by taking a trace from the
program and running it through a simulation environment where measurements are made.

This sort of approach seems to work for its intended purpose which involves assessing memory use. It
is not, however, a viable solution for our purpose as we are concerned with live timing information. It
would seem optimistic at best to assume that any simulation would accurately reflect the timing
characteristics of the live execution of the program.
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Chapter 5
Conclusion

Every day, developers find themselves faced with decisions about which Collection
implementations they should use to represent their data structures. These decisions have the potential
to drastically alter the performance characteristics of the programs in which they are used. We
hypothesised that developers do not always make the best decisions with Collection
implementations and envisioned that a tool that could help make the best decisions would be very
valuable. Having developed such a tool, we proceeded to test its usefulness. We found out tool to
provide useful information for Collection implementation decision making and proved our
hypothesis to be true by analysing a number of real world benchmarks.

5.1 Future Work

This project has illustrated the value that lies in making the best decisions when selecting
Collection implementations in software development. There are a number of directions that work
could continue in this area of research. Some examples of these are briefly discussed in the following
sections.

5.1.1 Hybrid Implementations

Our Java Collection Profiler has shown to illustrate the ways in which Col lection objects are used
quite effectively. It has been shown to be very useful in making the best decisions when selecting
specific Collection implementations. The value of the tool doesn’t stop there though. Because
results are displayed in a form which shows all interesting aspects of the use of Col lection objects,
they are able to highlight situations where no available Col lection implementation is perfect for the
task at hand. It could prove to be useful in realising potential for completely new Collection
implementations. Such implementations may be tailored to provide optimal performance for situations
where the currently available implementations are less than ideal.

Another direction of work in this area would be to investigate the viability of self-managing
Collection implementations. These could be designed in such a way that they are able to monitor
their own use and adjust their underlying implementation to best suit their operating environment.
This would likely be an interesting area of study as achieving such an implementation would remove
the need for the developer to make any decision at all. Careful consideration would need to be given
to the overhead associated with the self-management and whether or not this overhead negates the
performance improvements.

5.1.2 Profiling Other Collection Types

Our main focus throughout the project has been in the List interface. This is just one of the subtypes
of the Col lection interface in the Java language. Other subtypes include:

e BlockingQueue
e Queue

e Set

e SortedSet

There are also interfaces such as Map in the Java language that do not implement the Col lection
interface but do represent data structures.
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Each of these types has its own unique methods and implementations. If work is put into profiling
these unigue methods, and comparing the results with the performance characteristics of each
implementation, further benefits to developers may be achievable.

5.1.3 Alternatives to Aspect Oriented Approach

Earlier in this paper we discussed the benefits in using an AOP language for profiling over modifying
source code by hand. Using an AOP language is not the only way to avoid this tedious task though.
Another way might be to implement profiling wrapper classes for the existing Collection
implementations and then change the class loader to a customised version. This custom class loader
could effectively replace all implementations of one sort with the profiling wrapper associated with it.
No source code modification would be necessary in the target program and these wrapper classes
would appear transparent it.

There are pros and cons to a solution like this. One of the benefits is that code position lookups and
object identity methods would not be necessary as the wrapper class could hold local variables to
store the timing information for method calls. Sampling could also be easily achieved by building it in
to the class loader so that not every Collection object is replaced with one that is encased in the
associated customised wrapper class.

Perhaps the biggest problem with taking an approach like this to profiling is that any program that
relies on an object being an instance of a specific class, rather than simply behaving like one, will
break. An example of when this might occur is in code that makes us of the instanceof statement.
This boolean statement will only return true if the object that it is assessing is an instance of the exact
class that is specified. Therefore any sort of class substitution, no matter how similar it is to the
original, will cause the statement to return false every time.
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