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1. INTRODUCTION

The Tutte polynomial of an undirected graph G (which may have loops and multiple
edges) is a 2-variable polynomial T (G;x, y) that encodes a significant amount of
information about the graph — indeed in a strong sense it “contains” every graph-
ical invariant that can be computed by deletion and contraction. In particular,
the Tutte polynomial can be explicitly evaluated at particular points (x, y) to give
numerical graphical invariants such as the number of spanning trees, the number of
forests, the number of connected spanning subgraphs, the dimension of the bicycle
space, and many more. In addition, the Tutte polynomial specialises to a variety of
single-variable graphical polynomials of independent combinatorial interest, includ-
ing the chromatic polynomial, the flow polynomial, and the reliability polynomial
(see the next section for details).
The Tutte polynomial also plays an important role in the field of statistical

physics where it appears as the partition function of the q-state Potts model
Z(G; q, v) (see [Sokal 2005]). In fact, if G is a graph on n vertices with c con-
nected components, then

T (G;x, y) = (x− 1)−c(y − 1)−nZ(G; (x− 1)(y − 1), (y − 1))

and so the partition function of the q-state Potts model is simply the Tutte polyno-
mial expressed in different variables. There is a very substantial physics literature
involving the calculation of the partition function for specific families of graphs,
usually sequences of increasingly large subgraphs of various infinite lattices and
other graphs with some sort of repetitive structure.
In knot theory, the Tutte polynomial appears in yet another guise as the Jones

polynomial of an alternating knot. However, computing the Jones polynomial of
a non-alternating knot, which may have some application in analysing knotted
strands of DNA requires the use of a signed Tutte polynomial, which is consider-
ably more involved. A more complete discussion of the theory and applications
of Tutte polynomials can be found in [Bollobás 1998; Brylawski and Oxley 1992;
Ellis-Monaghan and Merino 2009a; 2009b].
Of all the invariants associated with the Tutte polynomial, the chromatic polyno-

mial plays a special role in both combinatorics and statistical physics. In statistical
physics, the chromatic polynomial occurs as a special limiting case, namely the zero-
temperature limit of the anti-ferromagnetic Potts model, while in combinatorics its
relationship to graph colouring and historical status as perhaps the earliest graph
polynomial has given it a unique position. As a result, particularly in the combi-
natorics literature, far more is known about the chromatic polynomial than about
the Tutte polynomial or any of its other univariate specialisations, such as the flow
polynomial, and there are still fundamental unresolved questions in these areas.

The computation of the Tutte polynomial is NP-hard — indeed, even evaluat-
ing T (G;x, y) for specific values (x, y) is #P-complete, except for a few special
pairs [Jaeger. et al. 1990]. However, although we cannot expect to get efficient (i.e.
polynomial time) algorithms to compute the Tutte Polynomial, currently the only
widely-available general purpose implementations are the naive implementations
found in computer algebra systems such as Maple and Mathematica [Pemmaraju
and Skiena 2003]. These naive implementations can only deal with very small
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graphs indeed and, therefore, practical experimentation with the Tutte polynomial
has been hampered by the lack of any effective general purpose computational tool.
Earlier work of the first author [Haggard and Read 1993; Haggard and Mathies

1999] describes a tool for the chromatic polynomial of a graph, where the task is
considerably simpler as the chromatic polynomial is univariate and all the graphs
can be taken to be simple. Dealing with a bivariate polynomial and manipulating
graphs that may include loops and multiple edges introduces a range of different
issues that must be resolved. In [Sekine et al. 1995], an algorithm is described
that will compute Tutte polynomials of graphs with no more than 14 vertices. The
algorithm performs a breadth-first search of the computation tree, whilst identifying
and pruning equivalent graphs at each level. To determine equivalence, they employ
a notion referred to as 2-isomorphism. More specifically, two graphs G1=(V1, E1),
G2=(V2, E2) are 2-isomorphic if there is a bijection φ : E1 −→ E2, such that φ(T )
is a spanning tree of G2 iff T is a spanning tree of G1. Sekine et al. use a fixed
ordering of the edges and delete/contract the edges in this order along every branch
of the tree; then, they check for pairs of graphs for which the identity mapping is
a 2-isomorphism.
The algorithm given in [Read 1987] for computing chromatic polynomials was

extended in [Royle 1988] to compute Tutte polynomials of moderate sized graphs,
but is not effective much beyond 14 vertices. By comparison, our algorithm can
process graphs with 14 vertices in a matter of seconds (as shown in Section 6). In
[Björklund et al. 2008a] an algorithm is given which computes the Tutte polynomial
using 2nnO(1) time and space; a variation is also given which runs in time 3nnO(1),
but requires only polynomial space. Some experimental data is reported for an
implementation of the former, but the memory constraints limited its practicality
(see [Björklund et al. 2008b] App. D).
In this paper, we describe the implementation of an effective algorithm for com-

puting Tutte polynomials. The algorithm is based on the idea of caching interme-
diate graphs and their Tutte polynomials and using graph isomorphism to avoid
unnecessary recomputation of subtrees of the computation. We present some ex-
perimental results using this algorithm and a discussion of some factors affecting its
performance. In addition, as an example of its practical use, we present counterex-
amples to a conjecture of Welsh on the location of the roots of the flow polynomial
of a graph, by finding for the first time graphs with real flow roots larger than 4.
Finally, our implementation also supports the practical computation of chromatic
and flow polynomials, based on the same techniques presented in this paper, and
the code can be obtained from http://ecs.victoria.ac.nz/~djp/tutte.

2. PRELIMINARIES

Let G = (V,E) be an undirected multi-graph; that is, V is a set of vertices and E
is a multi-set of unordered pairs (v, w) with v, w ∈ V . An edge (v, v) is called a
loop. If an edge (u, v) occurs more than once in E it is called a multi-edge. The
underlying graph of G is obtained by removing any duplicate entries in E.

The Tutte polynomial can be defined in terms of two operations on graphs. These
are: deleting an edge, denoted by G− e; and contracting an edge, denoted by G/e
(see Figure 1).
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Fig. 1. Deletion and Contraction of an Edge

Definition 1. The Tutte polynomial of a graph G = (V,E) is a two-variable
polynomial defined as follows:

T (G;x, y) =















1 E(G) = ∅
xT (G/e;x, y) e ∈ E and e is a bridge
yT (G− e;x, y) e ∈ E and e is a loop
T (G− e;x, y) + T (G/e;x, y) otherwise

This definition of the Tutte polynomial, which Tutte showed is independent of
the edge chosen [Tutte 1954], outlines a simple recursive procedure for computing
it. Thus, we are free to apply its rules in whatever order we wish, and to choose any
edge to operate on at each stage. Figures 2 and 3 illustrate this recursive procedure
applied to a simple graph to give the final polynomial. It should be clear from these
figures that the structure of the computation corresponds to a tree.
The order in which the rules of Definition 1 are applied significantly affects the

size of the computation tree. An “efficient” order can reduce work in a number
of ways. For example, there are two situations where an edge is associated with
a factor directly: if the edge is a loop, the factor is y; likewise, if the edge is a
bridge, the factor is x. Eliminating such edges as soon as possible and storing
the factor for later incorporation into the answer reduces work by lowering the
cost of operations (e.g. contracting, connectedness testing, etc.) on graphs in the
subtrees below. In Figure 2, for example, the loop present in G16 is not reduced
immediately and, instead, is propagated to the bottom of the computation tree;
removing it immediately reduces, amongst other things, the cost of duplicating the
graph when the branch forks further down.
Within a single computation tree, it often arises that a graph occurs more than

once (including those isomorphic to it). Thus, recomputing its Tutte polynomial
from scratch each time is wasteful and should be avoided when possible. For ex-
ample, the triangle occurs twice in Figure 2, both as G3 and G10. Thus, we can
simplify the tree by simply reusing the result from T (G3) in place of T (G10). This
optimisation has a significant effect on the performance of our algorithm in practice
(as shown in Section 6).
The choice of edge for a delete/contract operation can also greatly affect the

size of the computation tree. In particular, it affects the likelihood of reaching a
graph isomorphic to one already seen. For example, selecting (4, 2) when evaluating
T (G9) in Figure 3 yields the triangle (as shown); choosing any of the other edges,
however, does not. In [Pearce et al. 2009], we initiate the exploration of different
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Fig. 2. Illustrating the application of Definition 1 to a small graph. Observe that vertices are not
drawn once they become isolated, as they play no further role. Also, each graph is given a unique

number to aid identification.

T (G1 = {(1, 2), (2, 3), (3, 4), (4, 1), (2, 4)}) = T (G2 = G1 − (4, 1)) + T (G9 = G1/(4, 1))
T (G2 = {(1, 2), (2, 3), (3, 4), (2, 4)}) = x · T (G3 = G2 − (1, 2))
T (G3 = {(2, 3), (3, 4), (2, 4)}) = T (G4 = G3 − (2, 4)) + T (G6 = G3/(2, 4))

T (G4 = {(2, 3), (3, 4)}) = x · T (G5 = G4 − (3, 4))
T (G5 = {(2, 3)}) = x · T (G5 − (2, 3) = ∅) = x · 1
T (G6 = {(2, 3), (3, 2)}) = T (G7 = G6 − (2, 3)) + T (G8 = G6/(2, 3))
T (G7 = {(2, 3)}) = x

T (G8 = {(2, 2)}) = y
T (G9 = {(4, 2), (2, 3), (3, 4), (2, 4)}) = T (G10 = G9 − (4, 2)) + T (G16 = G9/(4, 2))
T (G10 = {(2, 3), (3, 4), (2, 4)}) = T (G11 = G10 − (4, 2)) + T (G13 = G9/(4, 2))
T (G11 = {(2, 3), (3, 4)}) = x · T (G12 = G11 − (3, 4))

T (G12 = {(2, 3)}) = x · T (G12 − (2, 3) = ∅) = x · 1
T (G13 = {(2, 3), (3, 2)}) = T (G7 = G14 − (2, 3)) + T (G15 = G6/(2, 3))
T (G14 = {(2, 3)}) = x

T (G15 = {(2, 2)}) = y
T (G16 = {(2, 3), (3, 2), (2, 2)}) = T (G17 = G16 − (2, 3)) + T (G19 = G9/(2, 3))
T (G17 = {(3, 2), (2, 2)}) = x · T (G18 = G16 − (2, 3))
T (G18 = {(2, 2)}) = y

T (G19 = {(2, 2), (2, 2)}) = y · T (G20 = G19 − (2, 2))
T (G20 = {(2, 2))}) = y · T (G19 − (2, 2) = ∅) = y · 1

Fig. 3. Illustrating an algebraic proof of the computation illustrated in Figure 2. Observe that
the graph numbers given (e.g. G1) align with those given in Figure 2.
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edge selection heuristics, although much remains to be done here.
Finally, an efficient algorithm for computing Tutte polynomials can be used im-

mediately to compute chromatic, flow, and reliability polynomials. For example,
for the chromatic polynomial P (G;λ) and flow polynomial F (G;λ) of a graph with
n vertices, e edges and c connected components are derived as follows from the
Tutte polynomial:

P (G;λ) = (−1)n−cλc · T (G; (1− λ), 0)

F (G;λ) = (−1)e−n+c · T (G; 0, (1− λ))

If G is a planar graph with planar dual G∗, then T (G∗;x, y) = T (G; y, x) and so, up
to factors of λ, the flow polynomial of a planar graph is the chromatic polynomial
of its planar dual.

3. ROOTS OF FLOW POLYNOMIALS - WELSH’S CONJECTURE

Our primary motivation for developing an effective algorithm was to extend the
range for which computational exploration of questions relating to Tutte polyno-
mials is feasible, as there are a number of long-standing open questions for which
the computational evidence is extremely limited.
Several of these problems relate to the location of the roots of the various single-

variable specialisations of the Tutte polynomial mentioned earlier. In particular,
the roots of the chromatic polynomial, or chromatic roots have been extensively
studied while much less is known about the roots of the flow polynomial. One
fundamental question about which very little is known is whether there is an upper
bound on the value of real flow roots. As there are graphs (such as the Petersen
graph) with no nowhere-zero 4-flows, the strongest possible result would be that
there are no real flow roots larger than 4.

Conjecture 1 Dominic Welsh. If G is a bridgeless graph with flow polyno-
mial F (G;λ), then F (G; r) > 0 for all r ∈ (4,∞).

This well-known (but unpublished) conjecture is essentially a planar dual version
of the famous Birkhoff-Lewis conjecture that planar graphs have no chromatic roots
in [4,∞) which has been proved for r = 4 (the four-colour theorem) and for [5,∞).
In prior study of chromatic roots, cubic graphs of high girth have played an

important role as they seem to exhibit qualitatively extremal behaviour (this is a
deliberately imprecise statement) and, for this reason, they are a natural class to
examine for other questions related to Tutte polynomials. In this vein, we computed
the Tutte polynomials of cubic graphs of girth at least 7 on 24–32 vertices with the
intention of testing a variety of conjectures against this data set.

An immediate positive outcome of this experiment was the discovery of a number
of counterexamples to Welsh’s conjecture. A specific example is the generalised
Petersen graph P (16, 6) which is a 32-vertex cubic graph of girth 7 shown in Figure 4
with flow polynomial (λ− 1)(λ− 2)(λ− 3)Q(G;λ) where
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Fig. 4. The generalised Petersen graph P (16, 6)

Q(G;λ) = λ14 − 42λ13 + 833λ12 − 10358λ11 + 90393λ10 − 587074λ9

+ 2934917λ8 − 11515364λ7 + 35798907λ6 − 88275860λ5

+ 171273551λ4 − 256034548λ3 + 282089291λ2

− 207662412λ+ 77876944.

This has real roots at two values λ1 ≈ 4.0252205 and λ2 ≈ 4.2331455 thereby
demonstrating that 4 is not the upper limit for flow roots. There are a variety of
other examples on 28 and 36 vertices, but the smaller ones are more difficult to
describe. The common features of the examples found are that the flow polynomial
is a polynomial of reasonably high odd degree that has a negative derivative at
λ = 4 and is strongly positive at λ = 5. The graphs on 30 and 34 vertices that were
examined have flow polynomials of even degree with positive derivative at λ = 4
and values that just keep increasing as λ increases.

Given that 4 is not an upper limit for flow roots, what would be an appropriate
replacement for Welsh’s conjecture? The nature of these examples suggests that
they will not give flow roots above 5, and yet there seems to be no strong reason
to choose any value strictly between 4 and 5. Therefore, we propose the following
conjecture:

Conjecture 2. If G is a bridgeless graph with flow polynomial F (G;λ), then
F (G; r) > 0 for all r ∈ [5,∞).

The case r = 5 is simply Tutte’s 5-flow conjecture and so the truth of this
conjecture (and the Birkhoff-Lewis conjecture) would give an appealing parallel
between the flow roots of general graphs and chromatic roots of planar graphs.
Finally, we have sanity checked the Tutte polynomial computed for P (16, 6) by

evaluating it at several known points (see Section 5.2).
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4. ALGORITHMIC OBSERVATIONS

In this section, we begin by detailing several well-known theorems about the Tutte
polynomial and explain how these can be exploited to improve computational per-
formance.

4.1 Known Reductions

There are numerous well-known properties of the Tutte polynomial that can be
exploited to prune the computation tree and, hence, improve performance. The
first of these exploits the fact that the Tutte polynomial is multiplicative over the
blocks (i.e., maximal 2-connected components) of a graph and that these blocks
can be determined in linear time [Tutte 1954].

Theorem 1. Let G = (V,E) be a graph with m blocks G1, G2, . . ., Gm. Then
T (G;x, y) =

∏m

i=1 T (Gi;x, y).

At present, our system uses a standard algorithm for identifying biconnected
components [Tarjan 1972], extracting the non-trivial biconnected components (that
is, those with more than 2 vertices). The trivial biconnected components are edges
and multi-edges whose underlying graph is a forest, and these are processed in a
single step using the following lemma, which is immediate from the definitions.

Lemma 1. Let G = (V,E) be a multi-graph whose underlying graph is a forest
with s edges. Denote the multiplicity of each distinct edge in the graph by d1, . . . , ds.
Then,

T (G;x, y) =

s
∏

i=1

(x+ y + y2 + . . .+ ydi−1)

An ear in a graph is a path v1 ∼ v2 ∼ · · · ∼ vn ∼ vn+1 where d(v1) > 2,
d(vn+1) > 2 and d(v2) = d(v3) = · · · = d(vn) = 2. A cycle is viewed as a “special”
ear where v1 = vn+1 and the restriction on the degree of this vertex is lifted. If a
graph contains a multi-edge or an ear, then all the edges involved can be removed
in a single operation. We denote an edge of multiplicity p by ep and an ear with
s edges by Es. Deletion of a multi-edge or ear is defined naturally as meaning the
deletion of all the edges. Contraction of a multi-edge means to delete all the edges
and identify the end-vertices, while contraction of an ear means to delete all the
edges and identify v1 and vn+1.

Theorem 2. Suppose that G is a biconnected graph that is either equal to a
multi-edge ep of multiplicity p or properly contains a multi-edge ep. Then

T (G;x, y) =

{

(x+ y + · · ·+ yp−1), if G = ep

(1 + y + · · ·+ yp−1)T (G/ep;x, y) + T (G− ep;x, y), otherwise

Ears are dual to multiple edges and so we have the dual result:
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Theorem 3. Suppose that G is a biconnected graph that is either equal to an
ear Es (which is necessarily a cycle of length s) or properly contains an ear Es.
Then

T (G;x, y) =

{

(y + x+ · · ·+ xs−1), if G = Es

(1 + x+ · · ·+ xs−1)T (G− Es;x, y) + T (G/Es;x, y), otherwise

In matroid terminology, these results say that an entire parallel class or series class
can be processed at once.
These two results follow immediately from the rules for deletion/contraction and

Figure 5 visually outlines the proof of Theorem 3. The value of these two theorems
is that we can exploit them to further prune the computation tree; we find that
they offer significant performance improvements in practice.

x2

x

Fig. 5. Reduction of an ear. In the first delete/contract, we select an edge on the ear for removal;
on the left branch, this leaves two single-edge biconnected components which immediately yield a
factor of x2.

There are more complex structures that can, in principle, be processed in a
single step, such as when there is an ear in the underlying simple graph, but this
ear contains multi-edges in the graph itself.

Theorem 4. Let G = (V,E) be a multi-graph whose underlying graph is an n-
cycle. Denote the multiplicity of each distinct edge in the cycle by d1, . . . , dn, and
let ya...b be short-hand for ya + ya+1 . . .+ yb−1 + yb, Then,

T (G;x, y) =
n
∑

i=1





n
∏

j=i+1

(x+ y1...dj−1)
i−1
∏

k=1

(y0...dk−1)



+(x+ydn+dn−1−1)
n−2
∏

i=1

(y0...di−1)
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Proof. The proof is by induction. The first step is to use the Tutte recursion
to reduce G into two smaller graphs. For the delete graph, we apply Lemma 1.
For the contract graph we observe it is simply a (k − 1)-multicycle to which the
inductive hypothesis can be applied. Figure 6 outlines the proof for the special case
n = 6.

4

d5

d6

d3

d2

d4

d5

d3

d6 d6

d3 d4

d5d2

d4

d5

d6

d3

d6

d3 d4

d5

10..d  −1
y       

0..d  −12y       

d6d  +50..d  −14y       

d1

d2

d

Fig. 6. An outline of the proof for reducing multi-cycles

5. ALGORITHM OVERVIEW

We now provide an overview of our algorithm to illustrate the main choices we have
made. We also discuss some of the more practical, but nonetheless important issues
which we faced when implementing our algorithm for computing Tutte polynomials.
As the algorithm operates, it essentially traverses the computation tree in a

depth-first fashion (although the whole tree is never held in memory at once).
That is, when a delete/contract operation is performed on G, the algorithm recur-
sively evaluates T (G− e;x, y) until its polynomial is determined, before evaluating
T (G/e;x, y). Other traversal strategies are possible and could offer some bene-
fit, although we have yet to explore this. At each node in the computation tree,
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the algorithm maintains and/or generates a variety of information on the graph
being processed — such as whether it is connected or biconnected — to help iden-
tify opportunities for pruning the tree. In particular, the following approaches are
employed:

i) Reductions. Known properties of Tutte polynomials (see Section 4) are used
to immediately reduce either the whole graph, or a subgraph, to a polynomial.
This simplifies the computation tree and can speed up the various operations per-
formed on graphs in the subtree (of course, if the whole graph is reduced there
is no subtree!). In our system, trees, loops, cycles and multi-edges, multi-cycles,
and multi-ears can be reduced immediately.

ii) Biconnectedness. Following Theorem 1, we break graphs which are not bi-
connected into their non-trivial biconnected components and the residual forest.
The polynomials for the biconnected components are then computed indepen-
dently, which is helpful as their computation trees may be significantly smaller.

iii) Cache. Computed polynomials for graphs encountered during the computa-
tion are stored in a cache. Thus, if a graph isomorphic to one already resolved
is encountered, we simply recall its polynomial from the cache. This optimisa-
tion typically has a significant effect, since the whole subtree of the computation
below the isomorph is pruned. To determine graph isomorphism, we employ
McKay’s nauty program [McKay 1990]. The size of the cache employed and the
replacement strategy used when the cache fills require further study as both can
have significant effects.

iv) Edge Selection. As indicated already, the choice of edge for deletion and
contraction affects the likelihood of reaching a graph isomorphic to one already
seen (see Section 2). Furthermore, it affects the chance of exposing structures
(e.g. cycles and trees) which can be immediately reduced. We currently employ a
simple edge selection strategy, that just uses an arbitrary ordering of the vertices.
Starting from the first vertex in the ordering, it repeatedly selects edges from that
vertex until none remain, before moving on to the next vertex in the ordering.

The coefficients computed for the Tutte polynomial of even a small graph are
large and can easily go beyond the size of a machine’s 32-bit or 64-bit word size.
To address this, we have implemented a simple library for arbitrary sized integers.

5.1 Graph Isomorphism

To implement the cache for polynomials of graphs at nodes of the computation
tree, we employ a simple hash map. This is keyed upon a canonical labeling of the
graph obtained using nauty [McKay 1990]. Since nauty accepts only simple graphs,
we transform multigraphs into simple graphs by inserting additional vertices as
necessary. We refer to such graphs as being “constructed”. To avoid a constructed
graph from clashing with a normal simple graph having the same number of vertices
and edges, we exploit the fact that nauty allows vertices to be coloured and will
reflect the colour class of a vertex in the canonical form. Thus, vertices added to
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represent multi-edges are coloured differently from normal vertices. An interesting
issue here is that, at each node in the computation tree, we must recompute the
canonical labelling from scratch as the graph, by definition, is different from its
parent. While we have not explored the ramifications of this as yet, there is poten-
tial for exploiting an incremental graph isomorphism algorithm which could more
efficiently determine the canonical labelling of a graph given that of its parent.
An important problem we face is what to do when the cache fills up, which hap-

pens frequently for large graphs, even when large amounts (e.g. > 2GB) of memory
are available. To resolve this, we employ techniques from garbage collection: items
in the cache are displaced and, to avoid memory fragmentation, those left are
compacted into a contiguous block (this is similar to mark-and-sweep garbage col-
lection). To determine which graphs to displace, we employ a simple policy based
on counting the number of times a graph in the cache has been “hit”. When the
cache is full, graphs with a low hit count are displaced before those with higher
counts. A related problem is how much of the cache to displace. Clearly, displacing
less means the cache will fill more frequently and, on average, contain more old
items. Of course, the more items there are in the cache, the greater the potential
for collisions when searching for an isomorph. In contrast, displacing more of the
cache each time means that many graphs which may turn out to be useful later on
will not survive. In our implementation, the default policy is to displace 30% of
the cache in one go when it becomes full.

5.2 Correctness

The output of any complex computer program should be treated with caution,
if not outright suspicion, and be carefully examined for internal consistency and
cross-referenced against known values. Aside from manual testing on small graphs,
we employ a number of “sanity checks” to increase our confidence in its correctness.
The easiest check is to compute T (G; 2, 2), which should give 2|E(G)|, and compare
this with a direct computation of 2|E(G)|. Another check is to compute T (G; 1, 1),
which gives the number of spanning trees in the graph. Then, we can check that
these evaluations are constant for a given graph, regardless of what parameters are
chosen for a particular run of our algorithm (e.g. cache size, which reductions are
applied, edge selection strategy, vertex ordering, etc).
As an illustration, we have sanity-checked the generalised Petersen graph P (16, 6)

discussed in Section 3 as follows:

—T (2, 2) = 248 as required.

—T (1, 1) = 115184214544 is the number of spanning trees of P (16, 6) as determined
by the matrix-tree theorem.

—(−1) T (1−x, 0) equals the chromatic polynomial of P (16, 6) which was indepen-
dently verified by two separate programs.

—T (−1,−1) = −2 equals the expected value (−2)d where d = 1 is the dimension of
the bicycle space of P (16, 6) [Rosenstiehl and Read 1978], which can be computed
by elementary linear algebra.

—T (0,−3) = −480 is the number of 4-flows of P (16, 6) which is equal to the number
of edge-3-colourings of P (16, 6) which can easily be verified by a direct search.
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6. EXPERIMENTAL RESULTS

In this section, we report on some experimental results obtained using our system.
The objective here is to give the reader an indication of the performance that can
be expected in practice. We consider random connected graphs, random planar
graphs and random regular graphs. The machine used for these experiments was
an Intel Pentium IV 3GHz with 1GB of memory, running NetBSD v4.99.9.

6.1 Experimental Procedure

To generate random connected graphs, we employed the tool genrang (supplied
with nauty) to construct random graphs with a given number of edges; from these,
we selected connected graphs until there were 100 for each value of |E| or |V |
(depending upon experiment). The genrang tool constructs a random graph by
generating a random edge, adding it to the graph (if not already present), and
then repeating this until enough edges have been added. We also used genrang to
generate random simple regular graphs — this essentially works by generating a
random regular multigraph and then throwing it out if it contains loops or multiple
edges. Generating random planar graphs required a different approach since the
number of randomly generated graphs that are planar is extremely small. Therefore,
we employed a Markov-chain approach: here, a pair of vertices were selected at
random; if the corresponding edge was not already present and the graph would
remain planar, then it was added; otherwise, it was removed. This procedure was
repeated for 3n2 steps (which, according to [Denise et al. 1996], is well beyond the
equilibrium point).

6.2 Experimental Results

Figure 7 presents the data from our experiments on random connected graphs.
Data is provided for timings with and without the cache enabled. From the figure,
it is immediately obvious that the cache has a critical effect on the performance of
the algorithm. As expected, performance deteriorates as graph density increases;
however, the algorithm appears to perform surprisingly well on very dense graphs.
This stems from the increased regularity present in dense graphs which gives rise
to a greater number of isomorphic hits in the cache.
Figure 8 reports the data from our experiments on random planar, 3-regular and

4-regular graphs. From the graphs, it is clear that computing the Tutte polynomial
for large graphs quickly becomes intractable. Nevertheless, using the isomorphism
cache extends the size of graphs which can be computed. This is of significant value
in practice, since it extends the range of graphs over which users of the tool can,
for example, test a conjecture they are considering.
Finally, Figure 9 illustrates the performance of our algorithm with and without

caching enabled on complete graphs. This is interesting as, compared with other
approaches for computing Tutte polynomials, our algorithm is extremely efficient.
For example, using Maple (and similarly for Mathematica), one cannot compute
the Tutte polynomial of K10 in any feasible amount of time. This is perhaps
not surprising, however, as these implementations make no effort to prune the
computation tree [Pemmaraju and Skiena 2003].
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Fig. 7. Random Connected Graphs at |V | = 12, |V | = 14, |V | = 16 and varying |E|, where each

data-point is averaged over 100 graphs. Data illustrating the time taken with and without the
cache are shown. For each experiment, the cache size was fixed at 768MB.

7. CONCLUSION

Algorithms for computing Tutte polynomials have been, in general, rather simplis-
tic. We have demonstrated a number of techniques which can greatly reduce the
size of the computation tree. This, in turn, leads to an algorithm which can tackle
significantly larger graphs than previously possible. While this task may seem futile
(since the problem is #P-hard), it is important to remember that, in practice, the
applications of this tool (e.g. for classifying DNA knots) have finite requirements;
thus, we are moving towards a system which can handle sufficiently large graphs to
be of use to practitioners.
A number of interesting questions remain for further research. One is the order

in which to select edges for the delete/contract operations; can we identify heuris-
tics which lead to good selection orders? Certainly, in our initial investigations
(see [Pearce et al. 2009]), we have encountered heuristics which seem to perform
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Fig. 8. Random Planar, 3-Regular and 4-Regular Graphs with varying |V |, where each data-point

is averaged over 100 simple graphs. Data illustrating the time taken with and without the cache
are shown. For each experiment, the cache size was fixed at 768MB.

consistently better than others, such as random selection. Also, at each node in the
computation tree, we compute a canonical labelling of the corresponding graph so
it can be stored in the cache (this enables later identification of isomorphs). But,
should we do this at every node? For example, could we maintain the canonical
labelling incrementally? Likewise, we currently compute the biconnected compo-
nents at each node. Again, it’s possible that further gains could be made by using
an incremental algorithm instead (e.g. [Westbrook and Tarjan 1992; Rauch 1994]).
Furthermore, our algorithm makes no particular effort to select edges whose dele-
tion helps to create separating vertices; instead, it simply exploits them when, by
chance, they occur. There is also a similar, though more complicated, algorithm for
detecting separating pairs of vertices and decomposing the graph into triconnected
components [Hopcroft and Tarjan 1973; Gutwenger and Mutzel 2001], though we
have not yet experimented with this.
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Fig. 9. Illustrating performance on complete graphs. Data illustrating the time taken with and
without the cache are shown. For each experiment, the cache size was fixed at 768MB.

Nevertheless, even with this list of interesting unanswered questions, the im-
plementation described gives researchers an effective way to experiment with Tutte
polynomials, both to answer questions, and test conjectures for a wide range of sizes
of graphs. The complete implementation of our algorithm can be obtained from
http://ecs.victoria.ac.nz/~djp/tutte. This also supports practical computa-
tion of chromatic and flow polynomials, based on the same techniques presented in
this paper.

Note Added in Proof

One of the earliest papers on chromatic polynomials [Hall et al. 1965] reported
on the astonishing calculation of the chromatic polynomial of the truncated icosa-
hedron (At that time, colourings were always viewed as face-colourings of planar
maps, so in modern terminology this is actually the chromatic polynomial of the
32-vertex, 90-edge planar dual of the truncated icosahedron.) As a modern coun-
terpart to this paper, we have now computed the full Tutte polynomial of this
graph using a network of 150 computers. The polynomial can be obtained from
http://ecs.victoria.ac.nz/~djp/tutte and further details will appear in a sub-
sequent paper.
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