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Abstract

Modern statically typed languages require variables to be declared with a single static type, and that
subtyping relationships between used-defined types be made explicit. This contrasts with dynamically
typed languages, where variables are declared implicitly, can hold values of different types at different
points and have no restrictions on flow (leading to ad-hoc and implicit subtyping).

We present the flow-sensitive and structural type system used in the Whiley language. This permits
variables to be declared implicitly, have multiple types within a function, and be retyped after runtime type
tests. Furthermore, subtyping between user-defined types is implicit, based purely on structure. The result
is a statically-typed language which, for the most part, has the look and feel of a dynamic language. The
typing algorithm operates in a fashion similar to dataflow analysis. Widening must be applied to ensure
termination although, surprisingly, there is no loss of precision. We formalise Whiley’s type system and
operational semantics, and give proofs of termination and soundness.

1 Introduction
Statically typed programming languages lead to programs which are more efficient and where errors are
easier to detect ahead-of-time [1, 2]. Static typing forces some discipline on the programming process.
For example, it ensures at least some documentation regarding acceptable function inputs is provided. In
contrast, dynamically typed languages are more flexible in nature which helps reduce overheads and in-
crease productivity [3, 4, 5, 6]. Indeed, recent times have seen a significant shift towards dynamically typed
languages [7].

Numerous attempts have been made to bridge the gap between static and dynamic languages. Scala [8],
C#3.0 [9], OCaml [10] and, most recently, Java 7 all employ local type inference (in some form) to reduce
syntactic overhead. Techniques such as gradual typing [11, 12], soft typing [1, 13] and hybrid typing [14]
enable a transitory position where some parts of a program are statically typed, and others are not. Al-
ternatively, global type inference can be used (in some situations) to reconstruct types “after the fact” for
programs written in dynamic languages [15, 16].

Such approaches focus on working around static type systems, rather than rethinking the way static
typing is done. The prevailing view remains that each variable in a static type system must have exactly
one declared type and that nominal — rather than structural — typing is preferred. And yet, these choices
go against the notion of a dynamic language, where variables can be assigned arbitrarily and can flow
unimpeded by cumbersome, rigid type hierarchies.

We present the type system used in Whiley, a statically-typed language targeting the JVM. Whiley takes
a novel approach to typing, which we refer to as flow-sensitive typing. This comes close to giving the
flexibility of a dynamic language, with the guarantees of a statically typed language. More specifically,
flow-sensitive typing offers improved error handling, reduced syntactic overhead and greater opportunity
for code reuse. The technique is adopted from flow-sensitive program analysis (e.g. [17, 18, 19]), and
allows variables to have different types at different points and be declared implicitly, based on the type
of assigned expressions. Furthermore, unlike the majority of statically typed languages, Whiley employs
structural — rather than nominal — typing. This frees programmers from the burden of developing static
type hierarchies up front, allowing them to expose subtyping relationships retroactively.

Finally, an open source implementation of Whiley is freely available from http://whiley.org
and details Whiley’s JVM implementation can be found here [20].
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1.1 Flow-Sensitive Types
The following demonstrates Whiley’s flow-sensitive types:

define Circle as {int x, int y, int r}
define Rect as {int x, int y, int w, int h}
define Shape as Circle | Rect

real area(Shape s):
if s is Circle:

return PI * s.r * s.r
else:

return s.w * s.h

A Shape is either a Rect or a Circle (which are both record types). The type test “s is Circle”
(similar to an instanceof test in Java) determines whether s is a Circle or not. Unlike Java, Whiley
automatically retypes s to have type Circle (resp. Rect) on the true (resp. false) branches of the if
statement. There is no need to explicitly cast s to the appropriate Shape before accessing its fields.

Statically typed languages typically require variables be explicitly declared. Compared with dynami-
cally typed languages, this is an extra burden for the programmer, particularly when a variable’s type can
be inferred from assigned expression(s). In Whiley, local variables are never explicitly declared, rather they
are declared by assignment:

int average([int] items):
v = 0
for i in items:

v = v + items[i]
return v / |items|

Here, items is a list of ints, whilst |items| returns its length. Variable v accumulates the sum of all
elements in the list, and is declared by the assignment “v = 0”. Since 0 has type int, v has type int after
the assignment.

1.2 Structural Subtyping
Statically typed languages, such as Java, employ nominal typing for recursive data types. This results in
rigid hierarchies which are often difficult to extend [21]. In contrast, Whiley employs structural subtyping
of records [22] to give greater flexibility. For example, the following defines a Border record:

define Border as {int x,int y,int w,int h}

Any instance of Border has identical structure to an instance of Rect. Wherever a Border is required, a
Rect can be provided and vice-versa — even if the Border definition was written long after the Rect, and
even though no explicit connection is made between Rect and Border.

The focus on structural, rather than nominal, types in Whiley is also evident in the way instances are
created:

bool contains(int x, int y, Border b):
....

bool example(int x, int y):
b = {x: 1, y: 2, w: 10, h: 3}
return contains(x,y,b)

Here, function example() creates a record instance with fields x, y, w and h, and assigns it to variable b.
Despite not being associated with a name, such as Border or Rect, it can be freely passed into functions
expecting such types, since they have identical structure.

2 Language Overview
Figure 1 provides a simple implementation of expressions, along with code for evaluating them. The types
Expr and Value are algebraic data types, with the latter defining the set of allowed values. Type Op is an
enumeration, whilst BinOp and ListAccess are records which form part of Expr. Parameter env is a map
from variables to Values. Finally, null is used as an error condition to indicate a “stuck” state (i.e. the
evaluation cannot proceed).

The code in Figure 1 makes extensive use of runtime type tests to distinguish different expression forms
(e.g. “e is int”). These work in a similar fashion to Java’s instanceof operator, with one important
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1 define Var as string
2 define Op as { ADD, SUB, MUL, DIV }
3 define BinOp as { Op op, Expr lhs, Expr rhs }
4 define ListAccess as { Expr lhs, Expr rhs }
5

6 define Value as int | [Value] | null
7

8 define Expr as int | Var | BinOp | [Expr] | ListAccess
9

10 Value eval(Expr e, {Var→Value} env):
11 if e is int:
12 return e
13 else if e is Var && e in env:
14 // look up variable’s value
15 return env[e]
16 else if e is BinOp:
17 // evaluate left and right expressions
18 lhs = eval(e.lhs,env)
19 rhs = eval(e.rhs,env)
20 // sanity check
21 if !(lhs is int && rhs is int):
22 return null // stuck
23 // evaluate result
24 switch e.op:
25 case ADD:
26 return lhs + rhs
27 case SUB:
28 return lhs - rhs
29 case MUL:
30 return lhs * rhs
31 case DIV:
32 if rhs != 0:
33 return lhs / rhs
34 else if e is ListAccess:
35 // evaluate src and index expressions
36 src = eval(e.lhs,env)
37 index = eval(e.rhs,env)
38 // santity check
39 if src is [Value] && index is int
40 && index >= 0 && index < |src|:
41 return src[index]
42 else if e is [Expr]:
43 lv = []
44 // evaluate items in list constructor
45 for i in e:
46 v = eval(i,env)
47 if v == null:
48 return v
49 else:
50 lv = lv + [v]
51 return lv
52 // some kind of error occurred, so propagate upwards
53 return null

Figure 1: Whiley code for a simple expression tree and evaluation function. This makes extensive use of
type tests, both for distinguishing expressions and error handling. Flow-sensitive typing greatly simplifies
the code, which would otherwise require numerous unnecessary casts.
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difference: they operate in a flow-sensitive fashion and automatically retype variables after the test. As an
example, consider the type test “e is int” on Line 11. On the true branch, variable e is automatically
retyped to have type int. Likewise, on the false branch, e is now known not to have type int (and any
attempt to retest this yields a compile-time error).

Figure 1 also employs runtime type tests to identify and propagate errors. For example, having evaluated
the left- and right-hand sides of a BinOp, we check on Line 21 that both are int values (i.e. not list values
or null). After the check, Whiley’s flow-sensitive type system automatically retypes both lhs and rhs to
int. For ListAccess expressions, we check on Line 39 that src is a list value, and that index is an int.
The latter is achieved with “index is int”. As src is retyped within the condition itself, the subsequent
use of |src| on Line 40 is type safe.

Implementing our expression language in a statically-typed language, such as Java, would require code
that was more cumbersome, and more verbose than that of Figure 1. One reason for this is that, in languages
like Java, variables must be explicitly retyped after instanceof tests. That is, we must insert casts to
update the types of tested variables and, since variables can have only one type in Java, introduce temporary
variables to hold these new types. For example, after a test “e instanceof BinOp” we must introduce a
new variable, say r, with type BinOp and assign e to r using an appropriate cast. A Java implementation
would also (most likely) break up the test on Line 39, since it would otherwise need two identical casts (one
inside the condition for |src|, and one on the true branch for src[index]).

In an object-oriented language, such as Java, a direct conversion of Figure 1 might not be optimal.
Instead, the visitor pattern [23] can be used to distinguish different expression forms. Using the visitor
pattern reduces the amount of explicit retyping required. This is because the different expression forms are
explicitly given as parameters to the visitor methods. However, using the visitor pattern is a heavyweight
solution which is not suitable in all situations. In particular, it would not eliminate all forms of explicit
retyping from Figure 1. In this case, explicit variable retyping will still be required to properly handle
the different values returned from eval(). For example, to check BinOps are evaluated on int operands
(Line 21), and that src gives a list and index an int (Line 39).

2.1 Value Semantics
In Whiley, all compound structures (e.g. lists, sets, and records) have value semantics. This means they are
passed and returned by-value (as in Pascal, MATLAB or most functional languages). But, unlike functional
languages (and like Pascal), values of compound types can be updated in place.

Value semantics implies that updates to a variable only affects that variable, and that information can
only flow out of a function through its return value. Whiley has no general, mutable heap comparable to
those found in object-oriented languages. Consider:

int f([int] xs):
ys = xs
xs[0] = 1
...

The semantics of Whiley dictate that, having assigned xs to ys as above, the subsequent update to xs does
not affect ys. Arguments are also passed by value, hence xs is updated inside f() and this does not affect
f’s caller. That is, xs is not a reference to a list of int; rather, it is a list of ints and assignments to it do
not affect state visible outside of f().

Whilst this approach may seem inefficient, a variety of techniques exist (e.g. reference counting) to
ensure efficiency (see e.g. [24, 25, 26]). Indeed, the underlying implementation does pass compound struc-
tures by reference and copies them only when absolutely necessary.

2.1.1 Structural Updates.

In a dynamic language, lists and records can be updated at will. However, static type systems normally
require updates to respect the element or field type in question. For example, assigning a float to an
element of an int array is not permitted in Java. To work around this, programmers typically either clone
the structure in question, or “break” the type system using casting (or similar).

Updates to list elements and record fields are always permitted in Whiley. For example:

define Point as {int x, int y}

[int|Point] insert(int i, Point p, [int] xs):
xs[i] = p
return p

4



The type of xs is updated to [int|Point] after xs is assigned as it now contains a Point.
The ability to update the types of records and lists is possible because compound structures (e.g. lists,

sets, records, etc) have value semantics in Whiley. Such updates would be unsafe if aliasing were permitted
as, for example, callers of insert() might hold aliases to xs and would expect its elements to be ints.

2.2 Structural Types
Statically typed languages, such as Java, employ nominal typing for recursive data types. This results in
rigid hierarchies which are often difficult to extend [21]. In contrast, Whiley employs structural subtyping
of records [22] to give greater flexibility.

Suppose we wish to extend our expressions from Figure 1 with assignment statements. A common issue
arises as the left-hand side of an assignment is a restricted form of expression, often called an lval. In a
language like Java, we can capture this nicely using interfaces:

interface Expr { ... }
interface LVal { ... }
class ListAccess implements Expr,LVal { ...}
class Var implements Expr,LVal { ... }
class Int implements Expr { ... }

However, suppose the code for expressions was part of an existing library, and we are trying to add state-
ments after the fact. In a language like Java, this presents a problem as we cannot retroactively insert the
necessary LVal interface to Var and ListAccess.

In Whiley, adding the notion of an LVal is easy to do retroactively because of structural subtyping:

define LVal as Var | ListAccess
define Assign as {LVal lhs, Expr rhs}

Expr parseExpression():
...

null|Assign parseAssign():
le = parseExpression()
match(":=")
re = parseExpression()
if le is LVal:

return {lhs: le, rhs: re}
else:

return null // syntax error

Here, LVal is implicitly a subtype of Expr — i.e. there is no need for an explicit declaration of this, as
would be required in Java. That is, they can be defined entirely separately from each other (e.g. in different
files, packages or entirely separate programs) — and yet, LVal remains a subtype of Expr.

2.2.1 Structural Subtyping.

Whiley permits subtyping between recursive structural types.

define Link as {int data, LinkedList next}
define LinkedList as null | Link
define OrderedList as null | {

int data, int order, OrderedList next
}

int sum(LinkedList l):
if l is null:

return 0
else:

return l.data + sum(l.next)

Here, we have defined a standard linked list and a specialised “ordered” list where order < next.order

for each node (see e.g. [27]). Whiley type checks this function by showing that OrderedList is a structural
subtype of LinkedList — despite this relationship not being identified explicitly in the program. Type
checking in the presence of recursive structural types is a well-known and challenging problem [28, 29, 30]
which is further compounded in Whiley by the presence of flow-sensitive reasoning.
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2.3 Flow-Sensitive Types
We now examine Whiley’s flow-sensitive type system in more detail, and identify several ways in which it
leads to improved code quality.

Error Handling. Nullable references have proved a significant source of error in e.g. Java [31]. The issue
is that, in such languages, one can treat nullable references as though they are non-null references [32].
Many solutions have been proposed which distinguish these two forms using static type systems (e.g. [33,
34, 35, 36, 37, 38, 39, 40]).

Whiley’s flow-sensitive type system lends itself naturally to handling this problem because it supports
union types (e.g. [41, 42]). These allow variables to hold values from different types, rather than just one
type. For example:

null|int indexOf(string str, char c):
...

[string] split(string str, char c):
idx = indexOf(str,c)
// idx has type null|int
if idx is int:

// idx now has type int
below = str[0..idx]
above = str[idx..]
return [below,above]

else:
// idx now has type null
return [str] // no occurrence

Here, indexOf() returns the first index of a character in the string, or null if there is none. The type
null|int is a union type, meaning it is either an int or null.

In the above example, Whiley’s flow-sensitive type system seamlessly ensures that null is never deref-
erenced. This is because the type null|int cannot be treated as an int. Instead, one must first check
it is an int using a type test, such as “idx is int”. Whiley automatically retypes idx to int when
this is known to be true, thereby avoiding any awkward and unnecessary syntax (e.g. a cast as required in
e.g. [43, 38]).

Code Reuse. Whiley’s flow-sensitive type system can expose greater opportunities for code reuse:

1{string} usedVariables(Expr e):
2 if e is Var:
3 return {e}
4 else if e is BinOp || e is ListAccess:
5 l = useVariables(e.lhs)
6 r = useVariables(e.rhs)
7 return l + r // set union
8 else if e is [Expr]:
9 ...

10 else:
11 return {}

On Line 5, variable e has type BinOp|ListAcccess. The use of e.lhs at this point is type safe,
since we can perform operations common to all types of a union and, in particular, unions of records expose
common fields (similar to a common initial sequence for unions of structs in C [44, §6.3.2.3]).

In languages like Java, exploiting code reuse in this way requires careful planning, as common types
must be explicitly related in the class hierarchy. In contrast, Whiley’s flow-sensitive type system lets us
exploit opportunities for code reuse in an ad-hoc fashion, as and when they occur.
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3 Type System
We formalise the Whiley language using a core calculus which, in the spirit of Featherweight Java [45], we
call Featherweight Whiley (FW). The following gives a syntactic definition of types in FW, where overbar
(e.g. T) indicates indicates a list of items numbered consecutively (e.g. T1, . . . , Tn):

T ::=any | void | null | int | T→T | [T] | { T n } | T1 ∨ T2 | µX.T | X

Here, void and any represent ⊥ and ⊤; lists are given by [T]; and, {T n} represents records with one or
more fields. The union T1 ∨ T2 is a type whose values are in T1 or T2. Types are additionally restricted to
being contractive [29]. This prohibits types of the form µX.X and µX.(X ∨ . . .) and is necessary to ensure a
strong connection with regular trees [32].

FW follows the equi-recursive approach to dealing with recursive types [32]. That is, we do not distin-
guish between recursive types and their unfoldings. This simplifies FW’s formalism, as one does not need
an explicit unfold operator. Any implementation of FW, however, must address the fact that two equivalent
types can have distinct representations on the machine (analogous to the graph isomorphism problem). We
return to discuss this in §3.4.

3.1 Semantic Interpretation
To better understand the meaning of types in FW, it is helpful to give a semantic interpretation (following
e.g. [46, 47, 48]). The aim is to give a set-theoretic model where subtype corresponds to subset. Whilst
our model ties very closely with the semantics of FW, it is simplified to avoid a circular definition between
types and semantics [48]. This is often referred to as “bootstrapping” the subtype relation, and affects only
function values — which we model as sets of parameter and return values.

The following defines the language of values in our model:

V ::= null | i | [V] | { n : V } | (V1, . . . , Vn)→V

Here, i ∈ I represents integer values, whilst (V1, . . . , Vn)→V is our model of functions used to boot-
strap the subtyping relation (note the abuse of notation here where V indicates a set not a list — but, this
should always be clear in context). Each function value consists of sets of parameter and return values
which identify those values it can accept in each parameter position, and which it may return. There is no
explicit connection between individual parameter values and the corresponding return value, as this level of
detail is unnecessary.

Definition 1 (Type Acceptance) A type T accepts a value V, denoted by T |= V, defined as follows:

any |= V

null |= null

int |= i if i ∈ I
[ T ] |= [ V ] if T |= V

{T1 n1, . . . , Tn nn} |= {n1 : V1, . . . , nm : Vm} if n < m, T |= V

T1 ∨ T2 |= V if Ti |= V, i∈{1, 2}
T → T |= (V1, . . . , Vn)→V if T |= V, V1 |=T, . . . , Vn |=T

Here, V |= T denotes ¬∃V.[T |=V ∧ V ̸∈ V]. In other words, every value accepted by T is in the set V.

Definition 2 (Type Subset) We take T1 |= T2 to denote ∀V.[T1 |=V =⇒ T2 |=V]. In other words, that the set
of values accepted by T1 is a subset of those accepted by T2.

We are essentially viewing types as finite tree automatons which accept conforming trees (i.e values).
The rule for accepting function values may seem somewhat strange. However, consider this example:

int f(any x):
return 1

int g(int(int) fp):
return fp(123)

Here, fp is a variable of type int→int, whilst function f() has type any→int. Intuitively, g(&f)
should be a syntatically correct expression and, hence, any→int must subtype int→int (as is normal).
Essentially, the type int→int will accept any function value which is prepared to accept any int value.
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Subtyping:

T ≤ T ⇂ C
{T1≤T2} ⊆ C
T1≤T2 ⇂ C

(S-REFLEX, S-INDUCT)

void ≤ T ⇂ C T ≤ any ⇂ C (S-VOID, S-ANY)

T1 ≤ T2 ⇂ C ∪ {[T1]≤ [T2]}
[T1] ≤ [T2] ⇂ C

(S-LIST)

n < m

T1 = {T3 f3, . . . , Tm fm}
T2 = {T′3 f3, . . . , T′n fn}
T3 ≤ T′3 ⇂ C ∪ {T1 ≤ T2}

. . .
Tn ≤ T′n ⇂ C ∪ {T1 ≤ T2}

T1 ≤ T2 ⇂ C

(S-REC)

T ≥ S ⇂ C ∪ {T→T ≤ S→S}
T ≤ S ⇂ C ∪ {T→T ≤ S→S}

T→T ≤ S→S ⇂ C
(S-FUN)

i ∈ {2, 3}
T1 ≤ Ti ⇂ C ∪ {T1 ≤ T2 ∨ T3}

T1 ≤ T2 ∨ T3 ⇂ C
(S-UNION1)

T2 ≤ T1 ⇂ C ∪ {T2∨T3 ≤ T1}
T3 ≤ T1 ⇂ C ∪ {T2∨T3 ≤ T1}

T2∨T3 ≤ T1 ⇂ C
(S-UNION2)

T = {T1 f1 . . . , Ti ∨ T′i fi . . . , Tn fn}
{T1 f1 . . . , Ti fi . . . , Tn fn} ≤ S ⇂ C ∪ {T ≤ S}
{T1 f1 . . . , T′i fi . . . , Tn fn} ≤ S ⇂ C ∪ {T ≤ S}

T ≤ S ⇂ C
(S-UNION3)

Figure 2: Subtype rules for Featherweight Whiley. There is no need for an explicit transitivity rule.

Definition 3 (Type Equivalence) Two types T1 and T2 are said to be equivalent, denoted by T1 ≡ T2, if
T1 |= T2 and T2 |= T1.

Under this definition, two types are equivalent if they define the same regular tree language. Interesting
cases arise when we consider distributivity of types. Intuitively, {int ∨ null f} ≡ {int f} ∨ {null f}.
However, care must be taken as, for example [int ∨ null] ̸≡ [int] ∨ [null] since [int ∨ null] |= [1, null],
but [int] ∨ [null] ̸|= [1, null]. As another example, consider:

define List1 as { int|null dat, null|List1 nxt }
define List2 as { null dat, null|List2 nxt }
define List3 as { int dat, null|List3 nxt }

Again, List1 ̸≡ List2 ∨ List3 as, if V = {dat : null, nxt : {dat : 1, nxt : null}}, then List1 |= V

but List2 ̸|= V and List3 ̸|= V.

3.2 Subtyping
Whilst the above definitions characterise types in FW, they are not constructive from an implementation
perspective. As our primary goal is to develop an efficient implementation, it is important to consider such
algorithmic issues. For example, consider:

define Link as {int dt, LinkedList nxt}
define LinkedList as null | Link
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One possible type for LinkedList is µX.(null ∨ {int dt, X nxt}), whilst another (equivalent) possibility
is null ∨ {int dt, µX.(null ∨ {int dt, X nxt}) nxt}. Under Definition 3, recursive types are equivalent
to their (infinite) set of unfoldings:

µX.(null ∨ {int dt,X nxt})
≡ (null ∨ {int dt, µX.(null ∨ {int dt,X nxt}) nxt})
≡ (null ∨ {int dt, (null ∨ {int dt,µX.(. . .) nxt}) nxt})
≡ . . .

A critical question is: how do we implement subtyping efficiently in the presence of such types?

Amadio and Cardelli were the first to show that subtyping in the presence of recursive types was de-
cidable [29]. Their system included function types, ⊤ and ⊥. Kozen et al. improved this by developing
an O(n2) algorithm [30]. The system presented here essentially extends this in a straightforward manner.
Gapeyev et al. give an excellent overview of the subject [28] and, indeed, our subtype relation is identical
to theirs, except for the inclusion of unions and other compound structures.

In a nominal type system, types correspond to trees and, thus, the subtype operator can be defined using
rules such as:

T1 ≤ T2
[T1] ≤ [T2]

Here, a strong property holds that the “height” of T1 is strictly less than [T1] — leading to a simple proof
of termination since every type has finite height. In a structural type system, like FW, types correspond to
graphs not trees. Defining the subtype operator using rules such as above leads to non-termination in the
presence of cycles. To resolve this we employ ideas from co-induction [28].

The subtyping rules for FW are given in Figure 2. These employ judgements of the form “T1 ≤ T2 ⇂ C”,
which are read as: T1 is a subtype of T2 under assumptions C. Essentially, the set of assumptions C helps
ensure the subtype operator terminates (we’ll return to this shortly). Ignoring the issue of assumption sets,
the rules of Figure 2 are mostly straightforward. Since lists have value semantics, [int] ≤ [any] holds.
Subtyping of records allows for depth and width [32]. Thus, {int x, int y} ≤ {any x} by S-REC.

Rule S-UNION3 captures distributivity over records. For example, under S-UNION3, it holds that
{int ∨ null x} ≤ {int x} ∨ {null x}. The following derivation illustrates a more complex example:

T1 = {int ∨ null x, int ∨ null y}
S1 = {int x, int y} ∨ {null x, int y} ∨ {int x, null y} ∨ {null x, null y}

1. {int x, int y} ≤ {int x, int y} ⇂ {. . .} (S-REFLEX)
2. {null x, int y} ≤ {null x, int y} ⇂ {. . .} (S-REFLEX)
3. {int x, null y} ≤ {int x, null y} ⇂ {. . .} (S-REFLEX)
4. {null x, null y} ≤ {null x, null y} ⇂ {. . .} (S-REFLEX)
5. {int x, int y} ≤ S1 ⇂ {. . .} (S-UNION1, 1)
6. {null x, int y} ≤ S1 ⇂ {. . .} (S-UNION1, 2)
7. {int x, null y} ≤ S1 ⇂ {. . .} (S-UNION1, 3)
8. {null x, null y} ≤ S1 ⇂ {. . .} (S-UNION1, 4)
9. {int ∨ null x, int y} ≤ S1 ⇂ {. . .} (S-UNION3, 5+6)
10. {int ∨ null x, null y} ≤ S1 ⇂ {. . .} (S-UNION3, 7+8)
11. T1 ≤ S1 ⇂ ∅ (S-UNION3, 9+10)

Given the rules of Figure 2, we can give an algorithmic interpretation of subtyping in FW:

Definition 4 (Subtyping) Let T1 and T2 be types. Then, T1 is a subtype of T2, denoted T1 ≤ T2, iff
T1 ≤ T2 ⇂ ∅.

To show T1 is a subtype of T2, we use the rules of Figure 2 starting with no assumptions. As we descend
the type graph comparing components of T1 and T2 the set C always increases. The S-INDUCT rule is
critical here, as it terminates the recursion (by, essentially, treating the assumption set C as a “visited” set).
Furthermore, the size of C can be bounded as follows: let m (resp. n) be the number of nodes in the type
graph of T1 (resp. T2); then, every addition to C made by a rule of Figure 2 corresponds to a pair (v, w),
where v and w are (respectively) nodes in the type graph of T1 and T2 — thus, |C| is O(m ·n). For example,
consider the following type definition (where LinkedList is defined in §3.1):
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define AnyList as null | {any dt, AnyList nxt}

AnyList f(LinkedList l):
return l

For this function to be considered type safe, we need to show that T1=µX.(null∨{int dt,X nxt}) is a
subtype of S1=µX.(null∨{any dt,X nxt}):

T1 = T3 ∨ T2
T2 = {int dt, T1 nxt}
T3 = null

S1 = S3 ∨ S2
S2 = {any dt, S1 nxt}
S3 = null

1. T3 ≤ S3 ⇂ {T1 ≤ S1, . . .} (S-REFLEX)
2. int ≤ any ⇂ {T1 ≤ S1, . . .} (S-ANY)
3. T1 ≤ S1 ⇂ {T1 ≤ S1, . . .} (S-INDUCT)
4. T2 ≤ S2 ⇂ {T1 ≤ S1, . . .} (S-REC, 2+3)
5. T3 ≤ S1 ⇂ {T1 ≤ S1, . . .} (S-UNION1, 1)
6. T2 ≤ S1 ⇂ {T1 ≤ S1} (S-UNION1, 4)
7. T1 ≤ S1 ⇂ ∅ (S-UNION2, 5+6)

Here, the assumption T1 ≤ S1 is propagated through the proof, and terminates the recursion at (3) with
the use of S-INDUCT.

Finally, the following derivation provides a useful sanity check that µX.{int∨null data, null∨X next}
is not a subtype of µX.{int data, null∨X next} ∨ µX.{null data, null∨X next}:

T1 = {int∨null data, null∨T1 next}
S1 = S3 ∨ S2
S2 = {int data, null∨S2 next}
S3 = {null data, null∨S3 next}

1. int ̸≤ null ⇂ {T1 ≤ S1, . . .} (By inspection of Fig 2)
2. null ̸≤ int ⇂ {T1 ≤ S1, . . .} (By inspection of Fig 2)
3. T1 ̸≤ null ⇂ {T1 ≤ S1, . . .} (By inspection of Fig 2)
4. int ∨ null ̸≤ null ⇂ {T1 ≤ S1, . . .} (S-UNION2, 1)
5. int ∨ null ̸≤ int ⇂ {T1 ≤ S1, . . .} (S-UNION2, 2)
6. T1 ̸≤ S3 ⇂ {T1 ≤ S1, . . .} (S-REC, 4)
7. T1 ̸≤ S2 ⇂ {T1 ≤ S1, . . .} (S-REC, 5)
8. T1 ̸≤ null∨S3 ⇂ {T1 ≤ S1, . . .} (S-UNION1, 3,6)
9. T1 ̸≤ null∨S2 ⇂ {T1 ≤ S1, . . .} (S-UNION1, 3,7)
10. null∨T1 ̸≤ null∨S3 ⇂ {T1 ≤ S1, . . .} (S-UNION2, 8)
11. null∨T1 ̸≤ null∨S2 ⇂ {T1 ≤ S1, . . .} (S-UNION2, 9)
12. {int data, null∨T1 next} ̸≤ {null data, null∨S3 next} ⇂ {T1 ≤ S1, . . .} (S-REC, 10)
13. {int data, null∨T1 next} ̸≤ {int data, null∨S2 next} ⇂ {T1 ≤ S1, . . .} (S-REC, 11)
14. {int data, null∨T1 next} ̸≤ S1 ⇂ {T1 ≤ S1} (S-UNION1, 12,13)
15. T1 ̸≤ S1 ⇂ ∅ (S-UNION3, 14)

Note, in the above, S-UNION2 is used at (10) + (11); however, using S-UNION1 does not affect the
outcome.

3.3 Soundness and Completeness
We now provide the necessary connections between the semantic and algorithmic interpretations. Unfortu-
nately, performing a structural induction in the presence of assumption sets is challenging.

Definition 5 (Derivation) For a given subtyping computation T1 ≤ T2 ⇂ C1, let D denote its derivation.
That is, the set of judgments of the form T3 ≤ T4 ⇂ C2 generated by the rules of Figure 2.

Definition 6 (Projection) If D is a derivation, then its projection is D∗ = {T1 ≤ T2 | T1 ≤ T2 ⇂ C ∈ D}.

Lemma 1 (Subtype Assumptions) Let T1 and T2 be types where computing T1 ≤ T2 ⇂ ∅ generates an in-
termediate judgment T3 ≤ T4 ⇂ C which is shown to hold. If T1 ≤ T2 ⇂ ∅ then T3 ≤ T4 ⇂ ∅.
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Proof 1 Let D1 be the derivation for T1 ≤ T2 ⇂ ∅ and D2 the derivation for T3 ≤ T4 ⇂ C. By inspection of Figure 2,
it follows that D∗

1 ⊇ D∗
2 . Let C′ = C − {c} for some arbitrary c ∈ C, and D3 be the derivation for T3 ≤ T4 ⇂ C′. It

follows that D∗
1 ⊇ D∗

3 ⊇ D∗
2 as only S-INDUCT is affected by the difference C and C′. We can also conclude that

D∗
3 = T3 ≤ T4 ⇂ C′ was shown to hold. This is because assumptions do not interfere with the other rules from Figure 2.

By an inductive argument, we can conclude T3 ≤ T4 ⇂ ∅ is shown to hold.

Theorem 1 (Subtype Soundness) Let T and T′ be types where T ≤ T′. Then, T |= T′.

Proof 2 By induction on the structure of T and T′. The induction hypothesis is that if T1 ≤ T2 ⇂ ∅ holds for some
substructure of T and (resp.) T′, then T1 |=T2. Each case corresponds to a rule from Figure 2, although S-REFLEX,
S-VOID, S-ANY are ignored since they follow immediately from Definition 1.

• Case [T1] ≤ [T2]: By S-LIST, we have T1 ≤ T2 ⇂ C and, hence, T1 ≤ T2 ⇂ ∅ by Lemma 1. Thus, it follows from
Definition 1 that [T1] |= [T2].

• Case {T1 n1, . . . , Tm nm} ≤ {T1 T1, . . . , Tn Tn} where n < m: By S-REC, we have Ti ≤ Si ⇂ C for 1≤i≤m and,
hence, Ti ≤ Si ⇂ ∅ by Lemma 1. This follows Definition 1 where only the first n fields of a record are tested for
acceptance. Thus, {T1 n1, . . . , Tm nm} |= {T1 n1, . . . , Tn nn}.

• Case T1 ≤ T2∨T3: By S-UNION1, we have T1 ≤ T2 ⇂ C or T1 ≤ T3 ⇂ C and, hence, T1 ≤ T2 ⇂ ∅ or T1 ≤ T3 ⇂ ∅
by Lemma 1. Then T1 |= T2 or T1 |= T3. Therefore, T1 |= T2∨T3 under Definition 1.

• Case T2∨T3 ≤ T1: By S-UNION2, we have T2 ≤ T1 ⇂ C and T3 ≤ T1 ⇂ C and, hence, T2 ≤ T1 ⇂ ∅ and T3 ≤ T1 ⇂ ∅
by Lemma 1. Then T2 |= T1 and T3 |= T1. Therefore, T2 ∨ T3 |= T1 under Definition 1.

• Case {T1 f1 . . . , Ti ∨ T′i fi, . . . , Tn fn} ≤ T′: By S-UNION3 and Lemma 1, {T1 f1 . . . , Ti fi, . . . , Tn fn} ≤ T′ ⇂ ∅
and {T1 f1 . . . , T′i fi, . . . , Tn fn} ≤ T′ ⇂ ∅. Then, {T1 f1 . . . , Ti ∨ T′i fi, . . . , Tn fn} |= T′ under Definition 1.

• Case T →T ≤ S →S: By S-FUN, we have T ≤ S ⇂ C and S ≤ T ⇂ C and, hence, T ≤ S ⇂ ∅ and S ≤ T ⇂ ∅ by
Lemma 1. It follows from Definition 1 that T |= S and S |= T. Assume T→T |= V→V. By Definition 1, we have
that V |=T. Then, it follows that V |=S . Hence, S→S |= V→V.

Theorem 2 (Subtype Completeness) Let T and T′ be types where T |= T′. Then, T ≤ T′.

Proof 3 By induction on the structure of T and T′. The induction hypothesis is that if T1 |=T2 holds for
some substructure of T and (resp.) T′, then T1 ≤ T2 ⇂ ∅. :

• Case void |=T′: Straightforward since void ≤ T′ by S-VOID.

• Case any |=T′: By Definition 1, any accepts every value. Therefore, T′ must accept every value and,
hence, T′ = any. Thus, any≤any by S-REFLEX.

• Case null |=T′: By Definition 1, null can only accept value null. Therefore, either T′ ≡ null or
T′ ≡ null ∨ T1 (for some T1). Then, T ≤ T′ by S-NULL and/or S-UNION1.

• Case [T1] |=[T2]: By induction hypothesis, T1 ≤ T2 and, hence, T ≤ T′ by S-LIST and S-UNION1.

• Case T→T |= S→S: By Definition 1, T |= S and, by inductive hypothesis, T ≤ S. It follows from
Definition 1 that ∀V.[V |=Ti =⇒ V |=Si] (for 1 ≤i ≤n) and, hence, S |= T. Finally, T ≥ S by induc-
tive hypothesis and, hence, T ≤ T′ by S-FUN.

• Case {T n}|={S m}: By Definition 1, m ≤ n. By induction hypothesis, T ≤ S and, hence, T ≤ T′ by
S-REC.

• Case T1 ∨ T2 |=T′: By Definition 1, T1 |=T′ and T2 |=T′. By induction hypothesis, T1 ≤ T′ and
T2 ≤ T′. Then, T ≤ T′ by S-UNION2.

• Case [T1] |=T2∨T3: If T |=T2 or T |=T3, then T≤T2∨T3 by S-UNION1. Assume (for contradiction)
that T ̸|=T2 and T ̸|=T3. It follows from Definition 1 that T2=[T4], T3=[T5] and, hence, T1 |= T4 ∨ T5.
This gives the contradiction as [T1] will accept a list containing values from both T4 and T5 which
neither [T4] nor [T5] could accept.

• Case S→S |=T1∨T2: If T |=T1 or T |=T2, then T≤T1∨T2 by S-UNION1. Assume (for contradiction)
that T ̸|=T1 and T ̸|=T2. Let T1=W→W and T2=U→U. Then, the contradiction arises in the same
manner as for lists. For example, consider return values. It follows from Definition 1 that S |= W ∨ U.
Then, T will accept a function with return values in both W and U which neither T1 nor T2 could accept.

• Case {S f}|=T1∨T2: If T |=T1 or T |=T2, then T≤T1∨T2 by S-UNION1. Assume T ̸|=T1 and T ̸|=T2.
Then, some Si = T3∨T4 must exist. Let W = {W f} where Wi = T3 and ∀j ̸=i.[Wj = Sj]. Construct
W′ similarly, except with W′i = T4. It follows immediately that W |= T1∨T2 and W′ |= T1∨T2. Hence,
T ≤ T′ by the inductive hypothesis and S-UNION3.
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3.4 Representation
Another important question, from an implementation perspective, is how types can be represented effi-
ciently. In particular, we desire a compact representation where equivalence testing is efficient1. Our
starting point is to provide a graph-based definition of types:

Definition 7 (Type) A type is a triple (V,E,K), where V is a set of vertices, E is a set of directed, labelled

edges of the form v
ℓ→ w, and K gives the kind of each vertex (i.e. NULL, INT, LIST, RECORD, UNION,

etc).

In this definition, the labels ℓ correspond either to field names or ϵ (i.e. no label). Thus, the recursive type
µX.(null ∨ {int dt,X nxt}) and its first unfolding can be viewed as follows:

6

1

2

1

2

nxt

3

nxt

3

4

5

The graph on the right represents a single unfolding of that on the left. Here, circular nodes represent
unions, square nodes represent records, and null is indicated by ground (for brevity, we omit field dt).

Definition 8 (Minimal Form) Let T↓ denote a minimal form of a type T such that, for any T′ ≡ T, it follows
that |T↓| ≤ |T′|.

To compute T↓ we can apply standard algorithms for minimising finite automata [49, 50, 51]. Observe
that, for any given type, there may exist multiple minimal forms [52]. The following illustrates:

nxt
1

2 3

nxt
2

3 1

T1 = ({1, 2, 3}, {1 ϵ→ 2, 1
ϵ→ 3, 3

nxt→ 1}, {1 7→ UNION, 2 7→ NULL, 3 7→ RECORD})
T2 = ({1, 2, 3}, {2 ϵ→ 3, 2

ϵ→ 1, 1
nxt→ 2}, {1 7→ RECORD, 2 7→ UNION, 3 7→ NULL})

Whilst it is clear that T1 ≡ T2, it is also the case that T1 ̸= T2. Thus, minimising a type does not, by itself,
guarantee a canonical form.

Definition 9 (Canonical Form) Let T̂ denote the canonical form of a type T such that, for any T1 and T2
where T1 ≡ T2, it follows that T̂1 = T̂2.

This notion of a canonical representation is similar to that found in the study of graph isomorphism, where
canonical labellings are used by the most efficient algorithms for determining isomorphism [53, 54, 55, 56].
To compute the canonical form of a type T we first minimise it, and then determine a canonical labelling.
Intuitively, the idea behind a canonical labelling is to ensure the labels given to vertices are always the same
for equivalent types. To get a rough first approximation, we can sort vertices by type. For example, sorting
according to NULL < RECORD < UNION gives the following canonical representation of T1 and T2:

T3 = ({1, 2, 3}, {3 ϵ→ 1, 3
ϵ→ 2, 2

nxt→ 3},
{1 7→ NULL, 2 7→ RECORD, 3 7→ UNION})

For simplicity, we will not discuss efficient algorithms for computing the canonical representation of a
type. However, we will demonstrate that it exists and is always computable by a reduction to coloured
graph isomorphism:

Definition 10 (Coloured Digraph) A coloured digraph is a triple (V,E,C) where V is a set of vertices,
E a set of directed edges of the form v → w and C maps every vertex to a colour taken from {1, . . . , |V |}.

1This stems from the fact that FW’s typing algorithm employs fixed-point iteration and, in practice, this generates a lot of equiva-
lence tests (see §4.4)
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Lemma 2 (Canonical Form) For any type T, a canonical form T̂ can be computed such that, for any T1
and T2 where T1 ≡ T2, it follows that T̂1 = T̂2.

Proof 4 By reduction to coloured graph isomorphism. W.L.O.G. assume T is minimised. Construct a
coloured graph (VC , EC , CC) from a type (VT , ET ,KT ) as follows:

• Let VC = VT ∪ {ℓvw | v ℓ→w ∈ ET ∧ ℓ ̸= ϵ}.

• Let EC = {v→w | v ϵ→w ∈ ET } ∪ {v→ℓvw, ℓvw→w | v ℓ→w ∈ ET }.

• Let CC = {v 7→c(k) | KT (v) = k ∧ v ∈ VT } ∪ {ℓvw 7→c(ℓ) | v ℓ→w ∈ ET } where c(·) maps kinds
and labels to unique colours.

Then, a canonical labelling of (VC , EC , CC) can be computed with well-known algorithms that use back-
tracking search to find a minimum lexicographic ordering of edges (e.g. [53, 54]).

3.5 Other Operations
An important requirement is that our subtype relation forms a complete lattice. For any two types T1 and
T2, the least upper bound and greatest lower bound must be well-defined:

Definition 11 The least upper bound of two types T1 and T2, denoted T1 ⊔ T2, is the least type T3 where
T1 ≤ T3 and T2 ≤ T3.

Definition 12 The greatest lower bound of two types T1 and T2, denoted T1 ⊓ T2, is the greatest type T3
where T3 ≤ T1 and T3 ≤ T2.

The least upper bound operation is needed to determine variable types at control-flow joins. Computing
T1 ⊔ T2 is fairly straightforward as, by construction, it is equivalent to T1 ∨ T2. The purpose of the greatest
lower bound operation may be less apparent. Consider:

define MyType as int | [int] | [[int]]

int f(MyType x):
if x is [any]:

return |x|
else:

return x

The most precise type for x on the true branch is [int] ∨ [[int]]. To update a variable’s type after a type
test, we intersect its type before the test with that used in the test. Or, in other words, we compute their
greatest lower bound:

(int ∨ [int] ∨ [[int]]) ⊓ [any] =⇒ [int] ∨ [[int]]

Computing T1 ⊓ T2 is only slightly more involved than for T1 ⊔ T2. Recalling the correspondence be-
tween types and tree automata from §3.1, then T1 ⊓ T2 corresponds to the intersection of the tree automata
described by T1 and that described by T2. Again, standard algorithms for computing this are known [52].

Another question is how the type of x on the false branch is determined. We use a third operation on
types called greatest difference (analogous to set difference):

Definition 13 The greatest difference of T1 and T2, denoted T1 − T2, is the greatest type T3 where T3 ≤ T1
and T2 ⊓ T3 = void.

Using the greatest difference operation, we obtain the following type for x on the false branch:

(int ∨ [int] ∨ [[int]])− [any] =⇒ int

From this it follows that the last statement of function f() above is type safe since, at this point, x has type
int. Unfortunately, Definition 13 can only be approximated in FW. For example:

int f(any x):
if x is int:

...
else:

...

On the false branch, we compute the type any− int for x; however, this yields any, since there is no way
to encode anything more precise in our language of types. In practice, this does not seem a major concern,
as such types are not expressible at the source level.
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4 Syntax, Semantics and Typing
Figure 3 gives the syntax for FW. As usual, the overbar (as in e.g. S) is taken to indicate a list with
appropriate separator(s). For simplicity, indentation is not explicitly described in the syntax, but is instead
assumed. The notion of a runtime value (given by v) is very similar, but not identical, to that from §3.1.
In fact, the only difference lies in the way function values are represented. Finally, for simplicity, we treat
direct and indirect invocation with an identical statement. This means direct invocation corresponds to
indirect invocation on a constant function value.

4.1 Semantics
A big-step operational semantics for FW is given for expressions in Figure 4, and a small-step semantics for
statements in Figure 5. Here, ∆ is the runtime environment, whilst v, w, u denote runtime values. A runtime
environment ∆ provides access to local variables in the current stack frame, whilst push() and pop() let us
(resp.) create and destroy stack frames. Likewise, funDecl(f) gives the declaration of a function f (we
do not consider overloading). Finally, halt(v) is taken to mean that the machine has halted, producing
value v.

Since function invocation is via a statement, rather than an expression, it follows that expressions have
finite executions (i.e. they cannot loop indefinitely). This means we can safely employ a big-step semantics
for expressions, which simplifies the system (we return to discuss this later). In contrast, we must employ a
small-step semantics for statements, as these can loop infinitely (i.e. through while loops or recursion).

4.2 Type Environments
Typing functions requires separate environments for each program point. We denote the environment for
some point ℓ by Γℓ, which captures the types of all variables immediately before the statement at that point.
For example:

int f(int x):
y = x + 11

return y2

The typing environments for this function are:

Γ1 = {x 7→ int}
Γ2 = {x 7→ int, y 7→ int}

Since y is undefined before line 1, it is absent from Γ1. To define how environments are combined at join
points in the control-flow graph, we introduce a corresponding subtype relation:

Definition 14 Let Γℓ1 and Γℓ2 be typing environments. Then, Γℓ1 ≤ Γℓ2 iff ∀v∈dom(Γℓ2).
[
Γℓ1[v] ≤ Γℓ2[v]

]
.

For example, the following orderings are trivially valid:

{v 7→ int} ≤ {v 7→ any}
{v 7→ [void], w 7→ int} ≤ {v 7→ [int]}

On the other hand, the following do not hold:

{v 7→ [int]} ̸≤ {v 7→ int}
{v 7→ int} ̸≤ {v 7→ void}

The following illustrates how type environments are combined:

int|[int] f(int x):
if y > 01:

y = [x]2

z = 23

else:
y = []4

return y5

The question is, what type does y have in Γ5? We know that y has [int] or [void] type, and we desire the
most precise environment capturing this. This corresponds to the least upper bound of the type environments
involved:

Γ5 = {x 7→ int, y 7→ [int], z 7→ int} ⊔ {x 7→ int, y 7→ [void]}
↪→ {x 7→ int, y 7→ [int]}

Here, Γ5[y] = [int] as [int] ∨ [void] ≡ [int]. Furthermore, z cannot be included in Γ5 as it is not defined
on both branches.
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Syntax:
F ::= T f(T n) : S

S ::= n = e | n.f = e | n[e1] = e2 | n = e(e) | return e | if n is T : S [else S]
| while e1 < e2 : S | S1; S2

e ::= v | n | e.f | e1[e2] | [e] | {n : e}
v ::= null | i | [v] | { n : v } | &f

Figure 3: Syntax for Featherweight Whiley. Here, n represents variable identifiers, whilst i ∈ I represent
integer constants.

Expression Reductions:
e ; v

{n : e} ; {n : v}
e ; v

[e] ; [v]
(R-RECORD,

R-LIST)

e2 ; i

0≤i≤n

e1;[v0, . . . , vn]
e1[e2] ; vi

e2 ; i

(i<0 ∨ i>n)
e1;[v0, . . . , vn]
e1[e2] ; err

(R-LACCESS1,
R-LACCESS2)

e ; {n : v} ni = f

e.f ; vi
(R-FACCESS)

Figure 4: Semantics for expressions in FW.

Statement Reductions:
∆ ⊢ e ; v

⟨∆, n=e ; S⟩ −→ ⟨∆[n 7→v], S⟩ (R-VASSIGN)

∆ ⊢ e ; v

∆(n) = {n : v} v′ = {n : v}[f 7→v]

⟨∆, n.f=e ; S⟩ −→ ⟨∆[n 7→v′], S⟩
(R-FASSIGN)

∆(n) = [u0, . . . , un] ∆ ⊢ e2 ; v1
∆ ⊢ e1 ; i : int 0 ≤ i ≤ n

v2 = [u0, . . . , ui−1, v1, ui+1, . . . , un]
⟨∆, n[e1]=e2 ; S⟩ −→ ⟨∆[n 7→ v2], S⟩

(R-LASSIGN)

∆1(v) ∈ T

⟨∆1, if v is T : {S1} else {S2} ; S3⟩ −→ ⟨∆2, S1 ; S3⟩
(R-IF1)

∆1(v) ̸∈ T

⟨∆1, if v is T : {S1} else {S2} ; S3⟩ −→ ⟨∆2, S2 ; S3⟩
(R-IF2)

∆ ⊢ e1 ; v1 : int
∆ ⊢ e2 ; v2 : int v1 ≤ v2

⟨∆, while e1≤e2 : {S1} ; S2⟩
−→ ⟨∆, S1; while e1≤e2 : {S1} ; S2⟩

(R-WHILE1)

∆ ⊢ e1 ; v1 : int
∆ ⊢ e2 ; v2 : int v1 ̸≤ v2

⟨∆, while e1≤e2 : {S1} ; S2⟩ −→ ⟨∆, S2⟩
(R-WHILE2)

∆ ⊢ e ; &f e ; v

funDecl(f) = T f(T n) : S2
∆2 = push(∆1, S1, n)

⟨∆1, n = e(e) ; S1⟩ −→ ⟨∆2[n 7→ v], S2⟩

(R-INVOKE)

∆1 ⊢ e ; v ∆2, S2, n = pop(∆1)

⟨∆1, return e ; S1⟩ −→ ⟨∆2[n 7→ v], S2⟩
(R-RETURN)

∆ ⊢ e ; v ϵ = pop(∆)

⟨∆, return e ; S⟩ −→ halt(v)
(R-HALT)

Figure 5: Small-step operational semantics for statements in FW.
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Expression Typing:

Γ ⊢ null : null

i ∈ I
Γ ⊢ i : int

(T-NULL, T-INT)

funType(f) = T → T

⊢ &f : T → T

{x 7→ T} ∈ Γ

Γ ⊢ x : T
(T-FUN, T-VAR)

Γ ⊢ e0 : T0, . . . , Γ ⊢ en : Tn
Γ ⊢ {n : e} : {T n} (T-RECORD)

Γ ⊢ e0 : T0, . . . , Γ ⊢ en : Tn
Γ ⊢ [e] : [T0 ∨ . . . ∨ Tn]

(T-LIST)

Γ ⊢ e1 : [T] Γ ⊢ e2 : int

Γ ⊢ e1[e2] : T
(T-LACCESS)

Γ ⊢ e : T ert(T) = {. . . , Ti f, . . .}
Γ ⊢ e.f : Ti

(T-FACCESS)

Effective Record Type:

ert({T f}) = {T f}

T′1 = ert(T1) = {T f} T′2 = ert(T2) = {T′ f′}
F = dom(T′1) ∩ dom(T′2)

T3 = {T f | f ∈ F ∧ T = T′1[f] ∨ T′2[f]}
ert(T1 ∨ T2) = T3

Figure 6: Typing rules for expressions in Featherweight Whiley.

4.3 Typing Expressions
The typing rules for expressions are given in Figure 6. These are presented using judgements of the
form Γ ⊢ e : T, which are taken to mean that under typing environment Γ, expression e has type T. Here,
funType(f) gives the static type of function f.

The effective record type (ERT) for type T is given by ert(T). This is necessary for handling unions of
records which have fields in common. The following illustrates:

ert
(
{int x, [int] dt} ∨ {any x}

)
= {any x}

ert
(
{int x} ∨ {[int] x, int cd}

)
= {(int ∨ [int]) x}

ert
(
{int x, [int] dt} ∨ [int]

)
= {}

ert
(
µX.{int x, (X ∨ null) n}

)
= ert

(
{int x, (µX.{int x, (X ∨ null) n} ∨ null) n}

)
= {int x, (µX.{int x, ...} ∨ null) n}

For a union of records, the ERT is formed from those fields common to all by taking the LUB of their types.
This identifies those fields (if any) which may be accessed on such a type.

Finally, rule T-LIST from Figure 6 indicates the type of a list constructor is the LUB of all element
types:

⊢ [1,[1]] : [int ∨ [int]]
⊢ [[],[1]] : [[void] ⊔ [int]] =⇒ [[int]]

Using the LUB of the element types ensures we always get the most precise type for a list constructor.

4.4 Typing Statements
As expected, typing statements in FW takes a somewhat different approach than normal. When typing a
statement, we need to describe its effect on the typing environment. The typing rules are given in Figure 7.
These rules are presented as judgements of the form Γ ⊢ S : Γ′. Here, Γ represents the typing environment
immediately before S, whilst Γ′ represents that which holds immediately after. Thus, the effect of statement
S is captured in the difference between Γ and Γ′. To clarify this, consider the simplest example:
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int f(string x, string y):
x = 11

return x2

Γ1 = {x 7→string, y 7→string} gives the environment immediately before the assignment. Applying T-
VASSIGN from Figure 7 yields the typing environment immediately after it, namely Γ2 = {x 7→int, y 7→string}.
Thus, the type of x is updated from string to int by the assignment.

Rule T-FASSIGN from Figure 7 makes use of the function upert(T1, f, T2), which returns an updated
version of T1 where field f now how has type T2. For unions of records this updates the field across all
elements:

define LL as {int dt, LL nxt} | null

int f(LL link):
if link != null1:

link.dt = [1]2

return 03

...

The typing environments determined for this function are:

Γ1 =
{
link 7→ µX.({int dt, X nxt} ∨ null)

}
Γ2 =

{
link 7→ {int dt, µX.({int dt, X nxt} ∨ null) nxt}

}
Γ3 =

{
link 7→ {[int] dt, µX.({int dt, X nxt} ∨ null) nxt}

}
Here, the null test removes the possibility of link being null in the true branch. Then, the assignment
updates the type of field dt from int to [int].
Rule T-LASSIGN also behaves somewhat unexpectedly:

[int|[int]] f([int] xs):
if |xs| > 1:

xs[0] = [1]
return xs

Variable xs has type [int ∨ [int]] after the assignment as it now contains an element of [int] type. Of
course, there are limitations on how well the type system can reason about list updates:

[[int]] f(int y):
xs = [1]
xs[0] = [1]
return xs

Whilst xs must hold a value of type [[int]] at the return statement, the type system cannot prove this. The
type of xs at this point is (conservatively) determined as [int ∨ [int]] and, hence, this program is rejected.

Rule T-RETURN uses thisFunType (which holds the enclosing function’s type) to check the returned
expression satisfies the required return type. The environment determined after a return statement is ⊥
(the subtype of all typing environments). Consider the following:

int f(int x):
if x == 01:

return 02

else:
y = x + 13

return y4

The typing environment which holds before “return y” is:

Γ4 = ⊥ ⊔ {x 7→ int, y 7→ int} =⇒ {x 7→ int, y 7→ int}

The special environment ⊥ is needed to ensure y retains its type at this point, since y is not defined on the
true branch.

Finally, rule T-WHILE must determine the (least) fixed-point of the typing environment which holds
within the body (as is common for flow-sensitive program analysis). This is more complicated than usual
as, in some cases, fixed-point iteration is not guaranteed to terminate — we return to discuss this in the
following section. This rule is also one reason we’re interested in efficient equivalence testing of types
(recall §3.4). This is because testing for the fixed-point generates a lot of type equivalence tests.
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Statement Typing:

Γ0 ⊢ S1 : Γ1 Γ1 ⊢ S2 : Γ2
Γ0 ⊢ S1; S2 : Γ2

(T-SEQ)

Γ ⊢ e : T

Γ ⊢ n=e : Γ[n 7→T]
(T-VASSIGN)

Γ ⊢ n : T1 Γ ⊢ e : T2 ert(T1) = {T f}
Γ ⊢ n.f=e : Γ[n 7→ upert(T1, f, T2)]

(T-FASSIGN)

Γ ⊢ n : [T1] Γ ⊢ e1 : int Γ ⊢ e2 : T2
Γ ⊢ n[e1]=e2 : Γ[n 7→ [T1∨T2]]

(T-LASSIGN)

Γ ⊢ e : T → T

Γ ⊢ e : T′ T′ ≤ T

Γ ⊢ n = e(e) : Γ[n 7→ T]

(T-INVOKE)

Γ ⊢ e : T T ≤ Tr
thisFunType = T → Tr

Γ ⊢ return e : ⊥
(T-RETURN)

Γ0 ⊢ v : T1 Γ3 = Γ1 ⊔ Γ2
Γ0[v 7→ T1⊓T2] ⊢ S : Γ1 Γ0[v 7→ T1−T2] ⊢ S′ : Γ2

Γ0 ⊢ if v is T2 : {S} else {S′} : Γ3

(T-IF)

Γ0 ⊔ Γ1 ⊢ S : Γ1
Γ0 ⊔ Γ1 ⊢ e1 : int Γ0 ⊔ Γ1 ⊢ e2 : int

Γ0 ⊢ while e1 ≤ e2 {S} : Γ0 ⊔ Γ1

(T-WHILE)

Update Effective Record Type:

T1 = {T f}
upert(T1, fj, T2) = T1[fj 7→ T2]

T4 = upert(T1, f, T3) ∨ upert(T2, f, T3)

upert(T1 ∨ T2, f, T3) = T4

Figure 7: Typing rules for statements in FW.

5 Termination and Soundness
In this section, we prove two important properties for FW, namely: soundness and termination. Proving
termination of FW’s typing algorithm depends on showing the type environments Γ0, . . . , Γn for rule T-
WHILE are monotonically increasing and, hence, always reach a fixed point. Unfortunately, by itself, this
is not enough as the lattice has infinite height — however, we show how widening can be used to ensure
termination without any loss of precision. Soundness requires that every well-typed program, when given
appropriate input, will execute without getting stuck.

5.1 Termination
Showing termination of the typing algorithm relies on showing that we have a join-semi lattice (i.e. of the
subtype relation) and that the transfer functions (i.e. the statement typing rules) are monotonic. However,
these properties alone are insufficient to show termination of the typing rule T-WHILE from Figure 7. This
is because the lattice of types has infinite height and, hence, the fixed-point algorithm may ascend it forever.
To address this, we identify the special cases where it may happen, and demonstrate that widening can be
employed to ensure termination without loss of precision. That is, assuming widening is performed at the
correct point, the resulting typing for any program will be as precise as is possible.

18



As an example, consider the following simple FW function:

define LoopyList as [int | LoopyList]

LoopyList loopy(int n):
x = [0]1

while |x| < n:
x[0] = x2

return x

This method will cause a naive fix-point implementation of rule T-WHILE from Figure 7 to iterate forever.
The following illustrates the environments that would be produced:

Γ1 = {n 7→ int, x 7→ [int]}
Γ2 = {n 7→ int, x 7→ [int]}
Γ2 = {n 7→ int, x 7→ [int ∨ [int]]}
Γ2 = {n 7→ int, x 7→ [int ∨ [int ∨ [int]]]}
Γ2 = {n 7→ int, x 7→ [int ∨ [int ∨ [int ∨ [int]]]]}
. . .

We can see that the type of x is essentially growing on every iteration of T-WHILE. Informally, we refer to
this behaviour as being divergent (with respect to typing). Now, the crucial observation is that we can, in
fact, give a precise type for x in Γ2, namely µX.[int ∨ X]. Thus, the algorithm must infer this type from
the divergent behaviour, as follows:

Γ2 = {n 7→ int, x 7→ [int ∨ [int ∨ [int]]]}
Γ2 = {n 7→ int, x 7→ [int ∨ [int ∨ [int ∨ [int]]]]}
. . .
Γ2 = {n 7→ int, x 7→ µX.[int ∨ X]}
Γ2 = {n 7→ int, x 7→ [int∨µX.[int ∨ X]]}

At this point, the computation terminates because µX.[int ∨ X] ≡ [int∨µX.[int ∨ X]] under Definition 3.
The technique used here is often referred to as widening in the program analysis literature (see e.g. [57, 58,
59]) and, generally speaking, results in lost precision. However, in our setting, widening does not lose
precision (although it is necessary to ensure termination).

Lemma 3 (Monotonicity) Let Γ1 ⊢ S : Γ2 and Γ′1 ⊢ S : Γ′2 be typing environments. If Γ1 ≤ Γ′1, then Γ2 ≤ Γ′2.

Proof 5 Straightforward by inspection of Figure 7.

Definition 15 (Divergence) Let Γ1 Z=⇒ S denote a diverging typing problem where Γ1 ⊢ S : Γ2, Γ2 ⊢ S : Γ3, . . .
is an infinite sequence such that ∀i.[Γi < Γi+1].

Lemma 4 (Divergence) For a diverging typing problem Γ1 Z=⇒ S, a variable x exists where Γi(x) < Γi+1(x)
occurs infinitely often.

Proof 6 Straightforward as, otherwise, computation reaches a fixed point in finitely many steps as we have
finitely many variables.

Definition 16 Let T1JT2K indicate type T1 contains T2 as one (or more) subcomponents.

Definition 17 (Induction Variable) A diverging typing problem Γ1 Z=⇒ S is said to diverge on a variable
x if Γi(x) ≡ TJΓj(x)K for i > j occurs infinitely often.

Lemma 5 (Induction Variable) Every diverging typing problem Γ1 Z=⇒ S is diverging upon at least one
variable x.

Proof 7 Let xi denote those variables where Γi(xi) < Γi+1(xi) occurs infinitely often (Lemma 4). Then,
there are infinitely many types generated for each xi. Furthermore, new types can only be generated from
constants, control-flow merges, type tests and through statements of the form xi[e2] = e1 and xi.f = e1.
Since the program structure is fixed, the divergence must stem from one or more statements of the form
xi[e1] = e2 and xi.f = e. An infinite number of types can only be generated from such statements through
divergence on xi.
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An interesting question is whether or not we can strengthen our notion of an induction variable to
say Γi(x) ≡ TJΓi+1(x)K occurs infinitely often. We have found neither counter-example nor proof, but
conjecture this is the case. However, one certainly cannot say that Γi(x) ≡ TJΓi+1(x)K for all i ≥ 1, as the
following illustrates:

x = [0]
y = 1
while ... :

x[0] = y
y = x

Here, Γ1(x) = Γ2(x) = [int]. Furthermore, Lemma 5 might appear to fall down on this example:

x = [[0]]
while ... :

x[0][0] = x[0]

This is because the key property that Γi+1(x) = TJΓi(x)K does not appear to hold. However, the above
example is not valid FW code! Rather, it’s translation would be:

x = [[0]]
while ... :

tmp = x[0]
tmp[0] = x[0]
x[0] = tmp

Thus, in this case, it follows that Γ2(tmp)=[int ∨ Γ1(tmp)], Γ3(tmp)=[int ∨ Γ1(tmp) ∨ Γ2(tmp)], etc.

Definition 18 (Least Widening) Let Γ1 Z=⇒ S be a typing problem which diverges on x. Then, a widening
of x is the least type T such that either Γ1[x 7→ T] ⊢ S : Γ2 or Γ1[x 7→ T] Z=⇒ S no longer diverges on x.

Lemma 6 (Least Widening) For a typing problem Γ1 Z=⇒ S which diverges on x, there exists a least
widening of x.

Proof 8 Following Lemma 5 we have Γi(x) ≡ TJΓj(x)K for i > j infinitely often. Pick the smallest such i

and j. Then, by construction, the least widening of x is µX.Γi(x)JΓj(x) 7→ XK.

Definition 18 indicates that a diverging typing problem may diverge on multiple independent variables.
Widening just one of them does not necessarily eliminate all divergent behaviour. However, we can simply
widen each individually until none remains.

We now return to consider the issue of showing that the least fixed point of the typing equations defined
in Figure 7 is computable. The essential idea is that, for every non-divergent problem, we can just compute
the fixed-point iteratively; but, for a divergent problem we immediately widen the diverging variable(s).
The termination theorem states that a least solution to a (possibly diverging) typing problem Γ1 ⊢ S : Γ2 can
be computed:

Theorem 3 (Termination) Given a typing environment Γ1, and a statement S, the least solution Γ2 which
satisfies Γ1 ⊢ S : Γ2 is computable.

Proof 9 Straightforward given Lemma 3, Lemma 4 and Lemma 6.

5.2 Soundness
In the following Lemmas, we use the term “closed expression” to represent an expression without free
variables. Recall from §4.1 that our semantics for expressions given in Figure 4 guarantees finite execution
traces. That is, expressions cannot execute indefinitely and will either produce a value, or halt with an error
(indicated by err):

Lemma 7 (Finite Traces) Let e1 be an arbitrary closed expression. Then, either e1;v, or e1;err.

Proof 10 Straightforward by inspection of Figure 4.

Essentially, Lemma 7 justifies our use of a big-step operational semantics for expressions, as it means
we do not need to consider the case of non-terminating expressions (which is known to be difficult with a
big-step operational semantics, and one important reason for using small-step [60]). As a result, our type-
safety proof for expressions does not employ the usual notions of progress and preservation. Instead, we
can prove type-safety directly as follows:
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Lemma 8 (Effective Record Type) Let ert(T) = {T f} for some type T. Then T ≤ {T f}.

Proof 11 Looking at Figure 6 there are two rules defining ert(T). The case for ert({T n}) follows
immediately, whilst ert(T1 ∨ T2) follows if we observe that T1 ≤ T′1 and T2 ≤ T′2 (by induction), and
{T′1, T′2} ≤ T3. This latter because T3 includes only fields present in both, and determines the type of each
field f from the least upper bound of its type in T′1 and T′2.

Lemma 9 (Expression Safety) Let e be a well-typed, closed expression (i.e. ⊢ e : Te). Then, e ; v where
⊢ v : Tv and Tv ≤ Te.

Proof 12 By induction on the structure of e : Te. The T-NULL, T-INT and T-REAL cases are immediate,
since e in these cases is a value.

• Case “{f : ef}”: Induction hypothesis guarantees, for each field f with initialiser ef : Tf, that
ef;vf where ⊢ vf : T

′
f and T′f ≤ Tf. Thus, ⊢ {f : ef};{f : vf} : Tv and so Tv ≤ Te since we

have {T′f f} ≤ {Tf f} by S-REC.

• Case “[e]”: Induction hypothesis guarantees, for each element expression ei : Ti, that ei ; vi
where ⊢ vi : T

′
i and T′i ≤ Ti. Thus, Tv ≤ Te because T′1⊔, . . . ,⊔T′n ≤ T1⊔, . . . ,⊔Tn by Definition

11.

• Case “e1[e2]”: Induction hypothesis guarantees, for source expression e1 : [Te], that e1 ; [v] where
⊢ [v] : [T′] and [Tv] ≤ [Te]. Likewise, for the index expression, it guarantees e2 ; i where ⊢ i : int.
Thus, assuming the list access is not out-of-bounds, we have Tv ≤ Te.

• Case “e1.f”: Induction hypothesis guarantees, for source expression e1 : T1, that e1 ; v1 where
⊢ v1 : {T′f f} and {T′f f} ≤ T1. T-FACCESS also ensures that ert(T1) = {Tf f} and, hence, it fol-
lows by Lemma 8 that {T′f f} ≤ T1 ≤ {Tf f}. Finally, by S-REC, we have {T′f f}.f ≤ {Tf f}.f and,
hence, Tv ≤ Te.

At this point, we can now extend our notion of expression evaluation to include variables from the
runtime environment, as follows:

Definition 19 (Expression Evaluation) Let ∆ be a runtime environment, and e an arbitrary expression
with free variables given by freeVars(e) = x. If e[x 7→ ∆(x)] ; v where v : T, then we say e evaluates
to a value v of type T under ∆, denoted by ∆ ⊢ e;v : T.

The following notion of a safe abstraction captures the relationship between type environments and
their corresponding runtime environments:

Definition 20 (Safe Abstraction) Let Γ be a typing environment and ∆ a runtime environment. Then, Γ is
a safe abstraction of ∆, denoted Γ ≈ ∆, iff dom(Γ) ⊆ dom(∆) and, for all x ∈ dom(Γ) where Γ(x) = Tx,
∆(x) = v and ⊢ v : Tv, it holds that Tv ≤ Tx.

Observe that we cannot require dom(Γ) = dom(∆), as might be expected, since runtime environments
are the product of actual execution paths. Consider an if statement with a variable x defined only on one
branch. After the statement, x ̸∈ Γ since x was not defined on both branches. However, if execution had
proceeded through the branch where x was defined, then we would have x ∈ ∆.

Lemma 10 (Safe Join) Let Γ1 ≈ ∆1. Then, Γ1 ⊔ Γ2 ≈ ∆1 for any Γ2.

Proof 13 Straightforward, since by construction Γ1 ≤ Γ1 ⊔ Γ2 and, hence, ∀x.[Γ1(x) ≤ (Γ1 ⊔ Γ2)(x)] holds
by Definition 14.

Theorem 4 (Progress) Let ∆1 be a runtime environment and Γ1 a typing environment where Γ1 ≈ ∆1. If
Γ1 ⊢ S : Γ2, then either ⟨∆1, S ; S

′⟩ −→ ⟨∆2, S
′′⟩ or ⟨∆1, S ; S

′⟩ −→ halt(v).

Proof 14 By induction on the structure of S.

• Case “x = e ; S′”: Since Γ1 ⊢ S : Γ2 and Γ1 ≈ ∆1, it follows by T-VASSIGN that Γ1 ⊢ e : Te and,
by Lemma 9, that ∆1 ⊢ e ; v. Hence, ⟨∆1, x = e ; S′⟩ −→ ⟨∆1[x 7→ v], S′⟩.

21



• Case “x.f = e ; S′”: Since Γ1 ⊢ S : Γ2 and Γ1 ≈ ∆1, it follows by T-FASSIGN that Γ1 ⊢ x : Tx where
ert(Tx) = {T f} and, hence, ∆1 ⊢ x ; {f : v} by Lemma 9. Likewise, Γ1 ⊢ e : Te and, by Lemma 9,
∆1 ⊢ e ; v1. Hence, ⟨∆1, x.f = e ; S′⟩ −→ ⟨∆1[x 7→ v2], S

′⟩, where v2 = {f : v}[f 7→ v1].

• Case “x[e1] = e2 ; S
′”: Since Γ1 ⊢ S : Γ2 it follows by T-LASSIGN that Γ1 ⊢ e1 : int, Γ1 ⊢ e2 : T1

and Γ1 ⊢ x : [T3]. Thus, Γ1 ≈ ∆1 and Lemma 9 imply that ∆1 ⊢ e1;v1 : int, ∆1 ⊢ e2;v2 : T2
and ∆1 ⊢ x ; vx (where vx = [v]). Thus, ⟨∆1, x[e1] = e2 ; S

′⟩ −→ ⟨∆1[x 7→ v′x], S
′⟩, where v′x = vx[v1 7→ v2].

• Case “return e ; S′”: Since Γ1 ⊢ S : Γ2 and Γ1 ≈ ∆1, it follows by T-RETURN that Γ1 ⊢ e : Te and,
by Lemma 9, that ∆1 ⊢ e ; v1. Hence, ⟨∆1, return e ; S′⟩ −→ ⟨∆2, S

′′⟩ or ⟨∆1, return e⟩ −→ halt(v).

• Case “if v ∼= T : S1 else : S2”: Since Γ1 ⊢ S : Γ2 and Γ1 ≈ ∆1, it follows that ∆1 ⊢ x ; vx.
Thus, either T-IF1 or T-IF2 apply, leading to a transition of the form ⟨∆1, S⟩ −→ ⟨∆1, S

′⟩.

• Case “while e1≤e2 : S”: Since Γ1 ⊢ S : Γ2 it follows by T-WHILE that Γ1 ⊢ e1 : int and Γ2 ⊢ e2 : int.
Then, Γ1 ≈ ∆1 implies that ∆1 ⊢ e1;v1 : int and ∆1 ⊢ e2;v2 : int by Lemma 9. Thus, either
R-WHILE1 or R-WHILE2 apply, leading to a transition of the form ⟨∆1, S⟩ −→ ⟨∆2, S

′⟩.

• Case “n = e(e) ; S′”: Since Γ1 ⊢ S : Γ2 and Γ1 ≈ ∆1, it follows by T-INVOKE that ∆1 ⊢ e : T→ T,
and that ∆1 ⊢ e : S where S ≤ T. Hence, by R-INVOKE we have ⟨∆1, n = e(e) ; S′⟩ −→ ⟨∆2, S

′′⟩.

Theorem 5 (Preservation) Let ⟨∆1, S⟩ be a runtime environment and Γ1 a typing environment where
Γ1 ≈ ∆1. If Γ1 ⊢ S : Γ2 for S ̸∈{n=e(e), return e} and ⟨∆1, S⟩ −→ ⟨∆2, S

′⟩, then Γ2 ≈ ∆2.

Proof 15 By induction on the structure of S.

• Case “x = e”: By T-VASSIGN we have Γ2 = Γ1[x 7→ Te], where Γ1 ⊢ e : Te. Similarly, by R-VASSIGN,
we have ∆2 = ∆1[x 7→ v] where ∆1 ⊢ e;v : Tv. Since Γ1 ≈ ∆1, it follows that Tv ≤ Te by Lemma 9
and, hence, that Γ2 ≈ ∆2.

• Case “x.f = e”: By T-FASSIGN we have Γ1 ⊢ e : Te, Γ1 ⊢ x : Tx and Γ2 = Γ1[x 7→ T′x], where T′x is
formed from Tx by updating field f to Te. Similarly, by R-VASSIGN, we have ∆2 = ∆1[x 7→ v′] where
∆1 ⊢ e;v : Tv, ∆1(x) = {n : v} and v′ = {n : v}[f 7→ v]. Since Tv ≤ Te by Lemma 9, we have
Γ2 ≈ ∆2.

• Case “x[e1] = e2”: By T-LASSIGN we have Γ2 = Γ1[x 7→ [T1 ⊔ T2]], where Γ1 ⊢ x : [T1] and Γ1 ⊢ e2 : T2.
By R-LASSIGN, ∆1 ⊢ e1 ; i : int, ∆1 ⊢ e2 ; v : T′2, ∆1 ⊢ x ; [v] : [T′1] and, since Γ1 ≈ ∆1,
we have T′1 ≤ T1 and T′2 ≤ T2 by Lemma 9. Furthermore, ∆2 = ∆1[x 7→ [w]] where wi = v and
∀j ̸=i.[wj = vi]. So, ∆2 ⊢ x ; [w] : [T′1 ⊔ T′2] and, thus, Γ2 ≈ ∆2 since T′1 ⊔ T′2 ≤ T1 ⊔ T2.

• Case “if v ∼= T : S1 else : S2”: By T-IF we have Γ1 ⊢ S1 : Γ3 and Γ1 ⊢ S2 : Γ4, where Γ2 = Γ3 ⊔ Γ4.
Likewise, we have either ⟨∆1, S1⟩ −→ ⟨∆2, ϵ⟩ by R-IF1 and Γ3 ≈ ∆2 (by the induction hypothesis),
or ⟨∆1, S2⟩ −→ ⟨∆2, ϵ⟩ by R-IF2 and Γ4 ≈ ∆2. Thus, Γ3 ⊔ Γ4 ≈ ∆2 by Lemma 10 and, hence,
Γ2 ≈ ∆2 (since Γ2 = Γ3 ⊔ Γ4).

• Case “while e1≤e2 : S”: In executing this loop, the machine goes through a sequence of zero or
more transitions of the form ⟨∆1, S⟩ −→ ⟨∆′

1, S⟩, ⟨∆′
1, S⟩ −→ ⟨∆′′

1 , S⟩, etc. Considering T-WHILE,
we arrive at a typing Γ1 ⊔ Γn ⊢ S : Γ1 ⊔ Γn. Since Γ1 ≈ ∆1, we have by Lemma 10 that Γ1 ⊔ Γn ≈ ∆1.
Then, by the induction hypothesis, we get that Γ1 ⊔ Γn ≈ ∆′

1, Γ1 ⊔ Γn ≈ ∆′′
1 and so on.

Essentially, we limit our preservation theorem to the intraprocedural cases as typing is inherently an
intraprocedural activity. A coherence theorem handles the movement between functions:

Definition 21 (Invocation) Let ⟨∆1, S⟩ Z=⇒ ⟨∆2, S
′⟩ represent the shortest possible sequence which matches

⟨∆1, S⟩ −→ . . . −→ ⟨∆2, S
′⟩.

Theorem 6 (Coherence) Let ⟨∆1, n=e(e) ; S⟩ be a runtime environment and Γ1 a typing environment
where Γ1 ≈ ∆1. If Γ1 ⊢ n=e(e) : Γ2 and ⟨∆1, n=e(e) ; S⟩ Z=⇒ ⟨∆2, S⟩, then Γ2 ≈ ∆2.

Proof 16 By induction on the structure of the induced call graph. Let k indicate the number of function
invocations occuring in the sequence ⟨∆1, n=e(e) ; S⟩ Z=⇒ ⟨∆2, S⟩:
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• k = 0. Straightforward as, if no other function invocations occur, then Γ2 ≈ ∆2 essentially follows
immediately from Theorem 5.

• k = n. Consider the first such subsequence ⟨∆3, n=e(e) ; S′⟩ Z=⇒ ⟨∆4, S
′⟩. If Γ3 and Γ4 are the

typing environments before and after this statement, then Γ3 ≈ ∆3 by Theorem 5, and Γ4 ≈ ∆4 by
the induction hypothesis. At this point, we have reduce the problem to the k − 1 case.

6 Related Work
In this section, we concentrate primarily on work relating to Whiley’s flow-sensitive type system.

The Strongtalk system prioneered the use of structural typing for describing structures from an untyped
world (i.e. SmallTalk) [61]. It is perhaps the most closely aligned work to Whiley. The essential idea is
succinctly captured in the following quote (from [61]):

“Smalltalk is an unusually flexible and expressive language. Any type system for Smalltalk
should place a high priority on preserving its essential flavor.”

The paper hints that some form of recursive structural typing was supported, although few details are
given and no formalisation is included. Unfortunately, structural subtyping was subsequently dropped from
Strongtalk [62], in part due to the complexity of error messages produced. Although not the subject of this
paper, we believe the quality of error messages in a structural type system can be improved by storing the
names associated with types at their declarations. Then, when reporting an error, the compiler looks up the
type in question (or those isomorphic to it) and matches any name(s) in the current file, or imported files.

The work of Guha et al. focuses on flow-sensitive type checking for JavaScript [63]. This assumes
programmer annotations are given for parameters, and operates in two phases: first, a flow analysis inserts
special runtime checks; second, a standard (i.e. flow-insensitive) type checker operates on the modified
AST. The system retypes variables as a result of runtime type tests, although only simple forms are per-
mitted. Recursive data types are not supported, although structural subtyping would be a natural fit here;
furthermore, the system assumes sequential execution (true of JavaScript), since object fields can be retyped.

Tobin-Hochstadt and Felleisen consider the problem of typing previously untyped Racket (aka Scheme)
programs and develop a technique called occurrence typing [64]. Their system will retype a variable within
an expression dominated by a type test. Like Whiley, they employ union types to increase the range of
possible values from the untyped world which can be described; however, they fall short of using full
structural types for capturing arbitrary structure. Furthermore, in Racket, certain forms of aliasing are
possible, and this restricts the points at which occurrence typing is applicable.

The earlier work of Aiken et al. is similar to that of Tobin-Hochstadt and Felleisen [13]. This operates
on a function language with single-assignment semantics. They support more expressive types, but do not
consider recursive structural types. Furthermore, instead of type checking directly on the AST, conditional
set constraints are generated and solved. Following the soft typing discipline, their approach is to insert
runtime checks at points which cannot be shown type safe.

The Java Bytecode Verifier requires a flow-sensitive type checker [65]. Since locals and stack locations
are untyped in Java Bytecode, it must infer their types to ensure type safety. Like Whiley, the verifier
updates the type of a variable after an assignment, and combines types at control-flow join points using a
least upper bound operator. However, it does not update the type of a variable after an instanceof test.
Furthermore, the Java class hierarchy does not form a join semi-lattice. To deal with this, the bytecode
verifier uses a simplified least upper bound operator which ignores interfaces altogether, instead relying on
runtime checks to catch type errors (see e.g. [66]).

Type qualifiers constrain the possible values a variable may hold. CQual is a flow-sensitive qualifier
inference supporting numerous type qualifiers, including those for synchronisation and file I/O [17]. CQual
does not account for the effects of conditionals and, hence, retyping is impossible. Fähndrich and Leino dis-
cuss a system for checking non-null qualifiers in the context of C# [34]. Here, variables are annotated with
NonNull to indicate they cannot hold null. Non-null qualifiers are interesting because they require vari-
ables be retyped after conditionals (i.e. retyping v from Nullable to NonNull after v!=null). Fähndrich
and Leino hint at the use of retyping, but focus primarily on issues related to object constructors. Ekman et
al. implemented this system within the JustAdd compiler, although few details are given regarding variable
retyping [35]. Pominville et al. also briefly discuss a flow-sensitive non-null analysis built using SOOT,
which does retype variables after !=null checks [33]. The JACK tool is similar, but focuses on bytecode
verification instead [38]. JavaCOP provides an expressive language for writing type system extensions,
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including non-null types [43]. This system is flow-insensitive and cannot account for the effects of condi-
tionals; as a work around, the tool allows assignment from a nullable variable x to a non-null variable if
this is the first statement after a x!=null conditional.

Information Flow Analysis is the problem of tracking the flow of information, usually to restrict certain
flows for security reasons. The work of Hunt and Sands is relevant here, since they adopt a flow-sensitive
approach [18]. Their system is presented in the context of a simple While language not dissimilar to ours,
although they do not account for the effect of conditionals. Russo et al. use an extended version of this
system to compare dynamic and static approaches [67]. They demonstrate that a purely dynamic system
will reject programs that are considered type-safe under the Hunt and Sands system. JFlow extends Java
with statically checked flow annotations which are flow-insensitive [68]. Finally, Chugh et al. developed a
constraint-based (flow-insensitive) information flow analysis of JavaScript [69].

Typestate Analysis focuses on flow-sensitive reasoning about the state of objects, normally to enforce
temporal safety properties. Typestates are finite-state automatons which can encode usage rules for common
APIs (e.g. a file is never read before being opened), and were pioneered by Strom and Yellin [70, 71]. Fink
et al. present an interprocedural, flow-sensitive typestate verification system which is staged to reduce
overhead [72]. Bodden et al. develop an interprocedural typestate analysis which is flow-sensitive at the
intra-procedural level [73]. This is a hybrid system which attempts to eliminate all failure points statically,
but uses dynamic checks when necessary. This was later extended to include a backward propagation step
that improves precision [74].

6.1 Type Inference
Type inference is the process of inferring a type for each variable in an untyped (or partially untyped)
program. This is generally done by generating and solving either unification- (e.g. [75]) or set-constraints
(e.g. [76, 46, 77]) over the program in question.

Numerous type inference systems have been developed for object-oriented languages (e.g. [76, 78, 46,
77, 15, 16]). These, almost exclusively, assume the original program is completely untyped and employ
set constraints (see [79]) as the mechanism for inferring types. As such, they address a different problem
to that studied here. To perform type inference, such systems generate constraints from the program text,
formulate them as a directed graph and solve them using an algorithm similar to transitive closure. When
the entire program is untyped, type inference must proceed across method calls (known as interprocedural
analysis).

Gagnon et al. present a technique for converting Java Bytecode into an intermediate representation with
a single static type for each variable [80]. Key to this is the ability to infer static types for the local variables
and stack locations used in the bytecode. Since local variables are untyped in Java bytecode, this is not
always possible as they can — and often do — have different types at different points; in such situations, a
variable is split as necessary into multiple variables each with a different type.

Bierman et al. formalise the type inference mechanism to be included in C# 3.0, the latest version of
the C# language [9]. This uses a very different technique from us, known as bidirectional type checking,
which was first developed for System F by Pierce and Turner [81]. This approach is suitable for C# 3.0
which does not permit variables to have different types at different program points.

7 Conclusion
We have presented the flow-sensitive and structural type system developed for the Whiley language. This
permits variables to be declared implicitly, have multiple types within a function, and be retyped after
runtime type tests. The semantics of Whiley also allows flexible typing of updates to compound structures.
Additionally, subtyping between user-defined types is implicit. The result is a statically-typed language
which, for the most part, has the look and feel of a dynamic language. An open source implementation of
Whiley is available from http://whiley.org.

We formalised the type system using a core calculus called Featherweight Whiley (FW). We provided
both a semantic and algorithmic interpretation of types including a coinductively defined subtype relation.
The typing algorithm requires a distinct typing environment at each program point (much like flow-sensitive
program analysis). Typing environments are merged at control-flow joins, whilst a greatest lower bound
(resp. greatest difference) operator is used for retyping variables on the true (resp. false) branches of
runtime type tests. We have sketched soundness and termination properties for this system — Full details
can be found in [82].

Finally, there are several improvements to Whiley’s type system that could be considered in the future.
Most notably, the absence of generic types (i.e. type polymorphism) can result in the need for additional
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runtime type tests, compared with dynamically typed languages. The greatest difference operator, as dis-
cussed in §3.5, often produces conservative results. This could be resolved by including negation and
intersection types [46, 83].
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