
Dependency Versioning in the Wild
1st Jens Dietrich

Victoria University of Wellington
Wellington, New Zealand
jens.dietrich@vuw.ac.nz

2nd David J. Pearce
Victoria University of Wellington

Wellington, New Zealand
david.pearce@vuw.ac.nz

3rd Jacob Stringer
Massey University

Palmerston North, New Zealand
jacobstringer@windowslive.com

4th Amjed Tahir
Massey University

Palmerston North, New Zealand
a.tahir@massey.ac.nz

5th Kelly Blincoe
University of Auckland

Auckland, New Zealand
k.blincoe@auckland.ac.nz

Abstract—Many modern software systems are built on top of
existing packages (modules, components, libraries). The increas-
ing number and complexity of dependencies has given rise to
automated dependency management where package managers
resolve symbolic dependencies against a central repository. When
declaring dependencies, developers face various choices, such as
whether or not to declare a fixed version or a range of versions.
The former results in runtime behaviour that is easier to predict,
whilst the latter enables flexibility in resolution that can, for
example, prevent different versions of the same package being
included and facilitates the automated deployment of bug fixes.

We study the choices developers make across 17 different
package managers, investigating over 70 million dependencies.
This is complemented by a survey of 170 developers. We find
that many package managers support — and the respective
community adapts — flexible versioning practices. This does not
always work: developers struggle to find the sweet spot between
the predictability of fixed version dependencies, and the agility of
flexible ones, and depending on their experience, adjust practices.
We see some uptake of semantic versioning in some package
managers, supported by tools. However, there is no evidence that
projects switch to semantic versioning on a large scale.

The results of this study can guide further research into better
practices for automated dependency management, and aid the
adaptation of semantic versioning.

I. INTRODUCTION

Many modern software systems are built from existing
packages (i.e. modules, components, libraries — henceforth,
just packages). This realises a vision almost as old as software
engineering itself: that is, in order to be on par with other
parts of a modern economy, re-usable software components
must be produced and used at scale [32]. In recent years,
many systems have moved to a model where packages are
stored in a central repository that is accessed from a client-side
package manager (e.g. Maven for Java, Cargo for Rust, CPAN
for Perl, etc). Such tools access packages as required (e.g. at
build time) and, often times, have flexibility over which exact
version to use. The use of package managers has considerably
simplified the build process (compared with ad-hoc methods
used previously) and, furthermore, enabled automatic package
evolution (e.g. for the controlled propagation of security fixes
and other improvements).

One challenge now faced by software developers is decid-
ing, for a given package, on which version to depend. For
example, one can depend upon a fixed version of a given
package (i.e. “use only version 1.2.2”) or on a version range
(i.e. “use version 1.2 or better”). With fixed versions, builds
are more deterministic1, but critical fixes in later versions of
the package will not be automatically included [9]. In contrast,
version ranges have the disadvantage that builds can now fail if
changes between versions are not backwards compatible [10],
[37], [41]. On the upside, version ranges allow the package
manager to select the “best” version with respect to some met-
ric (e.g. the latest version meeting all constraints). This means
new versions which fix bugs, address security vulnerabilities,
or improve performance are automatically included whenever
dependency resolution takes place. Another benefit of version
ranges is that the package manager can handle packages that
are included multiple times by intersecting all constraints to
find a single match, thereby preventing multiple inclusions
of the same package. This problem has become exasperated
in recent times as packages have more and more (transitive)
dependencies. While some techniques exist to separate those
packages at runtime, such as the use of class loaders in
OSGi [34] or JavaScript programming patterns to avoid con-
flicts in the global namespace like jQuery’s noConflict(),
many systems are still prone to runtime version conflicts and
the DLL-hell-style bugs [40] resulting from them.

On the other hand, developers also have to understand
how incompatible changes between versions arise. Packages
are governed by multi-faceted contracts that are often only
implicitly stated [2]. This may include API signatures, se-
mantic contracts (expressed informally or formally through
pre- and postconditions), expectations on performance and
resource usage, and non-technical aspects such as licenses.
For instance, API signatures are often considered as easy
to reason about but, even for well-specified, statically typed
languages like Java, the situation is surprisingly complex: most
developers don’t understand the compatibility rules [11], tools

1Even when only fixed version dependencies are used, builds are not
necessarily guaranteed to be completely deterministic, e.g., a dependency may
itself declare further dependencies using ranges.

that try to detect incompatible evolution are incomplete [24],
and incompatible evolution that can break client packages is
common [10], [37], [20]. Semantic contract violations present
an even bigger challenge for detection. For example, updating
an API so that some parameter no longer accepts null is not
backwards compatible as it is strengthening a precondition.
Whilst such a violation could conceivably be detected using
some form of non-null static analysis [14], [31], [4], [16],
things are less clear for arbitrary contracts (e.g. JML [22], [6],
[27]). Of course, testing provides some capability here [5] but,
due to its inherent unsoundness, may easily miss violations.
Therefore, many issues caused by incompatible evolution of
packages may only be detected after deployment and, hence,
can be particularly damaging.

In practice, developers have to make trade-offs between
those two strategies, balancing the opportunities of optimised
systems with the risks of incompatibility errors. Semantic
versioning has arisen as a popular approach for managing
package evolution which uses structured versions of the form
“major.minor.micro” [36]. The idea is to associate cer-
tain compatibility guarantees with changes to parts of this
structure. For example, when increasing the minor version
of a package (e.g. 1.2.3 =⇒ 1.3.0), all changes should
be backwards compatible with previous versions at the same
major level. In contrast, incompatible changes are only
permitted between versions at the major level (e.g. 1.2.0
=⇒ 2.0.0). The challenge for developers, however, lies in
correctly following this protocol. This is because (as discussed
above) incompatible changes are sometimes subtle and hard to
spot, even for seasoned developers. Likewise, there is limited
tooling available for checking adherence to the protocol.

We are particularly interested in the adaptation of semantic
versioning. That is, given the above difficulties in sticking with
the semantic versioning protocol, what do developers do? They
might, for example, simply eschew semantic versioning alto-
gether in favour of fixed versions; or, they might throw caution
to the wind, and fully embrace semantic versioning despite
the challenges. The aim of this study is to investigate which
choices developers make across different package managers.
Looking at different package managers gives insight into the
ecosystems of specific languages (e.g. Java versus JavaScript)
and language paradigms (e.g. static versus dynamic typing).

More specifically, we (1) set out to capture the current
practice regarding how developers declare dependencies, and
(2) investigate whether and how developers change their
approach as projects mature. This is of particular interest as
provides some evidence about whether a certain approach is
working or not. Finally, as the semantic versioning scheme
was proposed to provide an elegant solution for developers
struggling to balance the conflicting goals of the different
version strategies, we (3) also look into the adaptation of
semantic versioning practices. This results in the following
three research questions:
RQ1 How do projects declare dependencies?
RQ2 Do projects change their approach as they evolve?
RQ3 How do projects adapt semantic versioning?

II. METHODOLOGY

In this section, the methodology used to acquire and analyse
data is discussed. We will discuss limitations and threats to
validity within the subsections as necessary. In the interest of
reproducibility, the scripts used to acquire, process and analyse
the data are made available in a public repository (https://
bitbucket.org/jensdietrich/lib.io-study/).

A. Dataset Acquisition

We used a data set from libraries.io2 for this study.
libraries.io is a service that tracks and indexes package
releases from 36 package managers 3. The data set contains
dependency data in CSV format that we imported into a
PostgreSQL database for further analysis and processing. In
particular, the dataset contains a dependencies table which has
versioned dependencies of packages to other packages. This
table has 71,884,555 records with dependency information for
packages from the following 17 different package managers:
Atom, Cargo, CPAN, CRAN, Dub, Elm, Haxelib, Hex, Home-
brew, Maven, NPM, NuGet, Packagist, Pub, Puppet, Pypi and
Rubygems.

Atom is a special case as it also allows users to specify
dependencies to NPM packages. However, Atom packages are
managed in a different repository 4, and we therefore decided
to keep those packages in the data set.

B. Classification Categories

Each package manager uses its own syntax in order to
declare dependencies, using a combination of package name
and version constraint. We were mainly interested in the ver-
sion constraint part that describes which version(s) of a target
package can be used, this is usually a pattern that is applied
to versions expressed as <major>.<minor>.<micro>,
sometimes followed by additional tokens, such as build num-
bers.

In order to conduct a comparative study across different
package managers, we developed a taxonomy to represent
various ways to declare dependencies. The challenge was
to strike a suitable compromise between enabling a fine-
grained analysis but still making sure that the concepts used
were sufficiently abstract to be applied to different package
managers. We developed a set of classifications (defined in
Table I) by iteratively reviewing the dependency declarations
across all package managers.

C. Classification Rules

For each dependency declaration for all package managers,
we mapped the specified version constraints to the classifica-
tions in Table I. To enable the analysis of the large dataset,
this analysis was automated by developing a set of rules that
map regular expressions to the appropriate classifications.

2https://zenodo.org/record/1196312/files/Libraries.io-open-data-1.2.0.tar.gz
[Accessed: 1 August 2018]

3https://libraries.io/about [Accessed: 1 August 2018]
4https://atom.io/packages [Accessed: 16 Jan 2019]

TABLE I
DEPENDENCY VERSION CLASSIFICATIONS

classification description
fixed A dependency on a fixed version (of another package), such as

1.2.3.
soft Dependency on a fixed version, such as 1.2.3, but the package

manager may chose another version in order to resolve dependency
constraints, using some notion of closeness or similarity.

var-micro Uses a wildcard for the micro part of the version string, such as
1.2.*, indicating that the project may depend on any version of a
package with a version number starting with 1.2. This may include
additional bounds, such as 1.2.* , < 1.2.4.

var-minor Uses a wildcard for the minor part of the version string, such as
1.*, indicating that the project may depend on any version of a
package with a version number starting with 1. This may include
an additional bound.

any Indicating that a project may use any version of the package it
depends on, the package manager has unconstrained freedom to
decide which one.

at-least Indicating a dependency on any version following a specific version
(inclusive or exclusive), such as [1.2.3,*].

at-most Indicating a dependency on any version up to a specific version
(inclusive or exclusive), such as [*,2.0.0].

range A custom range, such as [1.2.0,2.0.0), indicating that a
project depends on any version from 1.2.0 to 2.0.0. Either
range bound can be inclusive or exclusive.

latest The dependency should always be resolved to the latest version
available, possibly with some qualifier (such as latest-stable, ex-
cluding beta versions.

not A dependency is declared that explicitly excludes a certain version,
usually this is caused by a known issue in this version.

other Some custom pattern, for instance, a complex boolean formula
combining any of the resolved category.

unresolved The dependency string contains unresolved variable references.
This case occurs because libraries.io scans project metadata
such as (Maven) POMs without understanding their semantics. In a
POM, a dependency might be declared by a reference to a variable
declared elsewhere, such as $project.version.

unclassified Default value of none of the mapping rules can be applied.

Syntactic mapping: There are two possible approaches:
a syntactic mapping solely based on the syntax used, and a
semantic mapping taking into account additional interpreta-
tions of version constraints, such as how version information
is processed. To illustrate this point, consider a version con-
straint >=1.2.0,<1.3.0 (or, using an alternative syntax,
[1.2.0,1.3.0)) . Intuitively, this would be classified as
range. But semantically this corresponds to var-micro, and
some package managers offer an alternative shortcut syntax
for this, such as 1.2.*. We decided to use a purely syntactic
classification that would classify this constraint as range for
two reasons. Firstly, it is very hard to accurately implement
a semantic mapping, in particular when additional modifiers
(such as beta, rc, ..) are involved that may have special seman-
tics. Secondly, syntax constructs like wild cards are more than
just syntactic sugar for the convenience of the programmer,
they indicate that this pattern is common and/or supported
since developers follow certain rules and conventions that
guarantee a certain level of compatibility across versions
matching such a pattern. In other words, they are indications of
how the community and an individual programmer declaring
a dependency have adapted semantic versioning practices. In
this sense, >=1.2.0,<1.3.0 and 1.2.* are different, and
we wanted this difference to be reflected in our analysis.

Defining rules: Rules were developed for each package
manager by reviewing its version constraint specification.
The rules were defined using a lightweight domain-specific

language (DSL) developed for this purpose. Figure 1 shows a
sample classification rule for Maven along with a description
of the DSL used. If a version constraint matches the regular
expression in the rule, the respective classification is used. The
full set of classification rules can be found in the repository.

Fig. 1. Sample Classification Rule and description of domain-specific
language employed

For a given rule file, rules are applied top to bottom. If none
of the mapping rules can be applied, the default classification
unclassified was used. This usually indicated that the version
string is invalid with respect to the package manager speci-
fication. Maven is a special case here. The Maven repository
and infrastructure is used by different build tools that may
use a different syntax to express version constraints. Our
classification script (see below) supports the syntax being used
by the major package managers (maven, ivy and gradle), but
may fail to classify a dependency that uses syntax from a more
exotic tool. In this case, unclassified is used.

Verifying rules: We verified the accuracy of the classifi-
cation using the following process. Firstly, the rule DSL has
built-in support for writing tests that check whether certain pat-
terns are classified as expected. These tests are checked before
the classification is computed, and the process fails if any of
the tests fail. Secondly, rule sets were peer-reviewed. For this
purpose, a script was developed that created random samples
containing version constraints and their associated classifica-
tions (obtained using the regular expressions described above).
These were manually peer-reviewed and compared against the
specification of the respective package manager. The size of
the samples was set to obtain a 95% confidence level and a
5-10% confidence interval, additional samples were generated
for classifications that were under-represented in the sample
to ensure at least 10 records for each classification used for
a particular package manager were reviewed. The rules were
revised as needed and the peer-review repeated until all version
constraints in the sample were correctly classified.

D. Classification Aggregation

While the classification scheme provides a fine-grained view
on the various patterns used, it is sometimes useful to consider
dependency versioning from a more abstract point of view
where we are interested to distinguish between the declaration
of fixed versions and variable versions of some kind. Since
one of the goals of this study is to investigate the uptake
of semantic versioning, we also consider syntax that directly
supports semantic versioning practices.

The aggregation of classification categories is defined by
the following set of rules, using a simple rule syntax:

SEMVER := var−micro | var−minor
FLEXIBLE := r a n g e | s o f t | any | l a t e s t | n o t |

a t−l e a s t | a t−most
FIXED := f i x e d
OTHER := o t h e r | u n r e s o l v e d | u n c l a s s i f i e d

The semantics of the rules is straight forward: if a depen-
dency is classified using any category in the body (right side)
of the rule, then it is classified in the category in the head (left
side) of the rule.

E. Version Ordering

In order to answer RQ2, it was necessary to identify the
first and the last version of each project in the dataset. Using
a naive lexicographical order of version strings is not sufficient
to achieve this with a sufficient level of accuracy, for in-
stance, while this would yield 1.2.3 < 1.2.4 as expected,
this method would also result in 1.2.10 < 1.2.9. We
therefore opted for an more accurate approach to first sani-
tise version strings (removing leading “r” or “R” preceding
version strings), then to tokenise leading substrings matching
\d+(\.\d+)* and comparing versions by comparing those
numerical tokens from left to right. This was then implemented
in a script that produced a table consisting of project name,
first version, and last version for each package manager. Those
tables were then sampled and peer-reviewed in order to ensure
a sufficient level of accuracy.

We did not consider the semantics of additional strings fol-
lowing the numeric parts of the version, (such as “-alpha”,
“-beta”, or “rc1”), and used the lexicographical order for
those suffixes. The reason for this decision was that there is a
large number of custom prefixes (including hashes referring
to commits), that are often platform– and project-specific.
This can lead to cases where our method may not be able
to extract the very first or the very last version in the dataset.
For instance, we infer 1.2.3-ga < 1.2.3-rc which is
incorrect if one takes the meaning of the respective suffixes
(-ga – general availability, -rc – release candidate) into
account. However, we are confident that the first version our
approach extracts always precedes the last version.

F. Adaptation of Semantic Versioning

To address RQ3, we needed to identify the stance pack-
age managers take towards semantic versioning and the
tools used to support semantic versioning. To do this,
we canvassed specifications and other documentation for
the relevant package managers looking for explicit state-
ments about semantic versioning and its application; like-
wise, we exercised the tools themselves to check what
level of support they provided and, finally, we explored
the availability of third-party tools and libraries to support
semantic versioning. To do the latter, we conducted two
searches for each package manager. First, we searched online
using the Google search query: “PKGMGR (semver OR

"semantic versioning")”, where “PKGMGR” was re-
placed with the name of the package manager in question (e.g.
Cargo); secondly, we located the associated online package
repository and used its search tool with the query “semver
"semantic versioning"”. In both cases, we restricted
ourselves to exploring the first twenty results reported 5. We
also considered any tool that was mentioned in the responses
to survey question 4 (see Section II-G).

G. Survey

To supplement the analysis of the libraries.io data
and gain some insights into the intention of programmers using
a particular strategy, a survey was created that asked develop-
ers about their declaration habits for dependency management.
The survey was circulated by email during August 2018 to the
authors’ industry contacts, and often was further disseminated
by the participating developers to others in their companies and
beyond. It was also presented to a local professional developer
group, where several developers present participated, and
posted on public forums such as HackerNews. Since we did
not have access to the member lists of some of the groups we
used and posted to open forums, we were not able to measure
the response rate.

Survey participants: The 170 responses came from a
broad range of locations across Europe, North America and
Australasia, in addition to about 20 responses from other
locations. There was a broad range of experience levels: 0-
2 years (9), 2-5 years (27), 5-10 years (43), 10-20 years (66)
and 20 or more years (24). We also asked participants which
package managers they had used (results in Table II), which
shows good coverage of the package managers represented in
the libraries.io data set. There is only a single system
none of the participants is using (Dub). Many respondents
reported they use multiple package managers (86 use 3, 48
use 4, and 20 use 5).

TABLE II
PACKAGE MANAGERS USED BY SURVEY PARTICIPANTS.

Package Manager # Participants Package Manager # Participants
NPM 90 Atom 8
Pypi 56 CRAN 7
Homebrew 55 Elm 4
Maven 46 Puppet 4
Rubygems 29 Hex 2
Cargo 22 Haxelib 1
NuGet 22 Pub 1
CPAN 15 Dub 0
Packagist 11 Other 50

Survey design: In addition to the developer metadata dis-
cussed above, the survey then asked the following questions:

1) How familiar are you with Semantic Versioning? (On a
scale of 1-5)

2) How do you declare dependencies to libraries?
a) Always using fixed version.
b) Always using version ranges.

5The searches were respectively conducted on 17th and 18th Jan, 2019.

c) Both depending on the context.
d) Adopting the styles of others (e.g. copy paste).

3) Has your approach to declaring dependencies changed
over time?

4) Do you use any tools to help you version your code?
5) Additional comments about your approach to depen-

dency management.
Free form responses were provided to answer those ques-

tions in more detail where the respondent wished to elaborate.
These proved valuable in gaining insight into the thought
processes that underpin the decisions developers make when
managing dependencies.

III. HOW PROJECTS DECLARE DEPENDENCIES (RQ1)

Table III shows how the version constraints were classified
for each package manager using the methodology described in
Sections II-B and II-C. The table also contains the number
of records in the data set for each package manager in column
two, where each record represents a single dependency of a
version of a package to some version of another package. It
is notable that the number of records varies by a factor of
over 104 between the package managers with the smallest
(Homebrew, 4,886) and the the largest number of records
(NPM, 52,886,593).

Considering the data in Table III, the kind of dependency
versioning syntax used differs significantly between package
managers, and no common pattern emerges. Table IV provides
a more abstract view on the data, using the aggregation rules
discussed in Section II-D. It appears that there is a preference
towards some kind of flexible dependency versioning decla-
ration in all package managers, with significant uptake of a
semantic-versioning style syntax in Atom, Cargo, Hex, NPM
and Rubygems.

We note however that we only measured the syntax being
used, not the intent of the engineer. In particular, there is one
package manager where those two aspects may not be aligned
– Maven. In Maven, 85.7% of dependencies are declared
using the soft version syntax. We think that many developers
look up libraries using the maven repository search engine
(https://mvnrepository.com/), and copy and paste dependency
declaration snippets into the project’s pom.xml or equivalent
build files (for gradle, ivy, etc). These snippets use the soft
version syntax, and it is not clear (1) how many developers
actually understand that this is not a fixed version and (2) how
often Maven resolves this to a different version than what
is declared in actual builds using dependency management,
mediation and exclusions 6. We believe that many developers
are not aware of the difference and Maven will, in most
cases, resolve the reference to the very version declared,
indicating that Maven is actually an example of a system
where developers take a conservative approach that favours
fixed versions.

6https://maven.apache.org/guides/introduction/
introduction-to-dependency-mechanism.html [Accessed: 18 December
18]

Elm and Homebrew stand out as both use only one partic-
ular versioning strategy. All Elm dependencies are declared
using the version range syntax. This is the only syntax
supported 7, and the dependency version is generated by the
elm package install command. This is consistent with
the overall approach of Elm to automate versioning and to
limit the control developers have. See Section V for more
information about how Elm adapts semantic versioning.

All Homebrew packages use the any syntax, granting full
flexibility to the package manager to resolve dependencies.
This is despite Homebrew offering a syntax for versioned
dependencies – a minimum version can be declared as
additional dependency information 8.

RQ1 How do projects declare dependencies ?
All package managers investigated use predominantly some
form of flexible dependency version syntax, whilst some
systems make extensive use of semantic versioning syntax. We
note, however, that for Maven, it is unclear whether developers
use the flexible versioning syntax intentionally.

IV. CHANGING DEPENDENCY VERSIONING PRACTICES AS
PROJECTS EVOLVE (RQ2)

In order to answer RQ2, we extracted the first and the
last version of each project, which were identified using the
methodology described in Section II-E. We then compared the
dependencies declared in the first and last version. We anal-
ysed only the projects that had at least two versions, since this
allowed us to investigate evolution of declared dependencies
over time. Table V shows some metrics, including the number
of projects and the number of projects with only one version
for each package manager. The majority of projects have more
than one version in the data set, with the exception of the
projects using Homebrew.

Table V also shows the average number of versions per
project and the respective standard deviations. Those numbers
indicate that projects are typically represented by large version
ranges, with a significant variation between projects. For in-
stance, there are 33 NPM projects with 1,000 or more versions
in the dataset, and a further 2,584 projects with between 100
and 999 versions. The project with the most versions is wix-
style-react — it provides common React UI components, with
3,550 versions (ranging from 1.0.0 to 1.1.3547). The large
version ranges reflect the trend towards shorter, often highly
automated build and release cycles.

Finally, Table V compares the number of declared depen-
dencies the first and the last version for each project, com-
puted using the methodology described in Section II-E. The
data indicates that the number of dependencies significantly
increases over time for projects in all package managers except
Homebrew, where the number stays constant. If we consider
external dependencies as a source of complexity of a system,
this confirms Lehmann’s first and second law of software

7Although there is no schema that formally defined the syntax of the
package manifest elm-package.json

8https://docs.brew.sh/Formula-Cookbook [Accessed: 18 December 2018]

TABLE III
DEPENDENCY VERSION CLASSIFICATION

total fixed soft var-micro var-minor any at-least at-most range latest not other unresolved unclassified
Atom 215,433 17.69% 0% 18.53% 57.26% 1.76% 2.32% 0.1% 0.08% 0.93% 0% 1.26% 0% 0.07%
CPAN 2,406,593 0% 0% 0% 0% 63.14% 36.84% 0% 0% 0% 0% 0.01% 0% 0%
CRAN 277,856 0% 0% 0% 0% 80.41% 19.58% 0.01% 0% 0% 0% 0% 0% 0%
Cargo 350,862 2.92% 0% 72.86% 16.32% 6.37% 1.2% 0.02% 0.3% 0% 0% 0% 0% 0%
Dub 11,410 6.92% 0% 23.07% 2.15% 8.23% 37.09% 0% 13.94% 0% 0% 8.59% 0% 0.01%
Elm 16,450 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0% 0%
Haxelib 5,776 39.87% 0% 0% 0% 60.13% 0% 0% 0% 0% 0% 0% 0% 0%
Hex 50,227 7.24% 0% 36.81% 44.72% 0% 6.99% 0.02% 0.36% 0% 0% 3.86% 0% 0%
Homebrew 4,886 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%
Maven 3,592,035 0.03% 85.7% 0.05% 0.03% 0% 0.37% 0% 0.77% 0.01% 0% 0.01% 13.04% 0.01%
NPM 52,886,593 16.48% 0% 21.61% 56.69% 2.92% 0.72% 0.01% 0.08% 0.8% 0% 0.58% 0% 0.1%
NuGet 3,097,666 6.91% 0% 0% 0% 0.01% 87.14% 0.02% 5.91% 0% 0% 0% 0% 0%
Packagist 4,178,062 11.41% 0.02% 14.21% 8.02% 7.9% 3.39% 0.11% 54.29% 0% 0% 0.66% 0% 0%
Pub 119,810 1.69% 0% 0% 0% 17.1% 5.92% 0.1% 73.61% 0% 0% 1.57% 0% 0%
Puppet 57,292 5.79% 0% 0.86% 3.11% 0% 56.64% 0.35% 33.04% 0% 0% 0% 0% 0.21%
Pypi 126,536 11.78% 0% 0% 0% 49.51% 33% 0.71% 4.97% 0% 0% 0% 0% 0.03%
Rubygems 4,487,068 4.59% 0% 14.87% 29.42% 0% 49.25% 0.23% 1.62% 0% 0.02% 0% 0% 0%

TABLE IV
AGGREGATED DEPENDENCY VERSION CLASSIFICATION

total FIXED FLEXIBLE OTHER SEMVER
Atom 215,433 17.69% 5.19% 1.33% 75.78%
CPAN 2,406,593 0% 99.99% 0.01% 0%
CRAN 277,856 0% 100% 0% 0%
Cargo 350,862 2.92% 7.89% 0% 89.19%
Dub 11,410 6.92% 59.26% 8.6% 25.21%
Elm 16,450 0% 100% 0% 0%
Haxelib 5,776 39.87% 60.13% 0% 0%
Hex 50,227 7.24% 7.37% 3.86% 81.52%
Homebrew 4,886 0% 100% 0% 0%
Maven 3,592,035 0.03% 86.85% 13.05% 0.07%
NPM 52,886,593 16.48% 4.54% 0.68% 78.3%
NuGet 3,097,666 6.91% 93.09% 0% 0%
Packagist 4,178,062 11.41% 65.7% 0.66% 22.23%
Pub 119,810 1.69% 96.73% 1.57% 0%
Puppet 57,292 5.79% 90.03% 0.21% 3.97%
Pypi 126,536 11.78% 88.19% 0.03% 0%
Rubygems 4,487,068 4.59% 51.12% 0% 44.29%

TABLE V
PROJECT EVOLUTION BY PACKAGE MANAGER (PROJ - PROJECT COUNT,
ONE - PROJECTS WITH ONLY ONE VERSION, AVG/STDEV - AVERAGE /
STANDARD DEVIATION OF NUMBER OF VERSIONS PER PROJECT, AVG1 /

STDEV1 - AVERAGE / STANDARD DEVIATION OF NUMBER OF
DEPENDENCIES IN FIRST VERSION, AVGL / STDL - AVERAGE /

STANDARD DEVIATION OF NUMBER OF DEPENDENCIES IN LAST VERSION

PROJ ONE AVG STDEV AVG1 STDEV1 AVGL STDEVL
Cargo 11,251 3,236 6.13 9.56 3.85 3.54 4.86 4.39
Maven 63,497 16,952 9.96 23.23 5.03 6.3 5.3 7.01
CRAN 11,646 3,223 5.56 8.75 3.54 3.87 6.05 5.98
Pypi 4,083 935 8.76 14.87 2.71 2.85 3.15 3.25
CPAN 28,015 5,055 7.49 15.04 7.24 9.33 10.87 14.34
Elm 1,273 352 4.43 6.36 2.5 1.75 2.54 1.79
Homebrew 1,806 1,784 1.01 0.13 2.77 2.61 2.77 2.61
NPM 547,338 153,412 7.34 22.52 8.75 16.16 9.76 15.78
Atom 3,845 600 11.18 22.11 2.92 3.79 4.08 5.43
Haxelib 470 188 6.06 9.84 1.8 1.26 1.89 1.31
NuGet 76,775 19,860 12.28 48.76 2.77 3.54 2.96 3.77
Dub 550 144 8.69 18.76 1.58 1.18 1.85 1.8
Packagist 104,585 28,340 7.59 16.48 3.37 3.97 4.04 4.6
Rubygems 119,942 35,671 6.41 15.35 4.19 3.41 4.89 3.95
Hex 3,667 1,248 5.4 8.01 2.14 1.56 2.33 1.7
Pub 2,867 688 9.06 17.72 3.08 2.45 3.95 3.34
Puppet 3,703 956 5.61 8.08 2.01 1.83 2.29 2.31

evolution: projects evolve and become more complex by doing
so [28]. Note that there is some additional hidden complexity
as we only measure direct, not transitive dependencies.

TABLE VI
ADAPTATION OF FLEXIBLE DEPENDENCIES BY PACKAGE MANAGER (PROJ

- PROJECT COUNT, SEMV1 / FLEX1 - PROJECTS USING SEMANTIC
VERSIONING / FLEXIBLE DEPENDENCY SYNTAX IN FIRST VERSION, SEM+

/ SEM- - PROJECTS ADAPTING / DROPPING SEMANTIC DEPENDENCY
VERSIONING SYNTAX BETWEEN FIRST AND LAST VERSION, FLEX+ /
FLEX- - PROJECTS ADAPTING / DROPPING FLEXIBLE DEPENDENCY

SYNTAX BETWEEN FIRST AND LAST VERSION

projects SEMV1 SEMV+ SEMV- FLEX1 FLEX+ FLEX-
Cargo 11,251 6,981 751 30 7,857 111 16
Maven 63,497 324 23 238 43,133 5 5
CRAN 11,646 0 0 0 8,422 0 0
Pypi 4,083 0 0 0 2,908 81 34
CPAN 28,015 0 0 0 22,960 0 0
Elm 1,273 0 0 0 921 0 0
Homebrew 1,806 0 0 0 22 0 0
NPM 547,338 336,963 10,793 5,680 370,102 5,786 5,208
Atom 3,845 2,698 151 51 2,928 90 37
Haxelib 470 0 0 0 219 20 23
NuGet 76,775 0 0 0 54,981 285 624
Dub 550 158 54 28 342 12 7
Packagist 104,585 27,295 6,140 4,860 71,314 2,593 541
Rubygems 119,942 54,001 5,503 3,200 83,207 474 263
Hex 3,667 2,096 80 50 2,213 56 9
Pub 2,867 0 0 0 2,052 24 7
Puppet 3,703 154 28 46 2,660 41 9

A. Project Level Analysis

First, we examined the dependency strategies at a high-level
by considering the strategies used across all dependencies for
each project. The results are summarised in Table VI. We
report the number of projects that use flexible / semantic
version style dependency versioning in the first version, and
add or drop those dependency versioning strategies, shown by
its presence or absence in the last version. This is based on the
aggregated classification scheme discussed in Section II-D.

As shown in Table VI, projects tend to stick to their way
of doing things, and generally resist change with very few
projects introducing new dependency versioning strategies
or completely removing existing strategies. When projects
do change their strategies, they more often move towards
using semantic versioning or otherwise flexible dependency
declarations, although there are exceptions (notably, Maven).

B. Individual Dependency Level Analysis

To complement this coarse, project-level analysis, we also
analysed how individual dependencies change over time as we

hypothesized that projects will change their versioning practice
for some, but not all, of their dependencies.

Fl
ex
i

S
em
ve
r

Fi
xe
d

same strategy
to fixed
to semver
to flexi

Percentage

Fr
om

0 10 20 30 40

36 1 2

36 2 2

17 3 1

Fig. 2. Changes in Dependency Declarations from First to Last Version

Again, we found no general trend towards or away from
flexible or semantic-versioning style dependency versioning.
Once a project chooses a dependency strategy for a particular
dependency, it is very unlikely that they will change that
strategy. Figure 2 shows the strategy changes every time a
dependency version declaration is changed. As can be seen,
nearly 90% of dependency declaration changes keep the same
dependency strategy. This shows that it is very important for
projects to consider the implications of these decisions when
adding a new dependency.

C. Developer Perspective

Interestingly, the number of survey respondents who report
to have changed their dependency declaration approach was
rather high (42%). This seems to contradict the results dis-
cussed above, we attribute this to the nature of survey partici-
pants – we believe that most participants had an over-average
level of experience and interest in managing dependencies.
Although changes in both directions were reported, changes
towards the use of fixed versions were more common 9.

Developers who reported to move away from flexible de-
pendency versioning commonly cited concerns about build
stability and the introduction of compatibility-related bugs.
The following quotes are illustrative of these concerns: 10:
“Have been burned too many times by so-called point releases
on NPM. ” [10 - 20 years experience, uses NPM, NuGet,
Pypi], “First, realizing that without fixed versions things can
break, second change was when I started using cargo which
introduced lockfile” [10 - 20 years experience, uses Cargo,

9In the survey, we have only asked “Has your approach to declaring
dependencies changed over time?”, and respondents had the option to provide
additional text to elaborate, so the above statement is based on these comments

10Each quote is followed by some summary data about the respective re-
spondent: years of experience, package managers used, and level of familiarity
with semantic versioning

Pypi, very familiar with semantic versioning], “Taking end-to-
end responsibility for software conception, development, and
deployment, requires predictable outcomes. If you do not use
fixed versions, then rebuilding an artifact to resolve an issue
identified during QA testing can cause unrelated changes that
can manifest in production.” [10 - 20 years, uses Homebrew,
Maven, very familiar with semantic versioning], “You begin
to realize how sloppy upstream people are, and the issues it
causes, so you get a bit better about it.” [10 - 20 years, uses
Homebrew, NPM, NuGet, Pypi, Rubygems, very familiar with
semantic versioning],“I used to declare version ranges, then
I realized that even version ranges cannot capture the full
“compatibility range” of a dependency .. ” [10 - 20 years,
uses NPM, Nix, very familiar with semantic versioning].

Some experienced developers report differences between
package managers, and adapt a horses-for-courses approach
“As much as Python packages claim to implement semantic
versioning, they always find a way to break something in a
minor release. No issues with Rust though.” [5 - 10 years,
uses Cargo, Pypi, very familiar with semantic versioning].
“Usually due to package maintainers not conforming 100% to
semantic versioning resulting in them shipping code that isn’t
compatible with the previous version. This is most noticeable
on npm; ..” [10 - 20 years, uses NPM, Packagist, very familiar
with semantic versioning].

This is sometimes also extended to the usage context, with a
more conservative approach taken in commercial projects: “in
serious production code, always fixed version... in open source
code, more relaxed” [20+ years, uses Homebrew, Maven,
NPM, Rubygems, very familiar with semantic versioning],
and organisation imposing rules: “At work, some packages
we are told to keep under a certain range because it is more
supported.” [2 - 5 years, uses Homebrew, Maven, NPM, not
familiar with semantic versioning].

There were also cases where developers reported
their rationale for changing towards flexible dependency
versioning practices: “Because while exact versions give you
predictability, they’re difficult to keep up to date in manually
when you have a lot of dependencies (particularly with pip;
pipenv improves on that).” [10 - 20 years, uses NPM, Pypi,
very familiar with semantic versioning], “Used to be fixed,
but .. I wanted to keep up to date and using version ranges
helped to do that automatically.” [5 - 10 years, uses NPM,
NuGet, Pypi, Others], “At the start, it felt the easiest to just
use a library and keep the fixed version. However, it ended up
being quite limiting (especially when there’s ’so many cool
new features’ that I couldn’t use). I therefore prefer accepting
a certain range of versions to keep the software ”fresh” for a
longer time.” [5 - 10 years, uses CRAN, NuGet, not familiar
with semantic versioning].

TABLE VII
INDICATIONS OF HOW SEMANTIC VERSIONING IS ADAPTED BY PACKAGE

MANAGER (SIG-SIGNIFICANT, SV - SEMVER, SH. - SHALLOW)

Explicit Default Other Tooling Supported Styles Versioning Style Uptake
Statement Tooling Sh. Deep Fix. Flex. SV Fixed Flex. SV

Atom None Shallow X × X X X sig. low high
CPAN Weak None X × X X × low high none
CRAN Weak None X × X X × none high none
Cargo Strong Shallow X X X X X low low high
Dub Soft Shallow X × X X X low high sig.
Elm Strong Deep X × × X × none high none
Haxelib Strong None X × X X × sig. high none
Hex Strong Shallow X × X X X low low high
Homebrew None None × × × X × none high none
Maven None None X X X X X low high low
NPM Soft Shallow XX X X X X sig. low high
NuGet None Shallow XX X X X × low high none
Packagist Soft Shallow XX X X X X sig. high sig.
Pub Strong Shallow X × X X × low high none
Puppet Soft Shallow × × X X X low high low
Pypi Soft None X × X X X sig. high none
Rubygems Soft Shallow X × X X X low high sig.

RQ2 Do projects change their approach as they evolve?
The number of dependencies increases as projects develop
across all package managers investigated except for Home-
brew, where it stays constant. Projects both adapt and drop
flexible and semantic version-style dependency version decla-
rations, although the number of projects changing strategy is
relatively small. Feedback from experienced developers in the
survey suggest that they often move away from flexible ver-
sioning as they have experienced compatibility-related errors,
and value stable (reproducible) builds.

V. ADAPTATION OF SEMANTIC VERSIONING (RQ3)

The results from Section III support the idea that semantic
versioning practices are being applied. For example, consider
the results for Cargo in Table III which indicate a large
proportion of var-micro dependencies. In other words, a lot
of dependencies are declared as requiring any version of a
package with the same major.minor number. This suggests
developers are assuming backwards compatibility between
packages on the micro level at least. However, we are inter-
ested in whether or not a stronger connection with semantic
versioning can be established. And, more specifically, how
different ecosystems adapt the concept of semantic versioning
to their needs.

Table VII provides the results of our analysis looking at
how semantic versioning is adapted in practice. As discussed
in Section II-F, for each package manager, we determined
whether or not explicit statements were made about using
semantic versioning and what tooling is available. An explicit
statement is an indication that semantic version should be
used in some way. We further classified these into: strong,
soft and weak statements, where: a strong statement is a
requirement that semantic versioning be used; a soft statement
is a recommendation that it should be used; finally, a weak
statement doesn’t explicitly mention semantic versioning, but
gives informal rules which have a similar intent.

Default tool support reflects the standard tooling that
comes with the package manager, and is classified into:
none, shallow and deep. Here, shallow support indicates that
syntax checking is performed on dependency versions. For

example, Cargo checks that versions conform to the format
“major.minor.micro” and, likewise, checks dependency
patterns (e.g. it accepts “1.2.*”, but rejects “1.2.*abc”
and “1.2.**”). In contrast, deep support indicates some
degree of static analysis to provide a stronger assurance that
semantic versioning is used correctly. For example, in Elm,
the command “elm bump” attempts to determine the next
appropriate version to use by comparing the current source
with the previous version.

Other tool support reflects third-party tooling aimed at
supporting the use of semantic versioning. Here, shallow tools
represent the majority of our findings and are only syntactic
in nature (where a single tick indicates 1 − 10 tools found,
and a double tick 1 − 20). Indeed, they almost all boil
down to two use cases: libraries for parsing and comparing
semantic versions; and, tools for “bumping” semantic versions
(i.e. where a user asks to increment major, minor or micro
version). An example of something which doesn’t fit these
categories is the NPM semver calculator11 which, for a given
pattern, identifies which versions match. In contrast deep tools
represent those which attempt some form of static analysis
to either generate the next semantic version, or check the
given version is correct. Since these are more interesting, we
examine them in detail:

• (Cargo) rust-semverver12 is a proof-of-concept tool
for checking backwards compatibility. This tool compares
the exposed API surface between two versions, reporting
any violations. For example, if a public method is re-
moved in the later version, then this constitutes a breaking
change and requires a different major version.

• (Maven). Revapi13, Clirr14, the Java API
Compliance Checker (JAPICC)15 and the
semantic-versioning16 library are all tools,
like rust-semverver, for checking backwards
compatibility.

• (NPM) The tool semantic-release17 provides the
main example here, and all others found either extend
this or are plugins for it. This tool determines the
next suitable version using commit messages to deter-
mine the extent of changes. For example, if one puts
“BREAKING CHANGE” in a commit message, then it
increments the major version, etc.

• (NuGet) The three tools found here,
SemVer.FromAssembly18, SemVerAdvisor19

and SpiseMisu.SemanticVersioning20 all

11https://semver.npmjs.com/ , all URLs referenced in this Section were
accessed on 16 January 19

12https://github.com/rust-dev-tools/rust-semverver
13https://revapi.org/modules/revapi-maven-plugin
14http://clirr.sourceforge.net
15https://github.com/lvc/japi-compliance-checker
16https://github.com/jeluard/semantic-versioning
17https://www.npmjs.com/package/semantic-release
18https://www.nuget.org/packages/SemVer.FromAssembly/
19https://www.nuget.org/packages/SemVerAdvisor/
20https://www.nuget.org/packages/SpiseMisu.SemanticVersioning/

check backwards compatibility based on exposed API
surface.

• (Packagist) Here the only tool identified was
semcrement which “compares structure definitions of
your project’s code in between commits”21.

We must add a precaution regarding the results obtained
for identifying third-party tools. Whilst our search approach
has yielded a good range of tools and given insight into the
relevant communities, there are certainly tools we are aware
of which were missed. These include: Japicmp22, JDK API
Diff23, JDiff24 and the SemanticVersionEnforcer25.
While those tools are often conceptually interesting, the fact
that they did not occur in search results reflects that they are
not widely known and haven’t seen significant uptake within
the respective communities.

Finally, the last three columns in Table VII provide a
compact summary of the dependency versioning syntax
observed in Section III, in particular Table IV. Uptake is
summarised as follows: >50% – strong, 10-50% – significant,
0-10% – low, 0% – none.

RQ3 How do projects adapt semantic versioning? Most
package managers encourage packages to follow semantic
versioning, though only a few require it. The majority of
package managers perform shallow checking of semantic
versions, but very few do anything beyond this. Libraries for
parsing and comparing semantic versions are widespread, and
there is some evidence of more complex third-party tooling
being developed to support proper use of semantic versioning.

VI. SURVEY RESULTS

The developer survey, described in II-G, provided further
insight into how versioning strategies are used in practice. The
majority of developers surveyed were familiar with semantic
versioning, with 73% responding as either familiar or very
familiar. Only 9% responded as being not familiar with it at
all. Interestingly, developers tended to self-identify as vary-
ing their dependency declaration strategy between fixed and
range declarations depending on the situation (45%). 32% of
developers always used fixed declarations, 11% always used
ranges, 6% followed the styles of others (e.g. copy-pasting
declarations from Maven repository), and 5% followed other
strategies.

Further comments showed that sometimes developers vary
their strategy at a library level, for example if some libraries
are perceived as better at maintaining backwards compatibility
than others, but also that developers change their strategies
between types of projects, such as commercial vs. open-source
projects. This result contrasts with the analysed dependency
declarations in Tables III and IV, which show most package

21https://packagist.org/packages/wick-ed/semcrement
22http://siom79.github.io/japicmp/
23https://github.com/AdoptOpenJDK/jdk-api-diff
24http://javadiff.sourceforge.net
25https://www.nuget.org/packages/SemanticVersionEnforcer/

managers having one main declaration style used by conven-
tion.

Developers were also asked a question about whether they
have changed their approach to declaring dependencies. In
this survey, 42% of respondents had changed their method of
dependency declarations. However, when analysing the direc-
tion of change, no clear shift to or from Semantic Versioning
was discernable. This closely mirrors the results discussed in
Section IV.

VII. RELATED WORK

A. Evolution of Software Ecosystems

Gonzalez-Barahona et al. [19] studied the growth of the
Debian Linux distribution. They found that the average size
of packages remained stable, while the overall size of the
distribution has been doubling every 2 years and the number of
dependencies increased exponentially. This is consistent with
some of our findings in Section IV on how the number of
dependencies increased.

Several authors investigated the tooling aspect of precisely
extracting and representing dependencies, this includes the
work of Lungu et. al for Smalltalk [30], German et. al. work
on [18] Debian Linux. Men’s et al. looked for evidence of
Lehmann’s laws of software evolution in the Eclipse ecosys-
tem [33], and found that Eclipse bundles adhere to the laws
of continuing change and growth.

Espinha et al. studied web APIs [15] and found a general
lack of standards and adherence to best practices. This con-
firms our finding that practices significantly differ between
ecosystems.

Bavota et al. have studied dependencies between 147 Java
Apache projects, covering 1,964 releases over 14 years [1].
They studied which changes triggered dependency upgrades
(bug fixes trigger upgrades, while changes to interfaces make
upgrades less likely), and reported that changes between
versions have generally only a limited impact on clients. The
authors do not precisely model the dependency resolution
mechanism used by the actual systems. An interesting finding
is that projects are selective when upgrading dependencies, i.e.,
if they upgrade, they do not perform all available upgrades.

Bogart et al. studied dependency practices in the CRAN,
Eclipse and NPM ecosystems [3]. They found that practices
differ significantly between ecosystems, all communities invest
in tooling to facilitate the maintenance of dependencies, and
policies change over time. We include those ecosystems in our
work 26, and the results by Bogart et al. confirm our findings
that different ecosystems develop unique characteristics.

Decan et al. studied the topology of dependency graphs
in seven ecosystems (which were all included in our
study): Cargo, CPAN, CRAN, NPM, NuGet, Packagist, and
RubyGems [8]. This study is based on the libraries.io dataset,
but does not systematically study how dependencies are ver-
sioned. Thus, it is complementary to the work presented here.

26Although we do not study the Eclipse ecosystem directly, we note that
many Java libraries that are part of the Maven ecosystem are also released as
OSGi bundles

Kikas et al. studied dependencies in the JavaScript, Ruby,
and Rust ecosystems [25], and found reveal significant differ-
ences across those systems. We make a similar observation
with respect to versioning practices in our study.

B. Problems Caused by Evolution

Robbes et al. studied the ripple effect caused by APIs
changes in the Smalltalk ecosystem [38]. They found that API
deprecation can have a significant impact on the ecosystem
in terms of broken dependencies that need fixing. Sawant et
al. studied the API deprecation mechanism in Java [39] from
the point of view of API producers and consumers and found
several shortcomings.

Dietrich et al. uses static analysis to study the impact of
problems arising from subtle binary incompatibility issues
that can break client applications which are simply relinked,
rather than being recompiled [10]. They found evidence that
breaking changes are common, although this rarely results
in issues affecting actual clients. A separate survey by the
same authors of 414 developers revealed a possible cause:
even experienced developers have only limited understanding
of the rules of binary compatibility, and this leads to a large
number of compatibility issues reported and discussed by
developers online. Xavier et al. obtained similar results, also
studying Java [41]. Raemaekers et al. work is conceptually
similar, they studied evolution on the Maven ecosystem [37].
One of their research questions was whether the adherence
to semantic versioning principles has increased over time. In
order to answer this question, they observed breaking changes
in non-major releases and observed a moderate decrease from
28.4% in 2006 to 23.7% in 2011, indicating that developers
are becoming more aware of semantic versioning.

Dietrich et al. also looked into semantic changes that effect
compatibility [12]. By harvesting contracts from code, they
identified semantic changes using evolution data from Java
programs in the Maven repository. For instance, the strength-
ening of a precondition when an API evolves is considered as
an incompatible change that may break clients.

Linares-Vásquez et al. studied the impact of the use of
fault- and change-prone APIs has on the success of Android
applications, and found that it negatively impacted the success
of apps [29]. Derr et al. also study library dependencies in
Android apps, and found large number of outdated versions
of libraries being used that could be easily upgraded, in many
cases the versions used have known vulnerabilities [9].

Pashchenko et al. studied the impact of vulnerabilities in
open-source libraries and, to get industrial relevance, selected
libraries used in commercial SAP products [35]. They found
that most (but not all) vulnerabilities can be fixed by simply
updating dependencies, which highlights the importance of
versioning schemes that facilitate safe, automated dependency
resolution. Kula et al. conducted a similar study on GitHub
projects using Maven dependencies, and found that 81.5% of
the systems studied kept outdated dependencies, and develop-
ers are often unaware of vulnerabilities in libraries they depend
on [26].

C. Tool Support for Dependency Management

There are several studies on how to migrate client code
to adapt to changing dependencies, including the work of
Cossette and Walker [7] and Dig and Johnson [13] to classify
API changes and to automatically recommend and generate
refactorings. Henkel and Diwan [21] propose catchup, a tool
to record the refactorings used to change APIs, and use those
recorings to adapt clients. In all those papers, smaller sets of
Java programs were studied.

Jezek et al. reviewed and benchmarked several API com-
patibility checkers [24], focusing on Java source and binary
compatibility issues studied in their previous work [10]. They
also suggested a modified Java compiler that produced byte
code that avoids some binary incompatibility issues [23]. This
automates the refactoring process suggested by other authors
[7],[13] for certain types of compatibilities.

Foo et al. report on an API incompatibility checker that uses
static analysis [17]. A statically constructed callgraph is used
to detect deep changes that can effect compatibility. The tool
works for the Maven Central, PyPI, and RubyGems ecosys-
tems, and the authors report that based on the experiments with
the tools, 26% of library versions are in violation of semantic
versioning. The analysis suffers from the imprecision of the
static analysis being used (VTA).

D. Summary

There is a large body of work on software ecosystems
and evolution, and any discussion of selected work has to be
selective. We notice the following main points:

1) Empirical studies often use Java (usually Maven, older
studies often use Eclipse), some of the other systems we
are interested in are either under-represented, or ignored
altogether. The only other study we are aware of that
tries to capture practices across a wide range of package
managers is [8].

2) There is plenty of evidence in existing work that both
upgrading and not upgrading dependencies can have
an adverse effect through compatibility issues and not-
addressed faults in dependencies, respectively.

3) There is ongoing research in how to provision better
tools to facilitate dependency management.

VIII. CONCLUSION

We have studied how developers declare dependencies
across 17 different package managers, investigating over 70
million dependencies. We find that many package managers
support and the respective communities adapt flexible version-
ing practices. Additional insights gained from the complemen-
tary survey indicate that this does not always work, developers
struggle to find the sweet spot between the predictability of
fixed version dependencies, and the agility of flexible ones, and
depending on their experience, adjust practices. We see uptake
of semantic versioning in some package managers, supported
by tools. However, there is no evidence that projects switch to
semantic versioning on a large scale. Interesting topics for
future research include more detailed analysis of what the

technological and social barriers to the wider adaptation of
semantic versioning are, and how particular communities deal
with this.

REFERENCES

[1] G. Bavota, G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella. How
the apache community upgrades dependencies: an evolutionary study.
Empirical Software Engineering, 20(5):1275–1317, 2015.

[2] A. Beugnard, J.-M. Jézéquel, N. Plouzeau, and D. Watkins. Making
components contract aware. Computer, 32(7):38–45, 1999.

[3] C. Bogart, C. Kästner, J. Herbsleb, and F. Thung. How to break an api:
cost negotiation and community values in three software ecosystems. In
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, pages 109–120. ACM, 2016.

[4] P. Chalin and P. R. James. Non-null references by default in Java:
Alleviating the nullity annotation burden. In Proc. ECOOP, pages 227–
247, 2007.

[5] K. Claessen and J. Hughes. QuickCheck: A Lightweight Tool for Ran-
dom Testing of Haskell Programs. In Proceedings of the International
Conference on Functional Programming (ICFP), pages 268–279. ACM,
2000.

[6] D. R. Cok and J. Kiniry. ESC/Java2: Uniting ESC/Java and JML. In
Proc. CASSIS, pages 108–128, 2005.

[7] B. E. Cossette and R. J. Walker. Seeking the ground truth: a retroactive
study on the evolution and migration of software libraries. In Pro-
ceedings of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering, page 55. ACM, 2012.

[8] A. Decan, T. Mens, and P. Grosjean. An empirical comparison of
dependency network evolution in seven software packaging ecosystems.
Empirical Software Engineering, pages 1–36, 2018.

[9] E. Derr, S. Bugiel, S. Fahl, Y. Acar, and M. Backes. Keep me updated:
An empirical study of third-party library updatability on android. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 2187–2200. ACM, 2017.

[10] J. Dietrich, K. Jezek, and P. Brada. Broken promises: An empirical study
into evolution problems in java programs caused by library upgrades. In
Software Maintenance, Reengineering and Reverse Engineering (CSMR-
WCRE), 2014 Software Evolution Week-IEEE Conference on, pages 64–
73. IEEE, 2014.

[11] J. Dietrich, K. Jezek, and P. Brada. What java developers know about
compatibility, and why this matters. Empirical Software Engineering,
21(3):1371–1396, 2016.

[12] J. Dietrich, D. J. Pearce, K. Jezek, and P. Brada. Contracts in the wild:
A study of java programs (artifact). In DARTS-Dagstuhl Artifacts Series,
volume 3. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[13] D. Dig and R. Johnson. How do apis evolve? a story of refactoring.
Journal of software maintenance and evolution: Research and Practice,
18(2):83–107, 2006.

[14] T. Ekman and G. Hedin. Pluggable checking and inferencing of non-null
types for Java. JOT, 6(9):455–475, 2007.

[15] T. Espinha, A. Zaidman, and H.-G. Gross. Web api growing pains:
Stories from client developers and their code. In Software Maintenance,
Reengineering and Reverse Engineering (CSMR-WCRE), 2014 Software
Evolution Week-IEEE Conference on, pages 84–93. IEEE, 2014.

[16] M. Fähndrich and K. R. M. Leino. Declaring and checking non-null
types in an object-oriented language. In Proc. OOPSLA, pages 302–
312. ACM Press, 2003.

[17] D. Foo, H. Chua, J. Yeo, M. Y. Ang, and A. Sharma. Efficient static
checking of library updates. In Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pages 791–796. ACM,
2018.

[18] D. M. German, J. M. Gonzalez-Barahona, and G. Robles. A model to
understand the building and running inter-dependencies of software. In
Reverse Engineering, 2007. WCRE 2007. 14th Working Conference on,
pages 140–149. IEEE, 2007.

[19] J. M. Gonzalez-Barahona, G. Robles, M. Michlmayr, J. J. Amor, and
D. M. German. Macro-level software evolution: a case study of a large
software compilation. Empirical Software Engineering, 14(3):262–285,
2009.

[20] D. Haney. Npm & left-pad: Have we forgotten
how to program ?, 2016. https://www.davidhaney.io/
npm-left-pad-have-we-forgotten-how-to-program/.

[21] J. Henkel and A. Diwan. Catchup! capturing and replaying refactorings
to support api evolution. In Software Engineering, 2005. ICSE 2005.
Proceedings. 27th International Conference on, pages 274–283. IEEE,
2005.

[22] B. Jacobs and E. Poll. A logic for the Java modeling language JML. In
Proc. FASE, pages 284–299. 2001.

[23] K. Jezek and J. Dietrich. Magic with dynamo–flexible cross-component
linking for java with invokedynamic. In LIPIcs-Leibniz International
Proceedings in Informatics, volume 56. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2016.

[24] K. Jezek and J. Dietrich. Api evolution and compatibility: A data corpus
and tool evaluation. Journal of Object Technology, 16(4):2, 2017.

[25] R. Kikas, G. Gousios, M. Dumas, and D. Pfahl. Structure and
evolution of package dependency networks. In Proceedings of the 14th
International Conference on Mining Software Repositories, pages 102–
112. IEEE press, 2017.

[26] R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue. Do
developers update their library dependencies? Empirical Software
Engineering, 23(1):384–417, 2018.

[27] G. T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and D. R. Cok. How
the design of JML accommodates both runtime assertion checking and
formal verification. SCP, 55(1-3):185–208, Mar. 2005.

[28] M. M. Lehman. Programs, life cycles, and laws of software evolution.
Proceedings of the IEEE, 68(9):1060–1076, 1980.

[29] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, M. Di Penta,
R. Oliveto, and D. Poshyvanyk. Api change and fault proneness: a
threat to the success of android apps. In Proceedings of the 2013 9th
joint meeting on foundations of software engineering, pages 477–487.
ACM, 2013.

[30] M. Lungu, R. Robbes, and M. Lanza. Recovering inter-project de-
pendencies in software ecosystems. In Proceedings of the IEEE/ACM
international conference on Automated software engineering, pages 309–
312. ACM, 2010.

[31] C. Male, D. Pearce, A. Potanin, and C. Dymnikov. Java bytecode
verification for @NonNull types. In Proc. CC, pages 229–244, 2008.

[32] M. D. McIlroy, J. Buxton, P. Naur, and B. Randell. Mass-produced
software components. In Proceedings of the 1st International Conference
on Software Engineering, pages 88–98, 1968.

[33] T. Mens, J. Fernández-Ramil, and S. Degrandsart. The evolution of
eclipse. In Software Maintenance, 2008. ICSM 2008. IEEE International
Conference on, pages 386–395. IEEE, 2008.

[34] OSGi Alliance. Osgi core release 7 specification, 2018. https://www.
osgi.org/release-7-1/.

[35] I. Pashchenko, H. Plate, S. E. Ponta, A. Sabetta, and F. Massacci.
Vulnerable open source dependencies: Counting those that matter. In
Proceedings of the 12th ACM/IEEE International Symposium on Em-
pirical Software Engineering and Measurement. ACM, 2018.

[36] T. Preston-Werner. Semantic versioning 2.0.0, 2018. https://semver.org/.
[37] S. Raemaekers, A. van Deursen, and J. Visser. Semantic versioning and

impact of breaking changes in the maven repository. Journal of Systems
and Software, 129:140–158, 2017.

[38] R. Robbes, M. Lungu, and D. Röthlisberger. How do developers react to
api deprecation?: the case of a smalltalk ecosystem. In Proceedings of
the ACM SIGSOFT 20th International Symposium on the Foundations
of Software Engineering, page 56. ACM, 2012.

[39] A. A. Sawant, M. Aniche, A. van Deursen, and A. Bacchelli. Un-
derstanding developers’ needs on deprecation as a language feature.
In Proceedings of the 40th ACM/IEEE International Conference on
Software Engineering (ICSE 2018), 2018.

[40] C. Szyperski. Greetings from dll hell. Software Development, 7(10),
1999.

[41] L. Xavier, A. Brito, A. Hora, and M. T. Valente. Historical and
impact analysis of api breaking changes: A large-scale study. In
Software Analysis, Evolution and Reengineering (SANER), 2017 IEEE
24th International Conference on, pages 138–147. IEEE, 2017.

