
Contracts in the Wild: a
Study of Java Programs

Jens Dietrich1 David J. Pearce2 Kamil Jezek3

Premek Brada3

1Massey University, New Zealand
2Victoria University of Wellington, New Zealand

3University of West Bohemia Pilsen, Czech Republic

Assertions

“In order that the man who checks may not have too difficult a
task the programmer should make a number of definite
assertions which can be checked individually, and from
which the correctness of the whole program easily follows.”

Alan Turing, 1949

Closet Contract Conjecture

“It’s this question that leads to the Closet Contract
Conjecture: are the contracts of Eiffel libraries a figment of
the Eiffel programmer’s obsession with this mechanism? Or
are they present anyway, hidden, in non-Eiffel libraries as
well?”

Arnout & Meyer, 2002

Overview

Projects Downloaded & Filtered from Maven Central

Contract usage classified using static analysis

Data is aggregated and analysed using “stats”

Research Questions

RQ1. Which language features are used to represent contracts in
real-world Java programs?

RQ2. How does the use of contracts change throughout the
evolution of a program?

RQ3. Are contracts used correctly in the context of program
evolution in real-world Java programs?

RQ4. Are contracts used correctly in the context of subtyping in
real-world Java programs?

Contract Patterns

Runtime Exceptions (Conditional).

if (...) { throw new IllegalArgumentException(); }

Runtime Exceptions (Unconditional).

throw new UnsuppportedOperationException();

Contract APIs.

Preconditions.checkState(index >= 0, "error");

Assertions.

assert index >= 0;

Annotations (e.g. JSR303,JSR349,FindBugs,JML,Lombok,etc).

void f(@NonNull String str) { ... }

Contract Classification

Contract Type Classification

Runtime Exception (Conditional) precondition

Runtime Exception (Unconditional) precondition

Contract API precondition

Assert unclassified

Annotation (parameter) precondition

Annotation (method) postcondition

Annotation (field,class) class invariant

Static Analysis

@Override
public void visit(ThrowStmt n, Object arg) {

// look for the following pattern:
// if (<condition>) throw new <exception>(<args>);

if (n.getExpr() instanceof ObjectCreationExpr
&& (n.getParentNode() instanceof IfStmt
|| (n.getParentNode() instanceof BlockStmt
&& n.getParentNode().getParentNode() instanceof IfStmt))) {

...

Used javaparser (great!) to parse Java source code

Code available here:
https://bitbucket.org/jensdietrich/contractstudy

https://bitbucket.org/jensdietrich/contractstudy

Corpus

Top 200 artefacts on mvnrepository.com/popular

Removed projects without Java source code (e.g. scala)

For each artefact all versions downloaded

Obtained 176 projects, 6,934 versions, 4.6GB

Not all dependencies resolved, but added openjdk 1.8.0_91

to resolve most supertypes

mvnrepository.com/popular

RQ1: Which Language Features used for Contracts?

Category Notes Constructs Constructs programs
(all versions) (latest versions)

Runtime Exception
(Conditional) 484,964 15,720 155
(Unconditional) 123,966 3,084 122

Contract API
(Guava) 49,021 1,188 6
(Spring) 100,232 2,148 13
(Commons) 879 110 6

Assert 131,340 3,284 52
Annotation

(JSR303/349) 586 20 1
(JSR305) 33,281 911 6

Precondition 786,723 22,969 160
Postcondition 2,413 112 6
Class Invariant 3,793 100 5
Unclassified 131,340 3,284 52

RQ1: Which Language Features used for Contracts?

Category Programs

Runtime Excep-
tion

open-jdk (3,695), elasticsearch (1,348), lucene-core (612), netty (553),
hadoop-common (550)

Contract API guava (948), spring (661), spring-test (262), spring-web (218), spring-core
(208)

Assertion lucene-core (1,000), elasticsearch (656), open-jdk (390), gwt-user (371),
gwt-servlet (371)

Annotation guava (859), reflections (46), hibernate-validator (20), annotations (4),
jsr305 (2)

Few programs use zero contract types (16
176 ,9%)

Some programs use only one contract type (32
176 , 18%)

Most programs use multiple contract types (63
176 use 2, 59

176 use 3,
6

176 use 4 or more)

High Gini of contract usage (0.74) means large inequality

RQ2: How does Contract Use Change in Time?

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

first versions last versions

Min Outlier Max Outlier

Generally speaking, if projects use contracts they keep using
them

Contract usage increases proportionally with program size

RQ3: Are Contracts used Correctly in Time?

Change Critical Count

Unchanged no 652,395
Minor change no 1,512
Preconditions

(weakened) no 12,675
(strengthened) yes 2,777

Postconditions
(strengthened) no 18
(weakened) yes 7

Unclassified ? 5,028

Precondition Strengthening: e.g. making method throw
UnsupportedOperationException

Postcondition Weakening: e.g. removing @NonNull method
annotation

RQ4: Are Contracts used Correctly over Inheritance?

Change Critical Count

Unchanged no 351
Minor Change no 193
Preconditions

(weaker) no 40
(stronger) yes 1,242

Postconditions
(stronger) no 0
(weaker) yes 0

unclassified ? 556

Stronger Precondition in subclass violates LSP

Weaker Postcondition in subclass violates LSP

Conclusion

Closet Contract Conjecture (Arnout & Meyer). Programmers will
encode contracts by whatever means available.

No evidence of widespread contract use

If Closet Contract Conjecture holds, contracts are hidden deeper

Projects which use contracts continue to do so and expand their
use

Found some cases of incorrect contract usage in context of
evolution and inheritance

@WhileyDave

@WhileyDave

Example: Versioning Violation

// slf4j-api v 1.7.8
org.slf4j.LoggerFactory {

..
@javax.validation.constraints.Nonnull
public static ILoggerFactory getILoggerFactory()
..

}

// slf4j-api v 1.7.9
org.slf4j.LoggerFactory {

..
public static ILoggerFactory getILoggerFactory()
..

}

Example: Versioning Violation

// commons-cli-1.0
org.apache.commons.cli.Option {

..
public boolean addValue(String value) {..}
..

}

// commons-cli-1.1
org.apache.commons.cli.Option {

..
public boolean addValue(String value) {

throw new UnsupportedOperationException(..);
}
..

}

Example: LSP violation

// from openjdk8-b132
java.beans.PropertyEditorSupport {

..
public void setAsText(String text) {

if (value instanceof String) {setValue(text);return;}
throw new java.lang.IllegalArgumentException(text);

}
..

// spring-beans-4.2.5.RELEASE
org.springframework.beans.propertyeditors.ResourceBundleEditor {

..
public void setAsText(String text) {

Assert.hasText(text, "’text’ must not be empty");
..

