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Abstract4

Issues related to the dereferencing of null pointers are a pervasive and widely studied problem,5

and numerous static analyses have been proposed for this purpose. These are typically based on6

dataflow analysis, and take advantage of annotations indicating whether a type is nullable or not.7

The presence of such annotations can significantly improve the accuracy of null checkers. However,8

most code found in the wild is not annotated, and tools must fall back on default assumptions,9

leading to both false positives and false negatives. Manually annotating code is a laborious task and10

requires deep knowledge of how a program interacts with clients and components.11

We propose to infer nullable annotations from an analysis of existing test cases. For this12

purpose, we execute instrumented tests and capture nullable API interactions. Those recorded13

interactions are then refined (santitised and propagated) in order to improve their precision and14

recall. We evaluate our approach on seven projects from the spring ecosystems and two google15

projects which have been extensively manually annotated with thousands of @Nullable annotations.16

We find that our approach has a high precision, and can find around half of the existing @Nullable17

annotations. This suggests that the method proposed is useful to mechanise a significant part of the18

very labour-intensive annotation task.19
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1 Introduction23

Null-pointer related issues are one of the most common sources of program crashes. Much24

research has focused on this issue, including: eliminating the problems of null in new language25

designs [56, 49, 52, 12, 59]; mitigating the impact of null in existing programs [23, 67, 5, 19];26

and, developing alternatives for languages stuck with null [20, 29, 68].27

More recently, several industrial-strength static analyses have been developed to operate28

at scale, such as infer / nullsafe [1, 19] and nullaway [5]. Such tools employ some form of29

dataflow analysis and take advantage of an extended type system that distinguishes in some30

way between nullable and nonnull types [23]. Here, a nonnull type is considered a subtype31

of a nullable type, and this relationship enables checkers to identify illegal assignments32

pointing to potential runtime issues. In Java, the standard annotation mechanism can be33

used to define such custom pluggable types [8]. For instance, using an annotation defined34

in JSR305 (i.e., the javax.annotation namespace), we can distinguish between the two35

types @Nullable String and @Nonnull String, with @Nonnull String being a subtype36

of @Nullable String. In a perfect world, developers would annotate all methods and fields,37

allowing static checkers to perform analyses with high recall and precision. Not surprisingly,38

this hasn’t happened. Annotating code is generally a complex problem [13], and recent39

developer discussions reflect this. For instance, for commons-lang the issue LANG-159840

has been open since 14 August 20.1 In a comment on this issue one developer commented41

“Agreed this idea, but it is a HUGE work if we want to add NotNull and Nullable to all public42

1 Open as of 20 October 22, see https://issues.apache.org/jira/browse/LANG-1598
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functions in commons-lang.’ ’ A similar comment can be found in a discussion on adding43

null-safety annotations to spring boot (“it may well be a lot of work”).244

Null-related annotations form part of a contract between the provider and consumer of45

an API. For instance, consider a library that provides some class Foo with a method String46

foo(). Adding an annotation may change this to @Nullable String foo(). This alters47

the contract with downstream clients which may have assumed the return was not nullable.48

Technically this change weakens the postcondition, thus violating Liskov’s Substitution49

Principle (LSP) [42].3 This may therefore cause breaking changes, forcing clients to refactor,50

for instance, by guarding call sites to protect against null pointer exceptions. Such a change51

may imply the downstream client was using the API incorrectly (i.e. by assuming null52

could not be returned). As such, one might argue the downstream client is simply at fault53

here and this change helps expose this. But, such situations arise commonly and oftentimes54

for legitimate reasons: perhaps the downstream client uses the API in such a way that, in55

fact, null can never be returned; or, the method in question only returns null in very rare56

circumstances which weren’t triggered despite extensive testing by the downstream client.57

Regardless, developers must gauge the impact of such decisions carefully when modifying58

APIs. This illustrates the complexity of the task, and suggests that it is laborious and59

therefore expensive to add nullability-related annotations to projects.60

Null checkers deal with missing annotations by using defaults to fill in the blanks. Those61

assumptions have a direct impact on recall and precision. The question arises whether62

suitable annotations can be inferred by other means.4 Indeed, some simple analyses could63

be used here in principle, such as harvesting existing runtime contract checks. Using such64

checks is increasingly common as programmers opt to implement defensive APIs in order65

to reduce maintenance costs [17]. This includes the use of contract APIs such as guava’s66

Preconditions 5, commons-lang3’s Validate 6, spring’s Assert 7 and the standard library67

Objects::requireNonNull protocol which all include non-null checks. Such an analysis68

could boost the accuracy of static null checkers that integrate with the compiler, as those69

contract APIs are defined in libraries that are usually outside the scope of the analysis70

performed by static checkers. However, exploiting the call sites of such methods is of limited71

benefit as those checks would only establish that a reference must not be null.72

It is much more beneficial for static checkers to annotate code indicating that a reference73

may be null (i.e., ‘‘is nullable’ ’). The reason is that many static checkers use the non-null-by-74

default assumption that was suggested by Chalin and James after studying real-world systems75

and finding the vast majority of reference type declarations are not null, making this a76

sensible choice to reduce the annotation burden for developers [14]. They also point out that77

this is consistent with default choices in some other languages. The checkerframework and78

infer nullness checkers are based on this assumption, whilst some other null checkers such as79

the one embedded in the Eclipse IDE can be configured as such. Sometime, this is formalised.80

2 https://github.com/spring-projects/spring-boot/issues/10712
3 LSP was formulated for safe subtyping, but can be applied in this context if we consider evolution as

replacement
4 Other here means not using the same technique used by static checkers. One could argue that if a static

dataflow analysis was used to infer annotations, then that should be integrated into the checker in the
first place

5 https://guava.dev/releases/21.0/api/docs/com/google/common/base/Preconditions.html
6 https://commons.apache.org/proper/commons-lang/apidocs/org/apache/commons/lang3/

Validate.html
7 https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/

util/Assert.html

https://github.com/spring-projects/spring-boot/issues/10712
https://guava.dev/releases/21.0/api/docs/com/google/common/base/Preconditions.html
https://commons.apache.org/proper/commons-lang/apidocs/org/apache/commons/lang3/Validate.html
https://commons.apache.org/proper/commons-lang/apidocs/org/apache/commons/lang3/Validate.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/util/Assert.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/util/Assert.html
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For instance, the spring framework makes the use of the non-null-by-default assumption81

explicit by defining and using two package annotations 8 @NonNullApi and @NonNullFields82

in org.springframework.lang, with the following semantics (@NonNullApi, similar for83

@NonNullFields for fields): “A common Spring annotation to declare that parameters and84

return values are to be considered as non-nullable by default for a given package”. 9
85

Using dynamic techniques is a suitable approach to observe nullability, and can be86

combined with static analyses to improve accuracy. Such hybrid techniques consisting of a87

dynamic pre-analysis feeding into a static analysis have been used very successfully in other88

areas of program analysis [6, 31]. A common reason to use those approaches is to boost89

recall [66].90

In this paper, we explore this idea of inferring nullable annotations from test executions.91

This is based on the assumption that tests are a good (although imperfect) representation of92

the intended semantics of a program. We then refine those annotations by means of various93

static analyses in order to reduce the number of both false positives and false negatives.94

This paper makes the following contributions: 1. a dynamic analysis to capture nullable95

API interactions representing potential @Nullable annotations (“nullability issues”) from96

program executions, 2. a set of static analyses (“sanitisation”) to identify false positives97

3. a static analysis (“propagation”) to infer additional nullability issues from existing98

issues 4. a method to mechanically add the annotations inferred into projects by99

manipulating the respective abstract syntax trees (ASTs) 5. an experiment evaluating how100

the annotations we infer compare to existing @Nullable annotations of seven projects in the101

spring framework ecosystem and two additional google projects, containing some of the most102

widely used components in the Java ecosystem 6. an open source implementation of the103

methods and algorithms proposed. These contributions directly relate to concrete research104

questions which we study in the context of evaluation experiments in Section 7.105

2 Approach106

Our approach consists of the following steps and the construction of a respective processing107

pipeline:108

1. Capture: The execution of an instrumented program and the recording of nullability109

issues, i.e. uses of null in method parameters, returns and fields.110

2. Refinement: The refinement of nullability issues captured using several light-weight111

static analyses.112

a. Sanitisation: The identification and removal of nullability issues captured that may113

not be suitable to infer @Nullable annotations to be added to the program, therefore114

eliminating potential false positives.115

b. LSP Propagation: The inference of additional nullability issues to comply with116

Liskov’s Substitution Principle [42], therefore addressing potential false negatives.117

3. Annotation: the mechanical injection of captured and inferred annotations into projects.118

These steps are described in detail in the following sections.119

8 I.e., annotation used in package-info.java
9 https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/

lang/NonNullApi.html

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/lang/NonNullApi.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/lang/NonNullApi.html
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3 Capture120

3.1 Driver Selection121

A dynamic analysis can be used to observe an executing program, and to record when null122

is used in APIs that can then be annotated. The question arises which driver to use to123

exercise the program. One option is to use existing tests, assuming they are representative124

of the expected and intended program behaviour.125

If libraries are analysed there is another option – to use the tests of downstream clients.126

This approach has been shown to be promising recently to identify breaking changes in127

evolving libraries [47]. The advantage is that clients can be identified mechanically using an128

analysis of dependency graphs exposed by package managers and the respective repositories.10
129

However, this raises the question which clients to use. Using an open world assumption130

to include all visible clients (i.e., excluding clients not in public repositories) is practically131

impossible given the high number of projects using commodity libraries like the ones we have132

in our dataset. There is no established criteria of how to select representative clients.133

In principle, synthesised tests [54, 28] could also be used. However, they expose possible,134

but not necessarily intended program behaviour. Using synthesised tests would therefore135

likely result in too many @Nullable annotations being inferred. We note that some manually136

written tests may have the same issue. We will address this in Section 4.2.137

In the approach presented here we opted to use only a project’s own tests for generating138

actual annotations.139

3.2 Instrumentation140

In order to instrument tests, Java agents were implemented to record uses of null in APIs141

during the execution of tests. These agents can be deployed by modifying the (Maven or142

Gradle) build script of the project under analysis. The agents intercept code executions143

using the following six rules which check for occurrence of null references during program144

execution, and record those occurrences:145

ARG at method entries, parameter values are checked for null146

RET at method exits, return values are checked for null147

FL1 at constructor (<init>) exits, reflection is used to check non-static fields for null148

FL2 at non-static field writes (i.e. the putfield bytecode instruction), the value to be set149

is checked for null150

SFL1 at class initialiser (<clinit>) exits, reflection is used to check static fields for null151

SFL2 at static field writes (i.e. the putstatic bytecode instruction), the value to be set is152

checked for null153

We have implemented agents implementing those rules using a combination of ASM [10]154

and bytebuddy [70]. If null is encountered, a nullability issue is created and made persistent.155

Instrumentation can be restricted to certain (project-specific) packages, a system variable156

is used to set a package prefix for this purpose. This is to filter out relevant issues early as157

the amount of data collected is significant (see results in Table 2, column 3).158

10 Note that this requires the analysis of incoming dependencies, which is not as straightforward as the
analysis of outgoing dependencies (which can simply use the maven dependency plugin) and requires
some manual analysis, web site scraping or use of third-party repository snapshots such as libraries.io
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3.3 Capturing Context159

A nullability issue is identified by the position of the nullable API element (return type or160

argument index), and the coordinates (class name, method name, descriptor) of the respective161

method or field. We are also interested to capture and record the execution context for162

several reasons: 1. to record sufficient information providing provenance about the execution,163

sufficient for an engineer who has to decide whether to add a @Nullable annotation or164

not 2. related to the previous item, the number of contexts in which a nullable issue has165

been observed may itself serve as a quality indicator for the issue – more observed contexts166

provide some support for this being an issue (instead of a single tests triggering “unintended”167

program behaviour) 3. to distinguish issues detected by running a project’s own tests from168

issues detected by running client tests 4. to facilitate the sanitisation of issues, with some169

sanitisation techniques analysing the execution context.170

In order to achieve this, we record the stack during capture. From the stack, we can then171

infer the trigger, i.e. the test method leading to the issue. The following algorithm is used to172

remove noise from the captured stack and identify the trigger:173

1. the invocation of java.lang.Thread::getStackTrace triggering the stacktrace capture174

is removed from the stacktrace175

2. all elements related to the instrumentation are removed176

3. elements related to test processing (surefire, junit), reflection and other JDK-internal177

functionality are removed based on the package names of the respective classes owning178

those methods 11
179

4. the last element in the stacktrace is set to be the trigger180

3.4 Example181

Listing 1 shows an issue captured running a test in spring-core and serialized using JSON. The182

test (trigger) is ConcurrentReferenceHashMapTests::shouldGetSize, it uses the Map::put183

API implemented in ConcurrentReferenceHashMap, which leads to put returning null.184

185
1 {186
2 " className ":" $s. ConcurrentReferenceHashMap ",187
3 " methodName ":" put",188
4 " descriptor ":"( Ljava /lang/ Object ; Ljava /lang/ Object ;Z) Ljava /lang/ Object ;",189
5 "kind ":" RETURN_VALUE ",190
6 " argsIndex ":-1,191
7 " stacktrace ":[192
8 "$s. ConcurrentReferenceHashMap :: put :282" ,193
9 "$s. ConcurrentReferenceHashMap :: put :271" ,194

10 "$s. ConcurrentReferenceHashMapTests :: shouldGetSize :331"195
11 ]196
12 }197198

Listing 1 A serialised null issue captured in spring-core (for better readability
org.springframework.util is replaced by $s)

3.5 Deduplication199

When issues are captured, it is common that several versions of the same issue are being200

reported. For instance, there might be two nullability issues reported for the return type201

of the same method in the same class, but triggered by different tests, and therefore with202

11 More specifically, we consider methods in packages starting with the following prefixes as noise:
java.lang.reflect., org.apache.maven.surefire, org.junit., junit., jdk.internal.



XX:6 On Leveraging Tests to Infer Nullable Annotations

different stack traces. Throughout the paper, only deduplicated (aggregated) issue counts are203

reported unless mentioned otherwise. The raw issues might still be of interest as they differ204

with respect to their provenance, which might be important for a developer reviewing issues.205

3.6 Limitations206

Our approach does not support generic types. For instance, consider a method returning207

List<String>. In order to establish that the list may contain @Nullable strings the analysis208

would need to traverse the object graph of the list object using reflection or some similar209

method, in order to check that some elements of the list are (or in general some referenced210

objects associated with the type parameters) are nullable. This is generally not scalable.211

Secondly, there are dynamic programming techniques that may bypass the instrumentation.212

This is in particular the case if reflective field access is used, either directly using reflection,213

or via deserialisation. This is a known problem, however, reflective field access is rare in214

practice [66].215

4 Sanitisation216

4.1 Scope Sanitisation217

When exercising code using instrumented tests, potential issues are captured and recorded for218

all classes including classes defined in dependencies, system and project classes. By setting219

project-specific namespace (package) prefixes, the analysis can be restricted to project-defined220

classes only as discussed in Section 3.2. However, this still does not distinguish between221

classes used at runtime (in Maven and Gradle, this is referred to as the main scope), and222

classes only to be used during testing (the test scope). Engineers may not see the need to223

annotate test code, and a static null checker would usually be configured to ignore test code224

as its purpose if to predict runtime behaviour such as potential null dereferences resulting in225

runtime exception.226

The analysis to filter out classes not defined in main scope is straightforward: scopes are227

encoded in the project structure if build systems like Maven and Gradle are used. Those228

build systems and the associated project structures are the defacto-standards used in Java229

projects [2]. For instance, spring uses Gradle, and the compiled classes in main scope can230

be found in build/classes/java/main. The main scope sanitiser simply removes issues in231

classes not found in this folder.232

4.2 Negative Test Sanitisation233

The code in Listing 2 from the spring-core project is an example of a defensive API practice234

in org.springframework.util.Assert. A runtime exception is used to signal a violated235

pre-condition, a null parameter in this case. The exception (IllegalArgumentException)236

is thrown in the Assert::notNull utility method. While a null pointer exception is also a237

runtime exception, throwing an IllegalArgumentException here is more meaningful as this238

is (expected to be) thrown by the application, not by the JVM, and clearly communicates239

to clients that this is a problem caused by how an API is used, as opposed to an exception240

caused by a bug within the library.241

242
1 public static void isInstanceOf (Class <?> type , @Nullable Object obj , String message ) {243
2 notNull (type , "Type to check against must not be null");244
3 ..245
4 }246
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247

Listing 2 A defensive API in spring-core, org.springframework.util.Assert::isInstanceOf

This contract is then tested in org.springframework.util.AssertTests::isInstance-248

OfWithNullType, shown in Listing 3.249

250
1 @Test void isInstanceOfWithNullType () {251
2 assertThatIllegalArgumentException (). isThrownBy (252
3 () -> Assert . isInstanceOf (null , "foo", " enigma ")253
4 ). withMessageContaining (..);254
5 }255256

Listing 3 Testing a defensive API in spring-core with JUnit5

We refer to such tests as negative tests – i.e. tests that exercise abnormal and unintended257

but possible behaviour, and use an exception or error as the test oracle for this purpose.258

Features often used to implement such tests are the assertThrows method in JUnit5, and259

the expected attribute of the @Test annotation in JUnit4.260

Including such tests (as drivers) is likely to result in false positives – nulls are passed to261

the test to trigger defense mechanisms, such as runtime checks. We therefore excluded issues262

triggered by such tests. This is done by a lightweight ASM-based static analysis that checks263

for the annotations and call sites indicating the presence of an exception oracle and produces264

a list of negative tests, and a second analysis that cross-references the context information265

captured while recording issues against this list, and removes issues triggered by negative266

tests.267

The analysis checks for the above-mentioned negative test patterns in JUnit4 and JUnit5,268

and a similar pattern in the popular assertj library. Finally, the analysis looks for call sites of269

methods in com.google.common.testing.NullPointerTester. This is a utility that uses270

reflection to call method with null for parameters not marked as nullable, expecting a NPE or271

an UnsupportedOperationException being thrown. This may be considered as over-fitting272

as guava is also part of our data set used for evaluation. However, like JUnit, guava is a273

widely used utility library, which warrants supporting this features in a generic tool.274

4.3 Shaded Dependency Sanitisation275

The return type of org.springframework.asm.ClassVisitor::visitMethod is not annot-276

ated as nullable. The problem here is that spring-core also defines several subclasses of277

this class overriding this method (including SimpleAnnotationMetadataReadingVisitor,278

package name omitted for brevity), which mark the return type as nullable. Reading this as279

pluggable types with the non-null by default assumption, with @Nullable MethodVisitor280

being a subtype of MethodVisitor, this violates Liskov’s substitution principle [42] as the281

postcondition of a non-null return value is weakened in the overriding method.282

The reason that engineers wont add the annotation is that this class originates from a283

shaded dependency.12 Shading is a common practice were library classes and often entire284

package or even libraries are inlined, i.e. copied into the project and relocated into new285

name spaces. A common use case is to avoid classpath conflicts when multiple versions of286

the same class are (expected to be) present in a project. This is usually not done manually,287

but automated using build plugins such as maven-shade-plugin. The respective section of288

the Gradle build script for spring-core is shown in Listing 4.289

12 See pull request (URL tba after double-blind review)
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290
1 task cglibRepackJar (type: ShadowJar ) {291
2 archiveBaseName .set(’spring -cglib -repack ’)292
3 archiveVersion .set( cglibVersion )293
4 configurations = [ project . configurations . cglib ]294
5 relocate ’net.sf.cglib ’, ’org. springframework .cglib ’295
6 relocate ’org. objectweb .asm ’, ’org. springframework .asm ’296
7 }297298

Listing 4 Shading spec in spring-corespring-core.gradle

This makes adding @Nullable annotations for those classes almost useless, and the299

developer effort to add them is wasted as the source code is replaced during each build. A300

possible solution would be to add annotations during code generation at build time, but301

to the best of our knowledge, there are no suitable tools or meta programming techniques302

readily available to engineers that could be used for this purpose.303

A sanitiser to take this into account takes a list of packages corresponding to shaded304

classes as input, and removes issues detected within those classes.305

4.4 Deprecation Sanitisation306

The final sanitiser removes issues collected from deprecated (i.e., annotated with @java.lang.-307

Deprecated) fields, methods or classes. The rationale is that given the significant cost of308

annotating code, engineers might be reluctant to add annotations to code scheduled for309

removal, and will consider the inference of such annotations less useful. Such a sanitiser can310

be implemented with a straightforward byte code analysis as @Deprecated annotations are311

retained in byte code. We used ASM for this purpose in our proof-of-concept implementation.312

4.5 Discussion: Sanitisation by Package-wide Default Nullability313

Assumption314

There are various other possible sanitisers we have considered. A particular interesting315

scenario is the use of package-wide annotations setting defaults. As briefly discussed in316

Section 1, the spring framework uses package annotations to declare the non-null-by-default317

assumption for entire packages. Interestingly, those annotations are not used for all packages.318

This raises the question whether nullability issues discovered in packages not annotated319

with those annotations should be sanitised. It is however not clear what the rationale of not320

having those annotations is, and what should replace non-null-by-default. What is more, this321

is an issue specific to the spring project, using special annotations defined within in spring.322

For some of the relatively few unannotated packages in spring, not having those annotations323

merely states that they are not applicable.324

For instance, spring-core is the module in the data set used in the evaluation with325

the highest number of unannotated packages. It consists of 35 packages, 7 of those326

(20%) do not use the @NonNullApi and @NonNullFields package annotations. Of those,327

org.springframework.lang only defines annotation types without methods or fields that328

could be annotated with @Nullable, and 5 more packages (org.springframework.asm,329

org.springframework.cglib.*) are the result of shading, as discussed in Section 4.3 and330

therefore, potential false positives are being removed by the shaded dependency sanitisation.331

This only leaves one non-annotated package org.springframework.objenesis, and this332

package only contains a single class SpringObjenesis. This class does define methods333

(constructors) and some of the API elements appear to be nullable. It is not clear why this334

package has not been annotated.335
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For this reason, we believe that there is no sufficient justification to sanitise by (the lack336

of) package-wide nullability annotations.337

5 Propagation338

Annotating an API with @Nullable annotations changes the expectations and guarantees339

of the API contract with clients. In terms of Liskov’s Substitution principle (LSP), adding340

@Nullable to the method (i.e., to the type it returns) weakens its postconditions if we341

consider @NonNull to be the baseline. To preserve LSP, the same annotation should therefore342

be applied to the overridden method.343

For nullable arguments, the direction changes: while overriding a method making argu-344

ments nullable complies to LSP as expectations (for callers) are weakened, nullable arguments345

should not be made non-null in overridden methods. If we assume @NonNull to be the default,346

this implies that @Nullable should also applied to the arguments of the overriding method.347

However, the standard Java language semantics only supports covariant return types (e.g.,348

methods can be overridden using a more specific return type), while for argument types349

invariance is used. Different null checkers and other languages use a variety of approaches350

here [13] and it is not completely clear what the canonical approach should be. Therefore,351

in our proof-of-concept implementation, LSP propagation can be customised to propagate352

nullability for arguments, or not, with propagation being the default strategy.353

Listing 5 illustrates our approach. Assume we have annotated B::foo using observations354

from instrumented test runs. Then we also have to add @Nullable to the return type of the355

overridden method A::foo , and to the sole argument of the overriding method C::foo.356

357
1 public class A {358
2 public @Nullable Object foo ( Object arg) ;359
3 }360
4 public class B extends A {361
5 public @Nullable Object foo ( @Nullable Object arg) ;362
6 }363
7 public class C extends B {364
8 public Object foo ( @Nullable Object arg) ;365
9 }366367

Listing 5 Propagation of @Nullable to Sub- and Supertypes

LSP propagation is implemented using a lightweight ASM-based analysis that extracts368

overrides relationships from compiled classes, and cross-references with with captured issues,369

creating new issues. For provenance, references to the original parent issues leading to370

inferred issues are captured as well and stored alongside the (JSON-serialised) inferred issues371

as a parent attribute.372

5.1 Limitations373

There is a limitation to hierarchy-based propagation — subtype relationships may extend374

across libraries, and we may infer nullable annotations for classes that are not in the scope375

of the analysis, and cannot be refactored. While project owners know super types (and can376

use methods like opening issues or creating pull requests for projects we don’t control), they377

are not in control of subtypes in an open world, and rely that downstream projects would378

eventually pick up those annotations through notifications from some static analyses tools379

checking for those issues.380
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5.2 Sanitisation vs Propagation Fixpoint381

Sanitisation and propagation have opposite effects. Preferably, an algorithm used to refine382

the initially collected nullability issues would reach a unique fix point where the future383

application of sanitisation and propagation would not change the set of refined nullability384

issues. However, such a fixpoint does not exist. Consider for instance a scenario where a385

shaded class has a method that is overridden and has a nullable return type in the overriding386

method. Then LSP propagation suggests to also add this to the return of the overridden387

method in the super class (to avoid weakening the post conditions), while sanitisation388

suggests not to refactor the shaded class. This is the issue we have observed in spring-core389

and discussed in Section 4.3.390

6 Annotation Injection391

We implemented a tool to inject the inferred annotations into projects, using the following392

steps:393

1. compilation units are parsed into ASTs using the javaparser API [63]394

2. for each nullable issue, the respective method arguments, returns or fields are annotated395

by adding nodes representing the @Nullable annotation to the respective AST396

3. after the AST for a compilation unit is processed, it is written out as a Java source code397

file398

4. if necessary, the respective import for the nullable annotation type used is added to the399

pom.xml project file400

The tool has been evaluated using standard JUnit unit tests, and by round-tripping401

(removing and then reinserting existing annotations) the spring projects studied.402

6.1 Annotation Abstraction403

There are different annotation libraries available defining nullable annotations, and static404

checkers often support multiple such annotations. For this reason, the annotator tool supports405

pluggable annotations. This abstraction is implemented as a NullableAnnotationProvider406

service, implementations provide the nullable type and package names, and the coordinates407

of an Maven artifact providing the respective annotation. The default implementation is408

based on JSR305. Alternative providers can be deployed using the standard Java service409

loader mechanism.410

7 Evaluation411

Our evaluation is based on a study of some of the popular real-word projects which have412

been manually null-annotated by project members. We compare those existing annotations413

with the annotations captured and inferred by our method, and check those two sets for414

consistency. This is done by measuring precision and recall. Informally, those measures415

represent the ratio of inferred annotations to existing annotations, and the percentage of416

existing annotations our method is able to infer. More precisely, given a set of existing417

nullable annotations Existing and a set of annotations inferred using our method Inferred,418

we define the following metrics:419

420
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TP := Existing ∩ Inferred421

FP := Inferred \ Existing422

FN := Existing \ Inferred423

precision := |TP |/(|TP | + |FP |)424

recall := |TP |/(|TP | + |FN |)425

426

Those are standard definitions, however, they need to be used with caution here. The427

concepts suggest that the existing annotations are the ground truth. This hinges on two428

assumptions: 1. The existing annotations are complete. 2. The project test cases provide429

enough coverage to exercise all possible nullable behaviour.430

The first assumption means that all exiting nullable annotations our method fails to infer431

are in fact false positives. This might not be true as the annotations may not be complete,432

and we explore this issue further in Section 7.8. Therefore, the precision reported needs to433

be understood as the lower precision bound (lpb) in the sense of false positive detection. The434

second assumption means that all existing issues our tool cannot detect are false negatives.435

While this is correct in some sense, it does not necessarily indicate a weakness of our method436

as such, rather than an issue of the quality of input data, i.e. the quality of tests.437

Existing annotations are extracted by using a simple byte code analysis (noting that438

common nullable annotation use runtime retention), we are looking for @Nullable annotations439

in any package to account for the multiple annotation providers. We also support two440

semantically closely related annotations defined in widely used utility libraries or tools,441

guava’s @ParametricNullness and findbug’s @CheckForNull.442

7.1 Dataset443

The data set we use in our study consists of seven projects (modules) from the spring444

framework ecosystem, plus two additional google projects. Those projects were located by445

searching the Maven repository for projects using libraries providing @Nullable annotations,446

and the selecting projects that actually use a significant number of those annotations. The447

reason that we chose this method was that we wanted to use existing annotations as (an448

approximation) of ground truth to evaluate the inferred annotations. We were particularly449

looking for projects backed by large engineering teams and well-resourced organisations,450

assuming that this would result in high-quality annotations.451

Spring is the dominating framework for enterprise computing in Java [69], it is supported452

by a large developer community, is almost 20 years old and keeps on maintaining and453

innovating its code base. What makes those projects particularly suitable for evaluation454

is the fact that they have been manually annotated with @Nullable annotations. Spring455

defines its own annotation for this purpose in spring-core 13. The amount of annotations456

found in those projects is extensive, see Section 7.4 for details.457

Spring is organised in modules, projects with their own build scripts producing independent458

deployable binaries. We selected seven projects with different characteristics in particular459

with respect to how APIs are provided or consumed: core, beans and context are foundational460

projects for the spring framework overall, with few dependencies. orm and oxm are middleware461

components for applications to interact with XML data and relational databases, and integrate462

with existing frameworks for this purpose like hibernate, jpa and jaxb. Finally, web is a utility463

13 Defined in in org.springframework.lang
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main test
program version java kotlin groovy java kotlin groovy coverage
s.-beans 5.3.22 301 2 1 126 4 0 60%
s.-context 5.3.22 640 5 0 483 7 2 63%
s.-core 5.3.22 499 1 0 214 14 0 66%
s.-orm 5.3.22 72 0 0 32 0 0 39%
s.-oxm 5.3.22 31 0 0 19 0 0 58%
s.-web 5.3.22 653 1 0 268 5 0 18%
s.-webmvc 5.3.22 368 3 0 225 5 0 39%
guava 31.1 619 0 0 502 0 0 70%
error-prone 2.18.0 745 0 0 1,222 0 0 73%

Table 1 project summary, reporting the number of Java, Kotlin and Groovy source code files for
both main and test scope, and branch coverage

library for web programming (including an HTTP client), and webmvc is a comprehensive464

application framework based on the model-view-controller design pattern [30].465

We also include two additional non-spring programs to demonstrate the generality of the466

method proposed, and avoid over-fitting for spring. Those are guava and error-prone, both467

by google. Guava is a very popular utility library, whereas error-prone is a code analysis468

utility, similar to findbugs. Those two projects also use Maven as build system, and have a469

modular structure, with some modules only containing tests, test tools or annotations. We470

analysed nullability for the errorprone/core and guava/guava modules, respectively.471

Table 1 provides an overview of the data set used together with some metrics, broken472

down by scope as discussed in Section 4.1. While those projects predominately contain Java473

classes, they also contain a smaller amount of Kotlin and Groovy code. Most of this are474

tests, and as the capture is based on bytecode instrumentation, those tests are still being475

used as drivers for the dynamic analysis. The table also contains some coverage data.14 This476

provides some indication that the projects detected are well tested, and provide reasonable477

drivers for a dynamic analysis. The coverage data compares favourably to the coverage478

observed for typical Java programs [18].479

7.2 Capture480

For the dynamic analysis, we used the agents described in Section 3. With those agents481

deployed in the build scripts, ground truth extraction is a matter of running the projects482

builds using the test targets. The agents collect large amounts of data. For instance, the raw483

uncompressed size of the nullability issue file collected is 19.96 GB for spring-context, 4.11484

GB for guava and 3.57 GB for error-prone (see also Table 2). To avoid memory leaks caused485

by instrumentation, agents dump data frequently, and after test execution using a shutdown486

hook.487

Not unexpectedly, the presence of the agents significantly prolongs the build times – to488

around one hour for spring and 16 hours for guava 15. We argue that this is acceptable as489

this is an one-off effort, i.e. this is not designed to be integrated into standard builds.490

14 Branch coverage is reported, calculated using the jacoco coverage tool integrated into the IntelliJ IDEA
2022.2 (Ultimate Edition) IDE, and reporting the values aggregated by IntelliJ for the respective
packages

15 Builds were run on a MacBook Pro (16-inch, 2021) with Apple M1 Pro, and OpenJDK 11.0.11
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program ex obs agg agg/obs r,lpb
s.-beans 1,290 321,851 1,320 0.0041 0.54,0.52
s.-context 1,435 6,872,413 5,945 0.0009 0.49,0.12
s.-core 1,510 175,725 1,171 0.0067 0.52,0.67
s.-orm 377 3,443 279 0.0810 0.47,0.63
s.-oxm 84 501 64 0.1277 0.54,0.70
s.-web 2,025 127,882 1,656 0.0129 0.45,0.55
s.-webmvc 1,437 192,800 2,392 0.0124 0.69,0.41
guava 3,993 2,708,816 4,923 0.0018 0.48,0.39
error-prone 507 1,095,752 1,736 0.0016 0.39,0.11

Table 2 RQ1 - existing (ex) vs observed (obs) issues, also reported are the aggregation of observed
issues (agg), aggregation ratios (agg/obs) and recall / lower precision bound (r,lpb)

7.3 Research Questions491

We break down the evaluation into a number of research questions. RQ1 compares the492

possible nullable annotations collected from instrumented test runs with existing annotations.493

RQ2 and RQ3 assess the utility of the refinements (sanitisation and propagation) performed494

on the nullability issues collected to improve recall and precision. Finally, in RQ4 we assess495

the interaction between sanitisation and propagation.496

RQ1 How does nullability observed during test execution compare to existing @Nullable497

annotations?498

RQ2 Can sanitisation techniques improve the precision of @Nullable annotation inference?499

RQ3 Can propagation improve the recall of @Nullable annotation inference?500

RQ4 Does the repeated application of sanitisation and propagation reach a fixpoint?501

7.4 How does nullability observed during test execution compare to502

existing @Nullable annotations ? [RQ1]503

The data to answer this RQ are presented in Table 2. Column 2 (ex) contains the number of504

@Nullable annotations found in the respective program (existing @Nullable annotations505

are extracted and also represented as extracted issues to facilitate comparison), column 3506

(obs) shows the number of @Nullable issues observed during the execution of instrumented507

tests, corresponding to inferred @Nullable annotations. The number of observed issues508

is surprisingly large, but often, multiple nullability issues are reported for the same field,509

method parameter or method return. To take this into account, we also report the aggregated510

issues resulting from deduplication as discussed in Section 3.5 in column 4 (agg), and the511

aggregation ratio (agg/obs) in column 5. This demonstrates that deduplication is very512

effective. I.e., nullability reported for a given field, method return or parameter is usually513

supported by different tests, resulting in different contexts. We see this as a strength of514

our methods as each context provides independent support for the nullability that is being515

detected. Finally, we report recall and lower precision bound (r,lpb) in column 6. Both are516

around 50% with two notable exceptions – the significantly lower recall for spring-core, and517

the significantly lower precision for spring-context and error-prone.518

These results suggests that inferring nullability issues dynamically by only observing tests519

is not sufficient, and further refinement of those results by means of additional analyses is520

needed.521
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program base san(D) san(M) san(N) san(S) san(all)
s.-beans 1,320 1,298 763 1,247 1,320 687
s.-context 5,945 5,922 788 5,662 5,682 718
s.-core 1,171 1,140 999 1,024 1,124 780
s.-orm 279 279 192 270 279 184
s.-oxm 64 64 49 64 64 49
s.-web 1,656 1,606 1,076 1,544 1,656 941
s.-webmvc 2,392 2,374 1,076 2,327 2,392 1,048
guava 4,923 4,813 4,008 3,384 4,923 2,464
error-prone 1,736 1,736 1,337 1,736 1,736 1,337

Table 3 RQ2a – observed issues after applying sanitisers (base – no sanitisation applied, D -
deprecation, M - main scope, N - negative tests, S - shading)

program r,lpb(D) r,lpb(M) r,lpb(N) r,lpb(S) r,lpb(all)
s.-beans 0.52,0.52 0.54,0.91 0.52,0.53 0.54,0.52 0.50,0.95
s.-context 0.48,0.12 0.49,0.90 0.48,0.12 0.49,0.12 0.47,0.94
s.-core 0.50,0.67 0.52,0.78 0.49,0.72 0.52,0.70 0.47,0.92
s.-orm 0.47,0.63 0.47,0.92 0.45,0.63 0.47,0.63 0.45,0.93
s.-oxm 0.54,0.70 0.54,0.92 0.54,0.70 0.54,0.70 0.54,0.92
s.-web 0.43,0.54 0.45,0.85 0.44,0.57 0.45,0.55 0.42,0.90
s.-webmvc 0.68,0.41 0.69,0.92 0.68,0.42 0.69,0.41 0.67,0.92
guava 0.48,0.40 0.48,0.48 0.48,0.56 0.48,0.39 0.48,0.77
error-prone 0.39,0.11 0.39,0.15 0.39,0.11 0.39,0.11 0.39,0.15

Table 4 RQ2b – recall and lower precision bound (r,lpb) w.r.t. existing annotations after applying
sanitisers (D - deprecation, M - main scope, N - negative tests, S - shading)

7.5 Can sanitisation techniques improve the precision of @Nullable522

annotation inference ? [RQ2]523

The various sanitisation techniques discussed in Section 4 address potential false positives.524

To evaluate their impact, we applied the sanitisers to the observed nullability issues for each525

program in the data set, and report the number of aggregated inferred nullability issues after526

santitisation. We also report the results of applying all sanitisers. The absolute numbers are527

reported in Table 3, the recall / precision metrics are reported in Table 4.528

The results suggest that most sanitisers have only a minor impact on precision and,529

sometimes, those improvements come at the price of slight drops in recall. However, one530

sanitiser stands out: by focusing on classes in the main scope, the precision can be improved531

dramatically. This suggests that our instrumented tests pick up a lot of nullability in test532

classes or other test-scoped classes supporting tests.533

After applying all santisation techniques, we observe a very high lower precision bound of534

0.9 or better for all spring programs, with some minor drops in recall. The lower precision535

boun for guava is still fairly high, but surprisingly low for error-prone, to be discussed below.536

Balancing precision and recall is a common issue when designing program analyses, but we537

believe that the focus should be on precision as developers have little tolerance for false alerts.538

For instance, it has been reported that “Google developers have a strong bias to ignore static539

analysis, and any false positives or poor reporting give them a justification for inaction.” [60].540

To investigate the low lower precision bound we observed for error-prone further, we541

conducted an additional experiment where we calculated the annotation ratio. For this542

purpose, we counted the existing @Nullable annotations, and the number of program543

elements that can be annotated, i.e. fields, method parameters and return types for non-544

synthetic methods and fields whose type is not a primitive type. The results are displayed in545

Table 5. This show that the annotation ratio for error-prone is by on order of a magnitude546

lower than for the other programs. Therefore, many of the potential false positives are likely547

to be true positives, and the existing annotations are not suitable to act as a ground truth548
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program annotated annotatable annotation ratio Void usage
s.-beans 1,290 5,230 0.25 0
s.-context 1,435 8,849 0.16 0
s.-core 1,510 10,628 0.14 0
s.-orm 377 1,676 0.22 0
s.-oxm 84 467 0.18 0
s.-web 2,025 13,658 0.15 6
s.-webmvc 1,437 8,317 0.17 1
guava 3,964 25,472 0.16 2
error-prone 507 22,669 0.02 958

Table 5 Annotated vs annotatable program elements, in the last column the number of annotatable
elements of type java.lang.Void is reported

program all 2 3 4 5 6 7 8 9 10 >10
s.-beans 687 167 109 64 58 46 35 24 22 39 123
s.-context 718 197 122 76 58 52 25 26 22 11 129
s.-core 780 266 165 105 63 37 32 23 21 10 58
s.-orm 184 23 28 20 18 14 24 2 3 3 49
s.-oxm 49 35 4 1 7 0 0 0 0 0 2
s.-web 941 305 258 149 77 52 10 8 2 9 71
s.-webmvc 1,048 329 195 212 117 50 32 12 9 10 82
guava 2,464 972 606 399 163 122 37 20 13 11 121
error-prone 1,337 8 23 56 4 26 4 8 6 2 1,200

Table 6 Observed and sanitised issues by context depths

here. To investigate the matter further, we looked for patterns amongst the potential false549

positives detected. One pattern stands out – the frequent use of java.lang.Void as method550

parameter and return type. The respective numbers are shown in Table 5, column 5. The use551

of Void in error-prone is unusually high. Void has an interesting semantics – this class cannot552

be instantiated, i.e. it must be null. However, in error-prone, the respective method returns553

and parameters are not annotated as @Nullable. Interestingly, this is in violation of one of554

error-prone’s own rule VoidMissingNullable (‘The type Void is not annotated @Nullable‘”) 16.555

I.e., error-prone is not dog-fooding [32] here. Error-prone has recently opened an issue to556

address this 17. We also note that the nullaway checker treats Void as nullable 18, and the557

checkerframework declares @Nullable as default for Void using a meta annotation 19.558

We rerun the recall and precision calculation against a ground truth that interprets Void559

as nullable, and for error-prone as expected the result change significantly to a recall of 0.72560

and a lower precision bound of 0.79.561

After performing sanitisation, we also investigated the context depth, i.e. the size of the562

stack traces recorded. Without sanitisation this data would be distorted by issues discovered563

in testing scope, leading to very low context depth. For each aggregated issue equivalence564

class modulo the deduplication relationship (see Section 3.5), we computed the lowest context565

depth for all issues in the respective equivalence class, and then counted aggregated issues566

by this depth. The results are reported in Table 6.567

The results suggest that there are some issues revealed by trivial tests (e.g., tests directly568

invoking functions with null parameters). However, a significant number of issues is revealed569

16 https://errorprone.info/bugpattern/VoidMissingNullable
17 https://github.com/google/error-prone/issues/3792
18 https://github.com/uber/NullAway/blob/master/nullaway/src/main/java/com/uber/nullaway/

NullAway.java, commit
https://github.com/uber/NullAway/commit/1548c69a27e9e3dd1cb185d04b2e870f3b11a771

19 https://checkerframework.org/api/org/checkerframework/checker/nullness/qual/Nullable.
html

https://errorprone.info/bugpattern/VoidMissingNullable
https://github.com/google/error-prone/issues/3792
https://github.com/uber/NullAway/blob/master/nullaway/src/main/java/com/uber/nullaway/NullAway.java
https://github.com/uber/NullAway/blob/master/nullaway/src/main/java/com/uber/nullaway/NullAway.java
https://github.com/uber/NullAway/commit/1548c69a27e9e3dd1cb185d04b2e870f3b11a771
https://checkerframework.org/api/org/checkerframework/checker/nullness/qual/Nullable.html
https://checkerframework.org/api/org/checkerframework/checker/nullness/qual/Nullable.html
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program s sp r,sps r,lpb(s) r,lpb(sp) r,lpb(sps)
s.-beans 687 693 693 0.50,0.95 0.51,0.95 0.51,0.95
s.-context 718 736 736 0.47,0.94 0.48,0.94 0.48,0.94
s.-core 780 791 788 0.47,0.92 0.48,0.91 0.48,0.92
s.-orm 184 184 184 0.45,0.93 0.45,0.93 0.45,0.93
s.-oxm 49 49 49 0.54,0.92 0.54,0.92 0.54,0.92
s.-web 941 949 949 0.42,0.90 0.42,0.90 0.42,0.90
s.-webmvc 1,048 1,059 1,059 0.67,0.92 0.68,0.92 0.68,0.92
guava 2,464 2,503 2,503 0.48,0.77 0.49,0.77 0.49,0.77
error-prone 1,337 1,361 1,361 0.39,0.15 0.43,0.16 0.43,0.16

Table 7 RQ3a – effect of propagation, aggergated issue counts and recall / lower precision bound
for santitised issues (s), santitised and then propagated issues (sp) and santitised, propagated and
resanitised issues (sps)

by more complex behaviour with deep calling contexts. We consider this to be a strengths of570

the analysis being presented. Note that the context depths are not inflated by boiler-plate571

code as the stack traces are cleaned during capture (see Section 3.3).572

7.6 Can propagation improve the recall of @Nullable annotation573

inference ? [RQ3]574

Next, we applied propagation to the sanitised nullability issues (using all sanitisers). This575

can discover additional nullability issues not observable during testing, and therefore improve576

recall. The results are reported in Table 7. Those results suggests that propagation does not577

significantly change the quality of the analysis. We observe minor improvements in recall for578

only four programs in our dataset.579

As already discussed in Section 7.5 , the results for error-prone are heavily impacted by580

the fact that Void is not annotated as nullable. If we consider it as implicitly annotated as581

nullable, and extend the ground truth used to compare the inferred annotations accourdingly,582

the results change to a recall of 0.73 and a lower precision bound of 0.79. We therefore583

observe a small increase of the recall for error-prone as the result of propagation.584

7.7 Does the repeated application of sanitisation and propagation reach585

a fixpoint ? [RQ4]586

Propagation can introduce new annotations which would otherwise be sanitised, and the587

process generally does not converge against a fix point. An example was already discussed in588

Section 5.2. However, it is still relevant question to study to quantify whether we come close589

to a fixpoint, and whether it is common for programs that there is no fixpoint. Therefore,590

we investigated whether this is a significant observable effect by applying sanitisation to the591

propagated inferred annotations. This had almost no effect, with only a very few issues in592

spring-core being re-sanitised, the respective data is reported in the columns labelled sps593

(sanitised-propagated-sanitised) in Table 7.594

Since propagation is the last step of our inference pipeline (capture-sanitise-propagate),595

we also report a breakdown of nullability issues by program element annotated, as shown in596

Table 8. What stands out is that for fields both recall and precision of inferring nullability is597

better than average.598

7.8 False False Positives599

Despite the generally high precision our approach achieves, it is not perfect. The question600

arises whether this is caused by false positives. This relates to the fact that our baseline – the601
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program prop(F) prop(P) prop(R) r,lpb(F) r,lpb(P) r,lpb(R)
s.-beans 205 279 209 0.81,1.00 0.41,0.90 0.47,0.97
s.-context 308 220 208 0.80,0.98 0.34,0.91 0.41,0.90
s.-core 125 422 241 0.80,1.00 0.43,0.86 0.46,0.97
s.-orm 111 38 35 0.90,1.00 0.21,0.76 0.26,0.89
s.-oxm 35 12 2 0.70,1.00 0.45,0.83 0.00,0.00
s.-web 308 438 203 0.72,0.94 0.36,0.87 0.33,0.91
s.-webmvc 373 319 367 0.95,1.00 0.52,0.87 0.63,0.88
guava 353 1,474 676 0.88,0.98 0.42,0.68 0.48,0.87
error-prone 77 700 584 0.80,0.10 0.47,0.11 0.40,0.23

Table 8 RQ3b - number of propagated issues and recall / lower precision bound of propagated
issues by type (F - field, P - method parameters, R - method return types)

existing @Nullable annotations, only (under-)approximates the ground truth. In particular,602

it is unclear whether it is complete. If it was not, some of the false positives our analysis603

produces would actually be true positives. Sometimes additional analyses can reveal patterns604

where developers missed annotations that should have been added by some heuristics, an605

example is the Void analysis for error-prone discussed in Section 7.5. If no such pattern can606

be identified, there is another way to find out – add additional annotations inferred by our607

tool to the respective project(s) via pull requests.608

The number of annotations to be added is still relatively large, and given the importance609

spring has in the developer ecosystem, it can be expected that project owners are generally610

reluctant to accept pull requests from newcomers. Pull requests have also experienced some611

amount of inflation recently (partially caused by bots creating pull requests), and therefore612

processing is delayed.20
613

We have submitted two pull requests with different outcomes: PR1 21 has resulted in614

a @Nullable annotation inferred being added 22. PR2 23 was rejected, but the developers615

refined the test the inference is based on 24 .616

While PR1 and PR2 have resulted in different outcomes, they both have revealed issues in617

spring, and after rerunning the analysis after the action taking by developers in response to618

the PRs, precision would increase in both cases. Adding an inferred annotation clearly shows619

that some false positives are actually true positive. Refining the tests has a similar effect –620

the semantics of tests is sometimes at odds with what is considered intended behaviour, and621

our tools exposes this. After the test is fixed, the false positive disappears as the tool can no622

longer infer it.623

7.9 Comparison with Purely Static Inference624

Houdini [25] infers annotations using the Esc/Java checker. The platform has been deprecated625

and replaced by other tools, and there is no implementation available. Houdini still uses626

“pseudo-annotation“ using special markup. This approach is also highly unscalable. The627

authors report that “the running time on the 36,000-line Cobalt program was 62 hours”. For628

comparison, the version of spring-core used in the evaluation experiments alone contains over629

146,000 lines of Java code, and checkers rarely scale linearly. For comparison, our analysis630

20 There were 164 open pull requests on 20 October 2022, https://github.com/spring-projects/
spring-framework/pulls?q=is%3Aopen

21 https://github.com/spring-projects/spring-framework/pull/29150
22 https://github.com/spring-projects/spring-framework/commit/35d379f9d3882a02f0368f928b2cecb975404334
23 https://github.com/spring-projects/spring-framework/pull/29242
24 https://github.com/spring-projects/spring-framework/commit/c14cbd07f449d845269c99faa29241e7e2d0dfc1

https://github.com/spring-projects/spring-framework/pulls?q=is%3Aopen
https://github.com/spring-projects/spring-framework/pulls?q=is%3Aopen
https://github.com/spring-projects/spring-framework/pull/29150
https://github.com/spring-projects/spring-framework/commit/35d379f9d3882a02f0368f928b2cecb975404334
https://github.com/spring-projects/spring-framework/pull/29242
https://github.com/spring-projects/spring-framework/commit/c14cbd07f449d845269c99faa29241e7e2d0dfc1
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Table 9 Comparing our approach with JastAddJ NonNull inference.

program annotatable @Nonnull @Nullable Intersection
commons-lang-3.0 4,647 1,480 1,041 633
commons-cli-3.1 2,724 1,179 65 17
commons-io-2.5 2,241 1,012 326 184
commons-math-3.0 9,404 3,208 270 50

generally scales. The bottleneck of our method is the capture, and while this is expensive it631

generally scales as discussed in Section 7.2.632

We contacted the authors of several tools [21, 36, 35] and succeeded in using jasaddj-633

nonnullinference [21] to analyse some programs, and compare results.25 The tool has been634

maintained until 2015, and based on advice by the authors, we selected some older programs635

buildable with Java 1.7. The builds had to be heavily customised in order to deal with broken636

dependencies, details are described in the artefact. The comparison is not straightforward as637

jasaddj infers @Nonnull annotations, whereas our method infers @Nullable.638

The results are shown in Table 9. The annotatable column shows the total number of639

fields, method return and parameters with nullable types. The @Nonnull column show the640

number of annotations inferred by jasaddj, and the @Nullable columns shows the number641

of annotations our approach infers. We also report the intersection between both sets in642

the last column. Both approaches annotate less than half of all annotatable elements. It643

is not clear how to interpret the set complement for both tools. If we interpret everything644

not @Nonnull annotated by jasaddj as @Nullable, then jasaddj has a low precision. The645

intersection column suggests that there are a significant number of cases where the tools646

produce inconsistent results. Given the low number of false positive we observe with our647

tool, it is likely that jasaddj produces false positives here.648

However, this is not really surprising given that tools like jasaddj have been designed to649

analyse program (as opposed to libraries), where all method calls and field access is known.650

Our method however is designed for an open world where API interactions from unknown651

clients have to be considered, and test cases act as proxies for those clients.652

8 Related Work653

Much work exists on the problem of eliminating null dereferences, of which the vast majority654

focuses on static checking. Nevertheless, a number of empirical studies exist which are655

relevant here. The early work of Chalin et al. empirically studied the ratio of parameter,656

return and field declarations which are intended to be non-null, concluding 2/3 are [13, 14].657

Another early work was that of Li et al. who sampled hundreds of real-world bugs from two658

large open source projects [41]. They found (amongst other things) null dereferences are the659

most prevalent of memory-related bugs.660

Kimura et al. argued that “it is generally felt that a method returning null is costly to661

maintain” [38]. Their study of several open source projects examined whether statements662

returning null or checks against null were modified more frequently than others and they663

observed a difference for the former (but not the latter). Furthermore, they found occurrences664

of developers replacing statements returning null with alternatives (e.g. Null Objects [29]665

or exceptions) suggesting a desire to move away from using null like this. Osman et al. also666

investigated null checks across a large number of open source programs [53]. They found the667

25 https://bitbucket.org/jastadd/jastaddj-nonnullinference

https://bitbucket.org/jastadd/jastaddj-nonnullinference
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most common reason developers insert null checks is for method returns and, furthermore,668

that this is most often to signal errors. The follow-up work of Leuenberger et al. investigated669

the nullability of method returns in Apache Lucene (a widely-used search library) [40]. For670

each method call site (either internally within Lucene or externally across clients), they671

identified whether the method return was checked against null before being dereferenced (i.e.672

as this indicates whether the caller expected it could return null or not). They confirmed673

that most methods are expected to return non-null values. However, they also found that674

external clients were more likely to check a method against null, suggesting clients employ675

defensive behaviour (e.g. when documentation is missing, etc).676

8.1 Migration677

Dietrich et al. harvested lightweight contracts, such as @NonNull and @Nullable annotations,678

from real-world code bases [17]. Unfortunately, they found such annotations are rarely used679

in practice and that, instead, throwing IllegalArgumentExceptions and (to a lesser extent)680

use of Java assert remain predominant. This suggests a key problem faced by all tools for681

checking non-null annotations (such as those above) is that of annotating existing code bases.682

Brotherston et al. aimed to simplify migration of existing code bases to use non-null683

annotations [9]. Their goal is to enable incremental migration of existing code bases to use684

non-null annotations. Here, developers begin by annotating the most important parts of685

their system and then slowly widen the net until, eventually, everything is covered. Their686

approach follows gradual typing [62] and divides programs into the checked and unchecked687

portions, such that null dereferences cannot occur in the former. To achieve this, runtime688

checks are added to unchecked code to prevent exceptions occurring within checked code (i.e.689

by forcing exceptions at the boundary between them). Such an approach is complementary690

to our work, and the two could be used together. For example, one might start by inferring691

annotations using our technique and, subsequently, shift to a gradual typing approach to692

manage parts where inferred annotations were insufficiently strong, or otherwise require693

manual intervention. Estep et al. further apply ideas of gradual typing to static analysis,694

using null-pointer analysis as an example [22]. They argue gradual null-pointer analysis hits a695

“sweet spot” by mixing static and dynamic analysis as needed. A key question they consider is696

“why it is better to fail at runtime when passing a null value as a non-null annotated argument,697

instead of just relying on the upcoming null-pointer exception”. In essence, they provide698

two answers: (1) for languages such as C, null dereferences lead to undefined behaviour699

and, hence, catching them in a controlled fashion is critical; (2) for others, such as Java,700

it is generally better practice to catch errors as early as possible. Neito et al. also take701

inspiration from gradual typing by considering blame across language interop boundaries [51].702

In particular, when null-safe languages (e.g. Scala or Kotlin) interact with unsafe languages703

(e.g. Java), problems can arise.704

Houdini statically infers a range of annotations (including non-null) for Java programs [25].705

The tool works by generating a large number of candidate annotations and using an existing706

(modular) checker to eliminate spurious ones. Ekman et al. also developed a tool for inferring707

non-null annotations which could identify roughly 70% of dereferences as safe [21]. Hubert708

et al. formalised an inference tool for non-null annotations based on pointer analysis [36, 35],709

whilst Spoto developed a similar system arguing it is faster and more precise in practice [64].710

XYLEM employs a backwards analysis to find null dereferences [50]. Whilst it doesn’t711

(strictly speaking) infer annotations, it could be modified to do so. Bouaziz et al. also712

propose a backwards analysis to infer necessary field conditions on objects (e.g. that a field713

is non-null) [7]. This approach is demand driven in the sense that fields are marked non-null714
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only if this is necessary to prohibit a null dereference being reported elsewhere.715

Finally, inference tools have been developed for pluggable type systems [26, 27, 15, 16].716

However, such tools typically cannot account for null checks in conditionals making them717

relatively imprecise in this context.718

8.2 Static Checking719

Many tools for statically checking non-null annotations have been proposed. Typically, they720

differ from traditional type checkers by operating flow-sensitively to account for conditional721

null checks. They also assume non-null annotations have already been added to programs.722

NullAway provides a nice example here, since it was developed by Uber for static non-null723

checking at scale [5]. The key requirement was that it could run on all builds, rather than just724

at code review time (as for a previous tool they used). Their tool is flow-sensitive, but often725

takes an “optimistic” view (i.e. is unsound). Their reasoning is that sound (i.e. pessimistic)726

tools produce too many false positives. NullAway does not soundly handle initialisation727

(see below); likewise, for external (unannotated) code it assumes all interactions are safe.728

Despite this, they found no cases where unsoundness lead to actual bugs across a 30-day729

period of usage on a real-world code base. Indeed, this corroborates the earlier findings of730

Ayewah and Pugh who argued many null dereferences reported by tools do not actually731

materialise as bugs in practice [4]. As another example, Eradicate is part of Facebook Infer732

[1, 19, 11] and, in many ways, is similar to NullAway.733

A number of other tools have been developed which can be used for static @NonNull734

checking, such as FindBugs [34, 33], ESC/Java [24], JastAdd [21], JACK [46] and more735

[57, 45]. Almost all of these employ flow-sensitive analysis, and many are unsound in various736

ways (e.g. support for initialisation). Indeed, the initialisation problem has proved so737

challenging that a large number of works are devoted almost exclusively to its solution [23,738

37, 58, 67, 65, 61, 43, 44, 39]. Roughly speaking, the issue is that fields of reference type are739

assigned a default value of null and, thus, every @NonNull field initially holds null (and740

this is observable [67]). In our approach we check nullability at the end of object construction.741

This method is unsound only if super constructors allow access to fields defined in subclasses.742

We think that this is a rare programming pattern, and note that our approach while aiming743

for high recall, does not guarantee soundness anyway as it is based on a dynamic analysis.744

Finally, so-called “pluggable type systems” [8] allow optional type systems to be layered745

on existing languages, thus allowing them to evolve independently [26, 27, 15, 3, 16, 48].746

The checkers framework provides a prominent example which heavily influenced JSR308747

(included in Java 8) [55]. A key advantage of this tool over others is the ability to support748

for flow-sensitive type systems (a.k.a. flow typing [56]). Indeed, without this feature checking749

non-null types is largely impractical [3].750

9 Conclusion751

We have presented a hybrid analysis pipeline that can be used to capture and refine nullability752

issues and mechanically inject inferred @Nullable annotations into Java programs. Our753

experiments on some of the most widely used Java commodity libraries demonstrates that754

this approach is suitable for real-world programs, and that the inferred annotations are755

consistent with annotations manually added by engineers. In particular, our approach has756

high precision, and there is evidence from pull requests we have initiated that this precision757

is potentially higher as our analysis is able to discover missing annotations in the already758

nullable-annotated programs we have used for evaluation.759
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Mechanising this process addresses a major issues in real-world projects: the lack of760

null annotations. Such annotations are part of the program semantics, and generally761

the annotation process requires deep understanding by project owners and contributers.762

However, the workload of adding such annotations is significant, and the lack of annotations763

compromises the utility of static checkers. We have argued that the semantics of which764

types are nullable and not is already at least partially encoded in existing test cases, and our765

pipeline exploits this idea of leveraging tests.766

The tool has been open sourced and is available at < URL tbc after double-blind review>.767
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