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Abstract. The Ethereum protocol implements a replicated state ma-
chine. The network participants keep track of the system state by: 1)
agreeing on the sequence of transactions to be processed and 2) comput-
ing the state transitions that correspond to the sequence of transactions.
Ethereum transactions are programs, called smart contracts, and com-
puting a state transition requires executing some code. The Ethereum
Virtual Machine (EVM) provides this capability and can execute pro-
grams written in EVM bytecode. We present a formal and executable se-
mantics of the EVM written in the verification-friendly language Dafny:
it provides (i) a readable, formal and verified specification of the seman-
tics of the EVM; (ii) a framework to formally reason about bytecode.

1 Introduction

A distinctive feature of Ethereum is that transactions are programs, smart con-
tracts, and computing a state transition requires to run the contract code to
compute the next state. This capability is provided by the Ethereum Virtual
Machine (EVM) that can execute programs written in EVM bytecode. The orig-
inal and informal specification of the EVM is in the Yellow Paper [28].

As a decentralised platform, Ethereum encourages client diversity : network
participants are free to choose which implementation of the EVM they want to
run, and there are several implementations to choose from written in different
languages e.g., Go, Java. All the EVM implementations must agree on the state
transitions, otherwise the network would split and the blockchain would fork.
However, the original specification in the Yellow Paper [28] has some known
shortcomings: (i) it is hard to read and does not provide a formal semantics
of the EVM and the bytecode; (ii) the lack of a formal semantics makes it
hard for Ethereum client developers to guarantee that they interpret the Yellow
Paper in a consistent way; (iii) designing compilers from high-level languages
(e.g., Solidity1) to EVM bytecode without a formal semantics is error-prone and,
without a precise semantics of the EVM, it is hard to design certified compilers
(preserving of semantics from a high to a low-level language.).

1The most popular language to write smart contracts.
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One can argue that existing implementations of the EVM (e.g., in Go, Java)
provide a de facto semantics for it. Whilst this is true to some extent, such
implementations do not enable formal reasoning about bytecode. Furthermore,
whilst smart contracts can be written in high-level languages like Solidity, they
must be compiled into EVM bytecode before being executed on the EVM. Tools
for checking safety properties (e.g., absence of overflow, division by zero, etc) at
the Solidity level are problematic if they cannot guarantee such properties hold
at the bytecode level. One solution is to design a provably correct compiler, but
this is a complex and long-term endeavour [17]. Alternatively we can provide
techniques, supported by tools, to reason about properties of the bytecode. This
is what we propose to do in this work.

Our Contribution. We present a complete and formal specification of the
EVM in Dafny, available at https://github.com/ConsenSys/evm-dafny. We
provide a formal semantics where the meaning of an instruction is given as a
partial function that maps states to states. Our semantics is language-agnostic,
readable and can be used as a reference for developers of EVMs or to aid compiler
writers. Moreover, it is a complete and usable framework for formally reasoning
about correctness of EVM bytecode using Dafny.

2 Background & Motivation

In this section we give an overview of the EVM and show how our formal spec-
ification in Dafny can be used to verify properties of bytecode programs.

The Ethereum blockchain stores the bytecode of the contracts into a database
and each contract has its own permanent storage. In what follows, we assume a
given contract and refer to storage as that allocated to this contract.

Instructions and States. The EVM [28] is a stack-based machine [28] which
supports 142 instructions: arithmetic operations (e.g., ADD, MUL), comparisons and
bitwise operations (e.g., ISZERO, NOT), cryptographic primitives (e.g., SHA3), envi-
ronment information (e.g., BALANCE, CALLVALUE), block information (e.g., NUMBER,
GASLIMIT), stack/memory/control flow (e.g., PUSH, POP, MSTORE, SLOAD, JUMP), log-
ging (e.g., LOG1), and system operations (e.g., CREATE, CALL, DELEGATECALL). An
executing state of the EVM is a tuple containing several components. We restrict
our attention to the following subset of these components:

code: a sequence of n bytes indexed from 0 to n−1; The byte at index 0 ≤ k < n
is either an instruction opcode or an immediate operand. For instance the
sequence s = [0x60, 0x01, 0x60, 0x02, 0x01, 0x50, 0x00] corresponds to the
program “PUSH1 0x01; PUSH1 0x02; ADD; POP; STOP”. Here, the byte at s[1]
(0x01) is the operand of the instruction at s[0] (PUSH1).

pc: the program counter (initially 0) identifies the next instruction to execute.
For example, if pc is 4, executing the instruction at s[4] (ADD) increments it
by 1 so s[5] is the next instruction to execute. When executing instructions

https://github.com/ConsenSys/evm-dafny
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with operands (e.g., “PUSH1 0x01” at s[0]s[1]) the pc is incremented by 1+ v
where v is the number of operands.

stack: a stack of 256-bit words (initially empty); instructions can push or pop
the stack. For example, starting from an empty stack [ ], executing the in-
structions “PUSH1 0x1; PUSH1 0x2” gives [0x02, 0x01]. Executing the ADD in-
struction from the stack [0x02, 0x01] pops 2 operands, adds them and pushes
the result yielding a new stack [0x03 = 0x01+ 0x02].

memory: a 256-bit addressable, contiguous array of bytes (initially empty).
Memory is volatile and only available during the current program execution.
Memory expands on-demand when a value is read or written to a given
location (which incurs some cost in gas). Values can be read from/written
to memory using the instructions MLOAD, MSTORE, MLOAD8 or MSTORE8.

storage: a map from 256-bit addresses to 256-bit words which constitutes the
contract’s permanent storage. Storage can be read/written using the instruc-
tions SLOAD or SSTORE.

gas: the fuel left for future computations. Executing an instruction consumes
gas in the EVM, and this ensures that no infinite computation can occur.

In the EVM, program execution may abort under exceptional cases including:

Out-of-gas: the gas left in the current state does not cover the cost of executing
the next instruction (including cost of memory expansion if any);

Stack exceptions: the stack size cannot exceed 1024. Moreover, some instruc-
tions (e.g., POP) can only be executed if the stack has enough elements and
otherwise the execution should abort.

The EVM has failure states to capture aborted computations. As a result, a
state of the EVM is either a failure state or a non-failure state.

Bytecode Verification. Using our formal semantics, we can guarantee secu-
rity properties of bytecode programs using the Dafny verifier. Dafny is a
verification-friendly language and as such the code can be instrumented with
predicates and pre- and postconditions that are checked by the verifier at com-
pile time. We use this feature to prove properties on the bytecode. The following
simple Dafny program illustrates a proof:� �

1 method AddBytes(x: u8, y: u8) {
2 // Initialise an EVM with some gas and the bytecode to execute.
3 var st := InitEmpty(gas:=1000, code:=[PUSH1,x,PUSH1,y,ADD]);
4 // Execute 3 compute steps
5 st := ExecuteN(st,3);
6 // Check that the top of the stack is the sum of x and y
7 assert st.Peek(0) == (x as u256) + (y as u256);
8 }� �
This simple code snippet illustrates several aspects of the verification process.
First we can verify family of programs as the parameters x,y are arbitrary un-
signed integers over 8 bits. This is done by creating an EVM and stepping
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through the code, e.g., using the ExecuteN function. Second, we specify the ex-
pected property of the code using the assert statement (line 7) which is a verifi-
cation statement: it is not executed at runtime as in conventional programming
languages but checked at compile-time, and must hold for all inputs. For this
program Dafny can prove automatically that the assert statement is never
violated. The proof uses the semantics of opcodes that are invoked in the com-
putation of ExecuteN. Note that if we change u8 to u256 the property does not
hold as an overflow can occur in the execution of ADD: this is flagged by the
Dafny verifier with “Cannot prove assertion at line 7”. Another set of checks
that are performed automatically are related to pre- and postconditions. For
instance the ADD instructions requires at least two elements on the stack. This
is specified by a precondition in the function that defines the semantics of ADD.
If the code above had only one PUSH1 instruction Dafny would flag that the
ADD cannot be performed as a precondition is violated. Overall, this short code
snippet demonstrates that we can specify and verify functional correctness prop-
erties of bytecode, and thanks to the pre- and postconditions used to specify the
semantics of the instructions, we can detect/fix possible exceptions (e.g., stack
overflow) before runtime.

The example in listing A.1 shows how we can reason about storage updates
and exceptions (aborted computations).

Listing A.1: Verifying bytecode with Reverts.� �
1 const INC_CONTRACT := Code.Create([
2 // Put STORAGE[0] on stack and increment by one
3 PUSH1, 0x0, SLOAD, PUSH1, 1, ADD,
4 // If result non−zero branch to JUMPDEST, else REVERT
5 DUP1, PUSH1, 0xf, JUMPI, PUSH1, 0x0, PUSH1, 0x0, REVERT,
6 // Write result back to STORAGE[0] and return
7 JUMPDEST, PUSH1, 0x0, SSTORE, STOP]);
8

9 method IncProof(st: State) returns (st’: State)
10 requires st.OK? && st.PC() == 0 && st.Gas() >= 40000 ...
11 requires st.evm.code == INC_CONTRACT
12 ensures st’.REVERTS? || st’.RETURNS?
13 ensures st’.RETURNS? <==> (st.Load(0) as nat) < MAX_U256
14 ensures st’.RETURNS? ==> st’.Load(0) == (st.Load(0) + 1) {
15 // Execute upto (and including) JUMPI.
16 var nst := ExecuteN(st,7);
17 // Consider branches separately
18 if nst.Peek(0) == 0 { // test top of the stack
19 assert nst.PC() == 0xa;
20 nst := ExecuteN(nst,3);
21 assert nst.REVERTS?;
22 } else {
23 assert nst.PC() == 0xf;
24 nst := ExecuteN(nst,4);
25 assert nst.RETURNS?;
26 }
27 return nst;
28 }� �
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This contract code maintains a counter at storage location 0 which is incre-
mented by one on every contract call. Initially, the contract storage is uncon-
strained in the input state st and, hence, any location can contain any value.
The code of the contract aims to capture overflows and to revert if an overflow
occurs. The intent is that either the contract reverts (overflow detected) or the
counter is incremented by 1. Listing A.1 gives a Dafny proof of this.2 The pre-
conditions (lines 10–11) ensure that st is an execution (non-failure) state with
pc == 0, empty stack, enough gas, and has the contract code to execute.

The postconditions (lines 12-14) specify that the computation either incre-
ments the counter (at storage location 0) or the computation reverts. The proof
divides up into two essential parts: 1. Execute the first 7 bytecodes and store the
intermediate state in nst. 2. An overflow occurs when the result of the addition
is 0. So depending on the result at the top of the stack, nst.Peek(0), we decide
whether the rest of the computation will either succeed or revert. Dafny suc-
cessfully verifies this code and guarantees the postconditions on lines 12-14 for
all input states st satisfying the preconditions (lines 10-11). This provides strong
guarantees about the bytecode: (i) it either reverts or computes the increment
but never runs out of gas, nor ends up in an invalid state (e.g., stack overflow
or underflow), (ii) the program terminates normally if and only if the initial
value stored at location 0 is strictly less than MAX_U256 (line 13), (iii) on normal
termination, the value in storage location 0 is incremented by one (line 14).

3 The Dafny-EVM

Our EVM is written in Dafny and provides a definition of the semantics as a
function mapping states to states. A key design decision made early on was to
develop a functionally pure formalisation of the EVM. In this section we describe
the main components of the Dafny-EVM and conclude with some observations.

Machine State. Line numbers hereafter refer to Listing A.3. A state of the
EVM is a record containing various fields such as gas, pc, stack, code, memory.

Each module (state, stack, memory, . . . ) provides a datatype, possibly in-
corporating some contraints (e.g., EvmState.T). For brevity, we omit some fields
which contain information about the enclosing transaction and the so-called
substate. The State datatype (line 7) models normal execution (OK), failure
(INVALID), returning (RETURNS), reverting (REVERTS), etc.

Stack, Memory and Storage. We have implemented several submodules to
provide operations on stack/memory/storage. This is summarised in Fig. 1. We
lift the operations on stack/memory/storage into the State datatype. In Dafny
this is done by adding the functions right after the definition of a datatype
(line 11). This allows us to compose them easily and improves readability. For
instance the Add function that implements the semantics of opcode ADD is defined

2The code in the paper may not compile or verify as we have simplified it for clarity.
The code in https://github.com/ConsenSys/evm-dafny compiles and verifies.

https://github.com/ConsenSys/evm-dafny
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bytes.dfy extern.dfy extras.dfy

world.dfy precompiled.dfy context.dfy

opcodes.dfy gas.dfy berlin.dfy

bytecode.dfystate.dfyevm.dfy

code.dfy

substate.dfy

stack.dfy memory.dfy storage.dfy

int.dfy

(3216 LoC)

(626 LoC)

(724 LoC)

Fig. 1: Source files of the Dafny-EVM. Top group contains bytecode semantics
and top-level types. Middle group contains abstractions of the main components.
Bottom group are fundamental primitives (e.g. for manipulating bytes and ints).
“Loc” (lines of codes) at the time of writing.

Listing A.2: Semantics of MLOAD, Bytecode module� �
1 function method MLoad(st: State) : State
2 requires st.IsExecuting() {
3 if st.Operands() >= 1 then
4 var loc := st.Peek(0) as nat;
5 var nst := st.Expand(loc,32); // Break out expanded state
6 nst.Pop().Push(nst.Read(loc)).Next() // Read from expanded state
7 else
8 State.INVALID(STACK_UNDERFLOW)
9 }� �
using a sequence of operations st.Pop().Pop().Push(...).Next() where st is an
executing state (e.g. OK). We employ preconditions (requires) to ensure lifted
operations are limited to applicable states only (typically executing states, such
as OK), and also that preconditions of the functions on stack/memory/storage
are satisfied (e.g., for Pop() the stack size must be large enough); for Push()

(line 20) the stack cannot be full (stack size is limited to 1024).

In Dafny, preconditions are checked by the verifier and must provably hold
at each call site. Notice that Dafny enforces the constraints on integer types so
every time we compute (e.g., ADD) and store the result in a 256bit word, we must
prove that the value is less than 2256 (the EVM dictates modulo arithmetic for
this). The pre-/post-conditions and type checks enforced by the Dafny verifier
help ensure that our EVM specification is consistent and that functions are
well-defined.

Memory operations are provided by the Memory module, with various func-
tions being attached to State, e.g., Read, Write lines 26–28. A key observation
is that, in both cases, address addr + 31 must be within allocated memory. This
is because memory in the EVM is byte addressable and we are reading/writing
u256 values (i.e., which are 32 bytes long). The semantics of MLOAD (Listing A.2)
highlights the complexity of memory operations. Since Read(loc) (line 6) has
the precondition loc + 31 < Memory.Size (line 26 of Listing A.3), this must hold



Formal and Executable Semantics of the EVM in Dafny 7

for state nst. In fact, this follows because the call to Expand() (line 5) ensures
sufficient memory. If the call to Expand() within MLoad was not enforcing this
constraint, then Dafny would raise a precondition violation on nst.Read(loc).

Listing A.3: The EvmState module (partial)� �
1 module EvmState {
2 datatype Raw = EVM(gas:nat, pc:nat, stack:Stack.T, code:Code.T,
3 mem:Memory.T, world:WorldState.T, ...)
4

5 type T = c:Raw | c.context.address in c.world.accounts
6

7 datatype State = OK(evm:T) | REVERTS(gas:nat,data:seq<u8>)
8 | RETURNS(gas:nat,data:seq<u8>,...) | INVALID(Error) | ...
9 {

10 // Predicates
11 predicate method IsExecuting(): bool { ... }
12

13 // Stack functions
14 function method Capacity(): nat
15 requires IsExecuting() { Stack.Capacity(evm.stack) }
16 function method Peek(k: nat): u256
17 requires IsExecuting() && k < Stack.Size(evm.stack) { ... }
18 function method Pop(): State
19 requires IsExecuting() && 0 < Stack.Size(evm.stack) { ... }
20 function method Push(v: u256) : State
21 requires IsExecuting()
22 requires Capacity() > 0 {
23 OK(evm.(stack:=Stack.Push(evm.stack,v)))
24 }
25 // Memory functions
26 function method Read(address: nat): u256
27 requires IsExecuting() && (addr+31) < Memory.Size(evm.mem) {...}
28 function method Write(address: nat, val: u256): State
29 requires IsExecuting() && (addr+31) < Memory.Size(evm.mem) {...}
30 ...
31 function method Expand(addr: nat, n: nat): (s’: State)
32 requires IsExecuting()
33 ensures s’.IsExecuting() && MemSize() <= s’.MemSize()
34 ensures (addr + n) < MemSize() ==> (evm.mem == s’.evm.mem) {...}
35 }
36 ...
37 }� �

Gas. In our design, we chose to split out the gas calculation from the instruc-
tion semantics. Whilst this does introduce some repetition, we argue it reduces
cognitive load. In particular, since this avoids interweaving the gas calculation
throughout the instruction semantics which (for performance reasons) is com-
monly done in actual implementations (including the execution specs3).

3https://github.com/ethereum/execution-specs

https://github.com/ethereum/execution-specs
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Contract Calls. Various instructions (e.g. CALL, DELEGATECALL) enable one con-
tract to call another. These differ from others as they can involve executing
arbitrarily many instructions in the called contract. We implement this using a
mechanism akin to continuations but, for brevity, omit the details here.

Observations. The Dafny-EVM Code provides a readable and executable spec-
ification of the EVM. There are several benefits of using a verification-friendly
language: using pre- and postconditions to write the semantics provides a high
level of assurance; furthermore, the code is executable and can be compiled into
several target languages including Java, C#, Go. We now highlight some obser-
vations based on our experiences from this project.

– Specification. Dafny treats function calls within expressions as inter-
preted, but treats method calls as uninterpreted [5,15]. Roughly speaking this
means that, when verifying a function call, the verifier has free access to
the function’s body. In contrast, for method calls, the verifier can only access
what is given in the specification (i.e. its pre- and postconditions). As such,
we consider methods ill-suited for formalising specifications (such as for the
EVM). This is because we cannot abstract a specification any further than
already done (i.e. we cannot specify a specification).

– Verification. Functions can have preconditions that restrict the domain of
their inputs. In Dafny preconditions are enforced at each call site. We argue
that this results in better code by enforcing consistency across function calls.
Dafny enforces that every function must have a proof of termination which
guarantees the absence of infinite loops in our state transition function. We
believe that this degree of assurance is hard to attain with non verification-
friendly languages.

– Performance. Code generated from the functionally pure subset of Dafny
can perform poorly because of the need to clone compound structures (e.g.
maps and arrays) to preserve purity (i.e., referential transparency). Dafny
does not, for example, employ clone elimination [16,26,19] or mutable value
semantics [22,21]. Performance was not a critical concern given our aim of
developing a formal specification rather than an efficient implementation and
in practice, we did not encounter any significant issue here.

During the project, a number of issues and challenges arose. For example, the
lack of an exponentiation operator in Dafny meant that, for the EXP bytecode,
we had to implement this as a recursive function. Some low level operations
involving bits & bytes (e.g., shifting) present significant challenges as the native
int type does not support bitwise operators. One can use a conversion from
(e.g. u256) into the bitvector types (e.g. bv256) provided by Dafny which do
support bitwise operations — however, this can lead to problems verifying code.
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4 Practical Experiences

From the outset of this project, we were unsure whether Dafny would be practi-
cal for this sizeable formalisation task. Overall, however, we are pleased to report
that Dafny has, for the most part, proven itself more than capable. Of course,
it was not all plain sailing and we encountered several challenges which required
developing techniques and/or workarounds.

Code Generation. Dafny can generate code for a variety of targets, including:
C#, Go, Java, C++, Python and JavaScript. Furthermore, whilst Dafny does
not support I/O operations per se, these can be implemented on the target side.
We took advantage of this to embed the Dafny-generated code into a thin
Java wrapper that performs I/O and allows us to test our EVM against existing
implementations. Note that the generated code is not proved to be equivalent to
the original Dafny code. For various reasons (e.g., knowledge within the team)
we chose Java as the target language with gradle managing the build. This
worked well enough, though there are some points to make:

– Foreign Function Interface. Code generated from Dafny does not con-
form to the stylistic norms of Java, but is otherwise relatively easy to inter-
face with. A runtime library is provided by Dafny against which generated
code must be compiled. This provides (amongst other things) alternative
collection implementations (e.g. DafnySequence, DafnyMap, etc).

– External Code. For the semantics of KECCAK256 and some precompiled con-
tracts, we preferred to call out to native Java code (i.e. rather than implement
e.g. sha256 in Dafny itself). However, whilst Dafny does support extern

declarations, these are not (at the time of writing) well supported by the
Java code generator. Instead, we had to give default implementations (e.g.
returning 0) and employ build trickery to make it work.

– Target language idiosyncrasies. Translation to a target language intro-
duces risks. E.g., Dafny employs Euclidean Division for its integer division
operator (i.e. always rounds down rather than towards zero), which is a trap
for the unwary and by chance we identified a bug in the Java code generator
where sometimes standard division was being applied.4 We also encountered
unsoundness in the translation of Dafny collections (e.g. seq<u8>) to Java5,
and buggy implementation of datatype in C#. 6

Verification and Testing. For completeness, we developed many unit tests for
various components of our formalism. The Ethereum Common Tests also provide
tens of thousands of tests for ensuring EVM compatibility.7 As such, we have
been using these to check our formalisation against existing implementations.

4https://github.com/dafny-lang/dafny/issues/2367
5https://github.com/dafny-lang/dafny/issues/2859
6https://github.com/dafny-lang/dafny/issues/1412
7https://github.com/ethereum/tests

https://github.com/dafny-lang/dafny/issues/2367
https://github.com/dafny-lang/dafny/issues/2859
https://github.com/dafny-lang/dafny/issues/1412
https://github.com/ethereum/tests
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This required generating executable code from our specification which presented
several challenges (discussion of which is unfortunately omitted for brevity). At
the time of writing, we have selected around 7500 representative tests out of the
13K Common tests (Berlin hardfork) and 6900 are passing (92%). Of the 143
failing tests, the majority (100) are failing because: some precompiled contracts
are not yet fully implemented (44); we do not currently check for branches into
instruction operands (56). The remaining (approx. 450) tests are skipped for
various reasons e.g., timeout or breaking the testing system. Finally, we note
that all of our tests are run as part of Continuous Integration before a pull
request can be merged.

5 Related Work

Initial attempt at a formal specification of the EVM may be attributed to
Hirai [13] with a formalisation of the EVM in the programming development
environment Lem [18]. The formalisation in [13] is restricted to a single con-
tract execution and proving bytecode is limited in terms of automation. Later,
Amani et al. [3] built upon Hirai’s formalisation and proposed an Isabelle/HOL
formalisation. Their contribution introduces a program logic to reason about
bytecode (restricted to a subset of 36/142 EVM instructions) but they rely on
the construction of a control flow graph to define the semantics of a program.
Reasoning about bytecode is limited to linear sequences of instructions (blocks)
and not fully automated. Another Isabelle/HOL specification was also devel-
oped in [9] specialised for gas consumption analysis and for proving termination
of bytecode.

More recently, Grishchenko et al. [10] have proposed a partial (not all opcodes
are supported and the gas cost semamtics is incomplete) formalisation of the
EVM in F ⋆ targeting verification of security properties.

The most advanced formalisation is probably the KEVM [12] using the K
Framework [23]. It provides a formal and executable specification of the syn-
tax and semantics of EVM bytecode. Using the built-in automated tools of the
K Framework, it is possible to generate an interpreter, compiler, debugger and
to some extent a verifier that can be used to check the bytecode of some con-
tracts [20]. The default input format (used for KEVM) of the K Framework
is XML-based which may not be the most developer-friendly format. Similarly,
IELE [24] attempts to design a more readable language than EVM bytecode and
to be the target of high-level languages including Solidity, Vyper, Plutus. IELE
is defined using the K Framework and uses LLVM tools (compiler) as a backend.

There are several implementations of the EVM in different languages and
clients e.g., Geth8, Besu9, and more recently the execution-specs in Python3.
The implementations in Geth and Besu are respectively in Go and Java and
cannot be used to reason about bytecode. The Python implementation relies on
specific imperative language features of Python (mutability, exceptions) and does

8https://geth.ethereum.org
9https://github.com/hyperledger/besu

https://geth.ethereum.org
https://github.com/hyperledger/besu
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not provide a functional definition of the instructions semantics nor an explicit
specification of exceptional cases: for instance the Python code does not provide
preconditions or explicit handling of exceptions, and exceptions can happen deep
in the call stack which may hinder readability.

There are several tools Oyente [4], EtherIR [1], eThor [25], Rattle [27], and
Certora [14] to perform static analysis of EVM bytecode. There are also ex-
tensions to specifically analyse the gas consumption like GASTAP [2], GasRe-
ducer [8]. Those tools build an abstract representation of the bytecode and it is
unclear whether the abstraction is semantics preserving.

In contrast to the formalisations, implementations and tools referenced above,
our formal semantics is language-agnostic (defines the state transition function
as a function), easy to read and developer-friendly, provides mathematical and
verified pre- and postconditions for the semantics of instructions. Moroever, our
semantics can be used to perform deductive reasoning about bytecode including
gas consumption using standard invariants.

6 Conclusion

We have proposed a formal semantics of the EVM in a pure functional subset of
Dafny. Our semantics is human readable, machine checked and executable, and
provides a sound framework to formally reason about bytecode.
This opens up the door for several direct applications:10

– complete smart contract verification: in practice, this can be a costly process
and may require specific verification skills or familiarity with Dafny.

– correctness of compiler optimisations: several gas optimisation patterns e.g., a
sequence SWAP1 POP POP optimised in POP POP can now be verified.

– correctness of under/overflow detection: to detect an overflow in arithmetic
modulo ADD(x, y) it is common to first compute the result r = ADD(x, y)

and then check that r >= x. We can formally prove that this is sound.
– synthesise verified bytecode: we have designed a methodology [6] to specify

and verify smart contracts directly in Dafny. We are exploring refinement
proof techniques to synthesise bytecode from the verified Dafny code of a
contract. Ultimately we may develop a Dafny-to-EVM certified compiler.

Although the benefits of our approach are evident in the formal methods’
community, adoption of these techniques in the Ethereum ecosystem is still chal-
lenging. Whilst established techniques, e.g., using Solidity to write contracts, or
using Python to write specifications, can be questionable [11], they are still preva-
lent in the Ethereum community. The main hurdles for mainstream adoption of
our approach are probably two-fold: (i) provide developer-friendly tools to write
contracts; Dafny and the tool support around it (e.g., verification performance
improvement, counter example generation [7], VSCode integration) already par-
tially solves this issue; and (ii) educate the Ethereum community to understand
the long-term benefits of formal verification for the Ethereum ecosystem.

10Examples are available in https://github.com/ConsenSys/evm-dafny.

https://github.com/ConsenSys/evm-dafny
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