
http://whiley.org

@whileydave

http://github.com/DavePearce/whiley

The Whiley Programming

Language

David J. Pearce
Victoria University of Wellington

New Zealand

http://whiley.org

Overview

• What is Whiley?

– Hybrid functional / imperative language

– Designed specifically for verification

– Compiles to JVM (also prototype C backend)

• Why another language?

– Verification is really hard

– Many features of Java it even harder!

– I think it’s basically impossible for Java

– See ESC/Java and JML as good efforts here

What’s Interesting about Whiley?

Flow Typing
Value Semantics

Verification

Pure Functions

Structural Typing

Unbound Arithmetic

A Zoo of Unusual Types!

• Primitives:
– e.g.

• Collections (lists, sets, maps):
– e.g.

• Records and Tuples:
– e.g.

• Unions and Intersections:
– e.g.

• Negations
– e.g.

[int] {string} {int=>string}

!int

any int real charnull bool

{int x, int y} (int,int)

int|null int&null

Flow Typing

Flow Typing

int sum([int] items):

r = 0

for item in items:

r = r + item

return r

• A flow-sensitive approach to type checking

• Types declared only for parameters and returns

• Variables can have different types!

• Conditionals and/or assignments cause retyping

Flow Typing

define Circle as {int x, int y, int r}
define Rect as {int x, int y, int w, int h}

define Shape as Circle | Rect

real area(Shape s):

if s is Circle:

return PI * s.r * s.r

else:

return s.w * s.h

• Type tests automatically retype variables!

– (even on the false branch)

Flow Typing & Unions

• Cannot treat null|int like an int

• Must distinguish cases by explicit type testing

null|int indexOf (string str, char c):

…

[string] split (string str, char c):

idx = indexOf (str,c)

…

below = str [0..idx]

above = str [idx..]

return [below,above]

else:

return [str]

Flow Typing & Unions

• Cannot treat null|int like an int

• Must distinguish cases by explicit type testing

null|int indexOf (string str, char c):

…

[string] split (string str, char c):

idx = indexOf (str,c)

if idx is int:

below = str [0..idx]

above = str [idx..]

return [below,above]

else:

return [str]

Can safely treat

x as int here

Flow Typing & Recursive Types

define LinkedList as null | Link

define Link as {int dat, LinkedList next }

int sum (LinkedList l):

if l == null:

return 0

else:

return l.dat + sum (l.next)

• Support general tree-like structures, similar to ADTs

• Like ADTs, recursive types also have value semantics

Verification

Verification

• Function f() :

– Accepts an arbitrary integer …

– Should return a natural number …

– But, this implementation is broken!

define nat as int where $ >= 0

nat f (int x):

return x A compile time

error!

define nat as int where $ >= 0

nat f (int x):

if x >= 0:

return x

else:

return 0

• Function f() :

– Accepts an arbitrary integer …

– Returns a natural number …

– This implementation satisfies the spec!

OK, because x

implicitly a nat

Verification

• Function g() :

– Accepts a positive number …

– And returns a natural number …

– But, how to know pos subtypes nat ?

define nat as int where $ >= 0

define pos as int where $ > 0

nat g (pos x):

return x
OK, because pos

implies nat

Verification

• Function h() :

– Accepts a natural number …

– And returns a positive number …

– But, how to know nat+1 gives pos ?

define nat as int where $ >= 0

define pos as int where $ > 0

pos h (nat x):

return x + 1
OK, because

nat+1 gives pos

Verification

• Function h1() and h2() are identical

define nat as int where $ >= 0

define pos as int where $ > 0

pos h1 (nat x):

return x + 1

int h2 (int x) requires x>=0, ensures $>0:

return x + 1

Verification

• Function sum() :

– Accepts a list of natural numbers …

– Then adds them together …

– And returns a natural number.

define nat as int where $ >= 0

nat sum ([nat] list):
r = 0
for x in list where r >= 0:

r = r + x
return r

Ok, because

adding nat to

nat gives nat

Value Semantics

Value Semantics

• Everything is pass-by-value (a.k.a value semantics)

• Data propagates only via return

• I/O and other side-effects not permitted

• Data may be updated in place

define Point as {int x, int y }

Point translate (Point p, int x, int y):

p.x = p.x + x

p.y = p.y + y

return p

Such assignments

don’t affect caller’s

state

Value Semantics – Performance

• Value semantics (naïve implementation):
– Copy board for call to move()

– Copy again for each assignment in move()

– This is very inefficient!!!

• Reference counting can really help here…

define int18 as int where 1 <= $ && $ <= 8

define Pos as { int18 row, int18 col }

Board move (Board b, Pos o, Pos n, Piece p):

b[o.col][o.row] = null

b[n.col][n.row] = piece

return b

Value Semantics - Thoughts

• Item 24, Effective Java

– Make Defensive Copies when Needed

“It is essential to make a defensive copy of

each mutable parameter to the constructor”

-- Josh Bloch

Structural Subtyping

Structural Subtyping

• Types are structural not nominal (like e.g. Java)

• Here, IntList implicitly subtypes AnyList

• No equivalent to “extends” or “implements”

define IntList as null | IntLink

define IntLink as {int dat, IntList next }

define AnyList as null | AnyLink

define AnyLink as {any dat, AnyList next }

AnyList f(IntList l):

return l

Structural Subtyping

public define Rectangle as {int x, int y }

public define Border as {int x, int y }

real area (Rectangle r):

return r.x * r.y

• Rectangle and Border indistinguishable

• Can be in different files and packages

• Can be written by different people at different

times

Implementation

Compiler Overview

Front End

WYIL Flow Typing

JVM Bytecode

Verification SMT Solver

Back Propagation

Clone Elimination

JavaScriptC / LLVM

Whiley Intermediate Language

int f(int):

ensures:

const %1 = 0

assertge %0, %1

body:

const %1 = 0

iflt %0, %1 goto label

return %0

.label

neg %0 = %0

return %0

nat f (int x):

if x >= 0:

return x

else:

return -x

Performance

Eclipse Plugin

• Update Site: http://whiley.org/eclipse

http://whiley.org

@whileydave

http://github.com/DavePearce/whiley

